vmbus_drv.c 53.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
8
 *   K. Y. Srinivasan <kys@microsoft.com>
9
 */
10 11
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

12 13 14 15 16
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
17
#include <linux/slab.h>
18
#include <linux/acpi.h>
19
#include <linux/completion.h>
20
#include <linux/hyperv.h>
21
#include <linux/kernel_stat.h>
22
#include <linux/clockchips.h>
23
#include <linux/cpu.h>
24 25
#include <linux/sched/task_stack.h>

26
#include <asm/mshyperv.h>
27 28
#include <linux/notifier.h>
#include <linux/ptrace.h>
29
#include <linux/screen_info.h>
30
#include <linux/kdebug.h>
31
#include <linux/efi.h>
32
#include <linux/random.h>
33
#include <clocksource/hyperv_timer.h>
34
#include "hyperv_vmbus.h"
35

36 37 38 39 40
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

41
static struct acpi_device  *hv_acpi_dev;
42

43
static struct completion probe_event;
44

45
static int hyperv_cpuhp_online;
46

47 48
static void *hv_panic_page;

49 50 51 52 53 54 55
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

56
	hyperv_report_panic(regs, val);
57 58 59
	return NOTIFY_DONE;
}

60 61 62 63 64 65
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

66
	hyperv_report_panic(regs, val);
67 68 69 70 71 72
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
73 74 75 76
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

77 78
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
79 80
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
81

82 83 84 85 86 87 88 89
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

90 91 92 93 94 95 96 97
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

98
static u8 channel_monitor_group(const struct vmbus_channel *channel)
99 100 101 102
{
	return (u8)channel->offermsg.monitorid / 32;
}

103
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
104 105 106 107
{
	return (u8)channel->offermsg.monitorid % 32;
}

108 109
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
110 111
{
	u8 monitor_group = channel_monitor_group(channel);
112

113 114 115
	return monitor_page->trigger_group[monitor_group].pending;
}

116 117
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
118 119 120
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
121

122 123 124
	return monitor_page->latency[monitor_group][monitor_offset];
}

125 126 127 128 129 130 131 132
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

133 134 135 136 137 138 139 140 141 142 143
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

144 145 146 147 148 149 150 151 152 153 154
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

155 156 157 158 159 160 161 162 163 164 165
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

166 167 168 169 170 171 172 173 174 175 176 177
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

190 191 192 193 194 195 196 197 198 199 200
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

201 202 203 204 205 206 207 208 209 210 211 212 213 214
#ifdef CONFIG_NUMA
static ssize_t numa_node_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;

	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
}
static DEVICE_ATTR_RO(numa_node);
#endif

215 216 217 218 219 220 221 222 223 224
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
225
				       vmbus_connection.monitor_pages[0]));
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

299 300 301 302 303
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
304
	int ret;
305 306 307

	if (!hv_dev->channel)
		return -ENODEV;
308 309 310 311 312 313

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;

314 315 316 317 318 319 320 321 322
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
323
	int ret;
324 325 326

	if (!hv_dev->channel)
		return -ENODEV;
327 328 329 330 331

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
332 333 334 335 336 337 338 339 340 341
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
342
	int ret;
343 344 345

	if (!hv_dev->channel)
		return -ENODEV;
346 347 348 349 350

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
351 352 353 354 355 356 357 358 359 360
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
361
	int ret;
362 363 364

	if (!hv_dev->channel)
		return -ENODEV;
365 366 367 368 369

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
370 371 372 373 374 375 376 377 378 379
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;
380
	int ret;
381 382 383

	if (!hv_dev->channel)
		return -ENODEV;
384 385 386 387 388

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
					  &outbound);
	if (ret < 0)
		return ret;
389 390 391 392 393 394 395 396 397
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
398
	int ret;
399 400 401

	if (!hv_dev->channel)
		return -ENODEV;
402 403 404 405 406

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

407 408 409 410 411 412 413 414 415
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
416
	int ret;
417 418 419

	if (!hv_dev->channel)
		return -ENODEV;
420 421 422 423 424

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

425 426 427 428 429 430 431 432 433
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
434
	int ret;
435 436 437

	if (!hv_dev->channel)
		return -ENODEV;
438 439 440 441 442

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

443 444 445 446 447 448 449 450 451 452
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
453
	int ret;
454 455 456

	if (!hv_dev->channel)
		return -ENODEV;
457 458 459 460 461

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

462 463 464 465 466 467 468 469 470 471
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;
472
	int ret;
473 474 475

	if (!hv_dev->channel)
		return -ENODEV;
476 477 478 479 480

	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	if (ret < 0)
		return ret;

