i915_gem.c 143.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330
{
1331 1332
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1333

1334
	if (__i915_reset_in_progress(reset_counter)) {
1335 1336 1337 1338 1339
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1340
		return -EAGAIN;
1341 1342 1343 1344 1345
	}

	return 0;
}

1346 1347 1348 1349 1350 1351
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1352
		       struct intel_engine_cs *engine)
1353
{
1354
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1389
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1390
{
1391
	unsigned long timeout;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1403

1404
	if (req->engine->irq_refcount)
1405 1406
		return -EBUSY;

1407 1408 1409 1410
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1411
	timeout = local_clock_us(&cpu) + 5;
1412
	while (!need_resched()) {
D
Daniel Vetter 已提交
1413
		if (i915_gem_request_completed(req, true))
1414 1415
			return 0;

1416 1417 1418
		if (signal_pending_state(state, current))
			break;

1419
		if (busywait_stop(timeout, cpu))
1420
			break;
1421

1422 1423
		cpu_relax_lowlatency();
	}
1424

D
Daniel Vetter 已提交
1425
	if (i915_gem_request_completed(req, false))
1426 1427 1428
		return 0;

	return -EAGAIN;
1429 1430
}

1431
/**
1432 1433
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1434 1435
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1436
 * @rps: RPS client
1437
 *
1438 1439 1440 1441 1442 1443 1444
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1445
 * Returns 0 if the request was found within the alloted time. Else returns the
1446 1447
 * errno with remaining time filled in timeout argument.
 */
1448
int __i915_wait_request(struct drm_i915_gem_request *req,
1449
			bool interruptible,
1450
			s64 *timeout,
1451
			struct intel_rps_client *rps)
1452
{
1453
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1454
	struct drm_i915_private *dev_priv = req->i915;
1455
	const bool irq_test_in_progress =
1456
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1457
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1458
	DEFINE_WAIT(wait);
1459
	unsigned long timeout_expire;
1460
	s64 before = 0; /* Only to silence a compiler warning. */
1461 1462
	int ret;

1463
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1464

1465 1466 1467
	if (list_empty(&req->list))
		return 0;

1468
	if (i915_gem_request_completed(req, true))
1469 1470
		return 0;

1471 1472 1473 1474 1475 1476 1477 1478 1479
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1480 1481 1482 1483 1484

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1485
	}
1486

1487
	if (INTEL_INFO(dev_priv)->gen >= 6)
1488
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1489

1490
	trace_i915_gem_request_wait_begin(req);
1491 1492

	/* Optimistic spin for the next jiffie before touching IRQs */
1493
	ret = __i915_spin_request(req, state);
1494 1495 1496
	if (ret == 0)
		goto out;

1497
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1498 1499 1500 1501
		ret = -ENODEV;
		goto out;
	}

1502 1503
	for (;;) {
		struct timer_list timer;
1504

1505
		prepare_to_wait(&engine->irq_queue, &wait, state);
1506

1507
		/* We need to check whether any gpu reset happened in between
1508
		 * the request being submitted and now. If a reset has occurred,
1509 1510 1511 1512 1513
		 * the seqno will have been advance past ours and our request
		 * is complete. If we are in the process of handling a reset,
		 * the request is effectively complete as the rendering will
		 * be discarded, but we need to return in order to drop the
		 * struct_mutex.
1514
		 */
1515
		if (i915_reset_in_progress(&dev_priv->gpu_error)) {
1516
			ret = 0;
1517 1518
			break;
		}
1519

1520
		if (i915_gem_request_completed(req, false)) {
1521 1522 1523
			ret = 0;
			break;
		}
1524

1525
		if (signal_pending_state(state, current)) {
1526 1527 1528 1529
			ret = -ERESTARTSYS;
			break;
		}

1530
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1531 1532 1533 1534 1535
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1536
		if (timeout || missed_irq(dev_priv, engine)) {
1537 1538
			unsigned long expire;

1539
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1540
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1541 1542 1543
			mod_timer(&timer, expire);
		}