481 482 483 484
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static ssize_t driver_override_store(struct device *dev,
				     struct device_attribute *attr,
				     const char *buf, size_t count)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char *driver_override, *old, *cp;

	/* We need to keep extra room for a newline */
	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;

	driver_override = kstrndup(buf, count, GFP_KERNEL);
	if (!driver_override)
		return -ENOMEM;

	cp = strchr(driver_override, '\n');
	if (cp)
		*cp = '\0';

	device_lock(dev);
	old = hv_dev->driver_override;
	if (strlen(driver_override)) {
		hv_dev->driver_override = driver_override;
	} else {
		kfree(driver_override);
		hv_dev->driver_override = NULL;
	}
	device_unlock(dev);

	kfree(old);

	return count;
}

static ssize_t driver_override_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	ssize_t len;

	device_lock(dev);
	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
	device_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(driver_override);

588
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
589
static struct attribute *vmbus_dev_attrs[] = {
590
	&dev_attr_id.attr,
591
	&dev_attr_state.attr,
592
	&dev_attr_monitor_id.attr,
593
	&dev_attr_class_id.attr,
594
	&dev_attr_device_id.attr,
595
	&dev_attr_modalias.attr,
596 597 598
#ifdef CONFIG_NUMA
	&dev_attr_numa_node.attr,
#endif
599 600
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
601 602
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
603 604
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
605 606 607 608 609 610 611 612 613 614
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
615
	&dev_attr_channel_vp_mapping.attr,
616 617
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
618
	&dev_attr_driver_override.attr,
619 620
	NULL,
};
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

/*
 * Device-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	const struct hv_device *hv_dev = device_to_hv_device(dev);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!hv_dev->channel->offermsg.monitor_allocated &&
	    (attr == &dev_attr_monitor_id.attr ||
	     attr == &dev_attr_server_monitor_pending.attr ||
	     attr == &dev_attr_client_monitor_pending.attr ||
	     attr == &dev_attr_server_monitor_latency.attr ||
	     attr == &dev_attr_client_monitor_latency.attr ||
	     attr == &dev_attr_server_monitor_conn_id.attr ||
	     attr == &dev_attr_client_monitor_conn_id.attr))
		return 0;

	return attr->mode;
}

static const struct attribute_group vmbus_dev_group = {
	.attrs = vmbus_dev_attrs,
	.is_visible = vmbus_dev_attr_is_visible
};
__ATTRIBUTE_GROUPS(vmbus_dev);
651

652 653 654 655 656 657
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
658 659 660 661
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
662 663 664 665
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
666 667
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
668

669
	print_alias_name(dev, alias_name);
670 671
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
672 673
}

674
static const struct hv_vmbus_device_id *
675
hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
676 677 678 679
{
	if (id == NULL)
		return NULL; /* empty device table */

680 681
	for (; !guid_is_null(&id->guid); id++)
		if (guid_equal(&id->guid, guid))
682 683 684 685 686 687
			return id;

	return NULL;
}

static const struct hv_vmbus_device_id *
688
hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
689
{
690 691 692 693 694
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
695
		if (guid_equal(&dynid->id.guid, guid)) {
696 697 698 699 700 701
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

702 703
	return id;
}
704

705
static const struct hv_vmbus_device_id vmbus_device_null;
706

707 708 709 710 711 712 713
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
							struct hv_device *dev)
{
714
	const guid_t *guid = &dev->dev_type;
715
	const struct hv_vmbus_device_id *id;
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730
	/* When driver_override is set, only bind to the matching driver */
	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
		return NULL;

	/* Look at the dynamic ids first, before the static ones */
	id = hv_vmbus_dynid_match(drv, guid);
	if (!id)
		id = hv_vmbus_dev_match(drv->id_table, guid);

	/* driver_override will always match, send a dummy id */
	if (!id && dev->driver_override)
		id = &vmbus_device_null;

	return id;
731 732
}

733
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
734
static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
772
	guid_t guid;
773 774
	ssize_t retval;

775
	retval = guid_parse(buf, &guid);
776 777
	if (retval)
		return retval;
778

779
	if (hv_vmbus_dynid_match(drv, &guid))
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
799
	guid_t guid;
800
	ssize_t retval;
801

802
	retval = guid_parse(buf, &guid);
803 804
	if (retval)
		return retval;
805

806
	retval = -ENODEV;
807 808 809 810
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

811
		if (guid_equal(&id->guid, &guid)) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
830

831 832 833 834 835 836 837

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
838
	struct hv_device *hv_dev = device_to_hv_device(device);
839

840 841 842 843
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

844
	if (hv_vmbus_get_id(drv, hv_dev))
845
		return 1;
846

847
	return 0;
848 849
}

850 851 852 853 854 855 856 857
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
858
	struct hv_device *dev = device_to_hv_device(child_device);
859
	const struct hv_vmbus_device_id *dev_id;
860

861
	dev_id = hv_vmbus_get_id(drv, dev);
862
	if (drv->probe) {
863
		ret = drv->probe(dev, dev_id);
864
		if (ret != 0)
865 866
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
867 868

	} else {
869 870
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
871
		ret = -ENODEV;
872 873 874 875
	}
	return ret;
}

876 877 878 879 880
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
881
	struct hv_driver *drv;
882
	struct hv_device *dev = device_to_hv_device(child_device);
883

884 885 886 887 888
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
889 890 891 892

	return 0;
}

893 894 895 896 897 898 899

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
900
	struct hv_device *dev = device_to_hv_device(child_device);
901 902 903 904 905 906 907 908


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

909 910
	if (drv->shutdown)
		drv->shutdown(dev);
911 912
}

913 914 915 916 917 918

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
919
	struct hv_device *hv_dev = device_to_hv_device(device);
920
	struct vmbus_channel *channel = hv_dev->channel;
921

922
	mutex_lock(&vmbus_connection.channel_mutex);
923
	hv_process_channel_removal(channel);
924
	mutex_unlock(&vmbus_connection.channel_mutex);
925
	kfree(hv_dev);
926 927
}

928
/* The one and only one */
929 930 931 932 933 934 935
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
936 937
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
938 939
};

940 941 942 943 944 945 946 947 948
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

949 950 951 952
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

953 954 955 956 957 958
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

959
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
960
{
961 962
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
963 964
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
965
	struct vmbus_channel_message_header *hdr;
966
	const struct vmbus_channel_message_table_entry *entry;
967
	struct onmessage_work_context *ctx;
968
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
969

970
	if (message_type == HVMSG_NONE)
971 972
		/* no msg */
		return;
973

974
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
975

976 977
	trace_vmbus_on_msg_dpc(hdr);

978 979 980 981
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
982

983 984 985 986 987
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
988

989 990
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
1018 1019
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
1020

1021
msg_handled:
1022
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
1023 1024
}

1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

1077 1078
		rcu_read_lock();

1079
		/* Find channel based on relid */
1080
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1081 1082 1083
			if (channel->offermsg.child_relid != relid)
				continue;

1084 1085 1086
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
1087 1088
			trace_vmbus_chan_sched(channel);

1089 1090
			++channel->interrupts;

1091 1092 1093
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
1094
				break;
1095 1096 1097 1098 1099 1100

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
1101 1102
			}
		}
1103 1104

		rcu_read_unlock();
1105 1106 1107
	}
}

1108
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
1109
{
1110 1111 1112
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
1113 1114
	struct hv_message *msg;
	union hv_synic_event_flags *event;
1115
	bool handled = false;
G
Greg Kroah-Hartman 已提交
1116

1117
	if (unlikely(page_addr == NULL))
1118
		return;
1119 1120 1121

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
1122 1123 1124 1125 1126
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
1127

1128 1129
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
1130

1131
		/* Since we are a child, we only need to check bit 0 */
1132
		if (sync_test_and_clear_bit(0, event->flags))
1133 1134 1135 1136 1137 1138 1139 1140
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1141 1142
		handled = true;
	}
1143

1144
	if (handled)
1145
		vmbus_chan_sched(hv_cpu);
1146

1147
	page_addr = hv_cpu->synic_message_page;
1148 1149 1150
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1151
	if (msg->header.message_type != HVMSG_NONE) {
1152 1153 1154 1155
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
			hv_stimer0_isr();
			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
		} else
1156
			tasklet_schedule(&hv_cpu->msg_dpc);
1157
	}
1158 1159

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Boolean to control whether to report panic messages over Hyper-V.
 *
 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
 */
static int sysctl_record_panic_msg = 1;

/*
 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
 * buffer and call into Hyper-V to transfer the data.
 */
static void hv_kmsg_dump(struct kmsg_dumper *dumper,
			 enum kmsg_dump_reason reason)
{
	size_t bytes_written;
	phys_addr_t panic_pa;

	/* We are only interested in panics. */
	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
		return;

	panic_pa = virt_to_phys(hv_panic_page);

	/*
	 * Write dump contents to the page. No need to synchronize; panic should
	 * be single-threaded.
	 */
1189 1190 1191 1192
	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
			     &bytes_written);
	if (bytes_written)
		hyperv_report_panic_msg(panic_pa, bytes_written);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
}

static struct kmsg_dumper hv_kmsg_dumper = {
	.dump = hv_kmsg_dump,
};

static struct ctl_table_header *hv_ctl_table_hdr;

/*
 * sysctl option to allow the user to control whether kmsg data should be
 * reported to Hyper-V on panic.
 */
static struct ctl_table hv_ctl_table[] = {
	{
		.procname       = "hyperv_record_panic_msg",
		.data           = &sysctl_record_panic_msg,
		.maxlen         = sizeof(int),
		.mode           = 0644,
		.proc_handler   = proc_dointvec_minmax,
1212 1213
		.extra1		= SYSCTL_ZERO,
		.extra2		= SYSCTL_ONE
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	},
	{}
};

static struct ctl_table hv_root_table[] = {
	{
		.procname	= "kernel",
		.mode		= 0555,
		.child		= hv_ctl_table
	},
	{}
};
1226

1227
/*
1228 1229 1230
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1231 1232 1233
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1234
 */
1235
static int vmbus_bus_init(void)
1236
{
1237
	int ret;
1238

1239 1240
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1241
	if (ret != 0) {
1242
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1243
		return ret;
1244 1245
	}

1246
	ret = bus_register(&hv_bus);
1247
	if (ret)
1248
		return ret;
1249

1250
	hv_setup_vmbus_irq(vmbus_isr);
1251

1252 1253 1254
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1255 1256 1257 1258 1259

	ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT);
	if (ret < 0)
		goto err_alloc;

1260
	/*
1261 1262
	 * Initialize the per-cpu interrupt state and stimer state.
	 * Then connect to the host.
1263
	 */
1264
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1265 1266
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
1267
		goto err_cpuhp;
1268 1269
	hyperv_cpuhp_online = ret;

1270
	ret = vmbus_connect();
1271
	if (ret)
1272
		goto err_connect;
1273

1274 1275 1276
	/*
	 * Only register if the crash MSRs are available
	 */
1277
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		u64 hyperv_crash_ctl;
		/*
		 * Sysctl registration is not fatal, since by default
		 * reporting is enabled.
		 */
		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
		if (!hv_ctl_table_hdr)
			pr_err("Hyper-V: sysctl table register error");

		/*
		 * Register for panic kmsg callback only if the right
		 * capability is supported by the hypervisor.
		 */
1291
		hv_get_crash_ctl(hyperv_crash_ctl);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
			if (hv_panic_page) {
				ret = kmsg_dump_register(&hv_kmsg_dumper);
				if (ret)
					pr_err("Hyper-V: kmsg dump register "
						"error 0x%x\n", ret);
			} else
				pr_err("Hyper-V: panic message page memory "
					"allocation failed");
		}

1304
		register_die_notifier(&hyperv_die_block);
1305 1306 1307 1308
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1309
	vmbus_request_offers();
1310

1311
	return 0;
1312

1313
err_connect:
1314
	cpuhp_remove_state(hyperv_cpuhp_online);
1315 1316
err_cpuhp:
	hv_stimer_free();
1317 1318
err_alloc:
	hv_synic_free();
1319
	hv_remove_vmbus_irq();
1320 1321

	bus_unregister(&hv_bus);
1322
	free_page((unsigned long)hv_panic_page);
1323 1324
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
1325
	return ret;
1326 1327
}

1328
/**
1329 1330
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1331 1332
 * @owner: owner module of the drv
 * @mod_name: module name string
1333 1334
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1335
 * and sets up the hyper-v vmbus handling for this driver.
1336 1337
 * It will return the state of the 'driver_register()' call.
 *
1338
 */
1339
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1340
{
1341
	int ret;
1342

1343
	pr_info("registering driver %s\n", hv_driver->name);
1344

1345 1346 1347 1348
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1349 1350 1351 1352
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1353

1354 1355 1356
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1357
	ret = driver_register(&hv_driver->driver);
1358

1359
	return ret;
1360
}
1361
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1362

1363
/**
1364
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1365 1366
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1367
 *
1368 1369
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1370
 */
1371
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1372
{
1373
	pr_info("unregistering driver %s\n", hv_driver->name);
1374

1375
	if (!vmbus_exists()) {
1376
		driver_unregister(&hv_driver->driver);
1377 1378
		vmbus_free_dynids(hv_driver);
	}
1379
}
1380
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
1396
	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
1415
	struct vmbus_channel *chan
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

1428
static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1429
{
1430 1431
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1432

1433 1434 1435
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1436
		return -EINVAL;
1437
	}
1438

1439 1440 1441
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1442
}
1443
static VMBUS_CHAN_ATTR_RO(out_mask);
1444

1445
static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1446
{
1447 1448
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1449

1450 1451 1452
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1453
		return -EINVAL;
1454
	}
1455

1456 1457 1458
	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1459
}
1460
static VMBUS_CHAN_ATTR_RO(in_mask);
1461

1462
static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1463
{
1464 1465
	struct hv_ring_buffer_info *rbi = &channel->inbound;
	ssize_t ret;
1466

1467 1468 1469
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1470
		return -EINVAL;
1471
	}
1472

1473 1474 1475
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1476
}
1477
static VMBUS_CHAN_ATTR_RO(read_avail);
1478

1479
static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1480
{
1481 1482
	struct hv_ring_buffer_info *rbi = &channel->outbound;
	ssize_t ret;
1483

1484 1485 1486
	mutex_lock(&rbi->ring_buffer_mutex);
	if (!rbi->ring_buffer) {
		mutex_unlock(&rbi->ring_buffer_mutex);
1487
		return -EINVAL;
1488
	}
1489

1490 1491 1492
	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
	mutex_unlock(&rbi->ring_buffer_mutex);
	return ret;
1493
}
1494
static VMBUS_CHAN_ATTR_RO(write_avail);
1495

1496
static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1497 1498 1499
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
1500
static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1501

1502
static ssize_t channel_pending_show(struct vmbus_channel *channel,
1503 1504 1505 1506 1507 1508
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
1509
static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1510

1511
static ssize_t channel_latency_show(struct vmbus_channel *channel,
1512 1513 1514 1515 1516 1517
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
1518
static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1519

1520
static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1521 1522 1523
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
1524
static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1525

1526
static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1527 1528 1529
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
1530
static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1531

1532
static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1533 1534 1535 1536 1537 1538 1539
					 char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_in_full);
}
static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);

1540
static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1541 1542 1543 1544 1545 1546 1547
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->intr_out_empty);
}
static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);

1548
static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1549 1550 1551 1552 1553 1554 1555
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_first);
}
static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);

1556
static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1557 1558 1559 1560 1561 1562 1563
					   char *buf)
{
	return sprintf(buf, "%llu\n",
		       (unsigned long long)channel->out_full_total);
}
static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);

1564
static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1565 1566 1567 1568 1569 1570
					  char *buf)
{
	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
}
static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);

1571
static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1572 1573 1574 1575 1576 1577 1578
				  char *buf)
{
	return sprintf(buf, "%u\n",
		       channel->offermsg.offer.sub_channel_index);
}
static VMBUS_CHAN_ATTR_RO(subchannel_id);

1579 1580 1581 1582 1583 1584 1585 1586
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1587 1588
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1589 1590 1591 1592
	&chan_attr_intr_in_full.attr,
	&chan_attr_intr_out_empty.attr,
	&chan_attr_out_full_first.attr,
	&chan_attr_out_full_total.attr,
1593 1594
	&chan_attr_monitor_id.attr,
	&chan_attr_subchannel_id.attr,
1595 1596 1597
	NULL
};

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/*
 * Channel-level attribute_group callback function. Returns the permission for
 * each attribute, and returns 0 if an attribute is not visible.
 */
static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
					  struct attribute *attr, int idx)
{
	const struct vmbus_channel *channel =
		container_of(kobj, struct vmbus_channel, kobj);

	/* Hide the monitor attributes if the monitor mechanism is not used. */
	if (!channel->offermsg.monitor_allocated &&
	    (attr == &chan_attr_pending.attr ||
	     attr == &chan_attr_latency.attr ||
	     attr == &chan_attr_monitor_id.attr))
		return 0;

	return attr->mode;
}

static struct attribute_group vmbus_chan_group = {
	.attrs = vmbus_chan_attrs,
	.is_visible = vmbus_chan_attr_is_visible
};

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
1633
	const struct device *device = &dev->device;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	ret = sysfs_create_group(kobj, &vmbus_chan_group);

	if (ret) {
		/*
		 * The calling functions' error handling paths will cleanup the
		 * empty channel directory.
		 */
		dev_err(device, "Unable to set up channel sysfs files\n");
		return ret;
	}

1655 1656 1657 1658 1659
	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1660 1661 1662 1663 1664 1665 1666 1667
/*
 * vmbus_remove_channel_attr_group - remove the channel's attribute group
 */
void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
{
	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
}

1668
/*
1669
 * vmbus_device_create - Creates and registers a new child device
1670
 * on the vmbus.
1671
 */
1672 1673
struct hv_device *vmbus_device_create(const guid_t *type,
				      const guid_t *instance,
S
stephen hemminger 已提交
1674
				      struct vmbus_channel *channel)
1675
{
1676
	struct hv_device *child_device_obj;
1677

1678 1679
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1680
		pr_err("Unable to allocate device object for child device\n");
1681 1682 1683
		return NULL;
	}

1684
	child_device_obj->channel = channel;
1685 1686
	guid_copy(&child_device_obj->dev_type, type);
	guid_copy(&child_device_obj->dev_instance, instance);
1687
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1688 1689 1690 1691

	return child_device_obj;
}

1692
/*
1693
 * vmbus_device_register - Register the child device
1694
 */
1695
int vmbus_device_register(struct hv_device *child_device_obj)
1696
{
1697 1698
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1699

1700
	dev_set_name(&child_device_obj->device, "%pUl",
1701
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1702

1703
	child_device_obj->device.bus = &hv_bus;
1704
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1705
	child_device_obj->device.release = vmbus_device_release;
1706

1707 1708 1709 1710
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1711
	ret = device_register(&child_device_obj->device);
1712
	if (ret) {
1713
		pr_err("Unable to register child device\n");
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1735

1736 1737
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1738 1739 1740
	return ret;
}

1741
/*
1742
 * vmbus_device_unregister - Remove the specified child device
1743
 * from the vmbus.
1744
 */
1745
void vmbus_device_unregister(struct hv_device *device_obj)
1746
{
1747 1748 1749
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1750 1751
	kset_unregister(device_obj->channels_kset);

1752 1753 1754 1755
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1756
	device_unregister(&device_obj->device);
1757 1758 1759
}


1760
/*
1761
 * VMBUS is an acpi enumerated device. Get the information we
1762
 * need from DSDT.
1763
 */
1764
#define VTPM_BASE_ADDRESS 0xfed40000
1765
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1766
{
1767 1768 1769 1770 1771 1772
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1773
	switch (res->type) {
1774 1775 1776 1777 1778 1779 1780 1781 1782

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1783
		break;
1784

1785
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1786 1787
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1788
		break;
1789 1790 1791 1792 1793

	default:
		/* Unused resource type */
		return AE_OK;

1794
	}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1815 1816 1817
	/*
	 * If two ranges are adjacent, merge them.
	 */
1818 1819 1820 1821 1822 1823
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1836
		if ((*old_res)->start > new_res->end) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1848 1849 1850 1851

	return AE_OK;
}

1852 1853 1854 1855 1856 1857
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1858 1859 1860 1861 1862 1863
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1864 1865 1866 1867 1868 1869 1870 1871 1872
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1925
	struct resource *iter, *shadow;
1926
	resource_size_t range_min, range_max, start;
1927
	const char *dev_n = dev_name(&device_obj->device);
1928
	int retval;
1929 1930 1931

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1953 1954 1955 1956 1957 1958
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1971 1972
			}

1973
			__release_region(iter, start, size);
1974 1975 1976
		}
	}

1977 1978 1979
exit:
	up(&hyperv_mmio_lock);
	return retval;
1980 1981 1982
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1993 1994 1995 1996 1997 1998 1999 2000 2001
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
2002
	release_mem_region(start, size);
2003
	up(&hyperv_mmio_lock);
2004 2005 2006 2007

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

2008 2009 2010
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
2011
	int ret_val = -ENODEV;
2012
	struct acpi_device *ancestor;
2013

2014 2015
	hv_acpi_dev = device;

2016
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2017
					vmbus_walk_resources, NULL);
2018

2019 2020 2021
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
2022 2023
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
2024
	 */
2025 2026 2027
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
2028 2029

		if (ACPI_FAILURE(result))
2030
			continue;
2031 2032
		if (hyperv_mmio) {
			vmbus_reserve_fb();
2033
			break;
2034
		}
2035
	}
2036 2037 2038
	ret_val = 0;

acpi_walk_err:
2039
	complete(&probe_event);
2040 2041
	if (ret_val)
		vmbus_acpi_remove(device);
2042
	return ret_val;
2043 2044 2045 2046
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
2047
	{"VMBus", 0},
2048 2049 2050 2051 2052 2053 2054 2055 2056
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
2057
		.remove = vmbus_acpi_remove,
2058 2059 2060
	},
};

2061 2062
static void hv_kexec_handler(void)
{
2063
	hv_stimer_global_cleanup();
2064
	vmbus_initiate_unload(false);
2065 2066 2067
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
2068
	cpuhp_remove_state(hyperv_cpuhp_online);
2069
	hyperv_cleanup();
2070 2071
};

2072 2073
static void hv_crash_handler(struct pt_regs *regs)
{
2074 2075
	int cpu;

2076
	vmbus_initiate_unload(true);
2077 2078 2079 2080 2081
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
2082
	vmbus_connection.conn_state = DISCONNECTED;
2083 2084 2085
	cpu = smp_processor_id();
	hv_stimer_cleanup(cpu);
	hv_synic_cleanup(cpu);
2086
	hyperv_cleanup();
2087 2088
};

2089
static int __init hv_acpi_init(void)
2090
{
2091
	int ret, t;
2092

2093
	if (!hv_is_hyperv_initialized())
2094 2095
		return -ENODEV;

2096 2097 2098
	init_completion(&probe_event);

	/*
2099
	 * Get ACPI resources first.
2100
	 */
2101 2102
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

2103 2104 2105
	if (ret)
		return ret;

2106 2107 2108 2109 2110
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
2111

2112
	ret = vmbus_bus_init();
2113
	if (ret)
2114 2115
		goto cleanup;

2116
	hv_setup_kexec_handler(hv_kexec_handler);
2117
	hv_setup_crash_handler(hv_crash_handler);
2118

2119 2120 2121 2122
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2123
	hv_acpi_dev = NULL;
2124
	return ret;
2125 2126
}

2127 2128
static void __exit vmbus_exit(void)
{
2129 2130
	int cpu;

2131
	hv_remove_kexec_handler();
2132
	hv_remove_crash_handler();
2133
	vmbus_connection.conn_state = DISCONNECTED;
2134
	hv_stimer_global_cleanup();
2135
	vmbus_disconnect();
2136
	hv_remove_vmbus_irq();
2137 2138 2139 2140 2141 2142
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
2143
	vmbus_free_channels();
2144

2145
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2146
		kmsg_dump_unregister(&hv_kmsg_dumper);
2147
		unregister_die_notifier(&hyperv_die_block);
2148 2149 2150
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
2151 2152

	free_page((unsigned long)hv_panic_page);
2153 2154
	unregister_sysctl_table(hv_ctl_table_hdr);
	hv_ctl_table_hdr = NULL;
2155
	bus_unregister(&hv_bus);
2156

2157
	cpuhp_remove_state(hyperv_cpuhp_online);
2158
	hv_synic_free();
2159 2160 2161
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

2162

2163
MODULE_LICENSE("GPL");
2164
MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2165

2166
subsys_initcall(hv_acpi_init);
2167
module_exit(vmbus_exit);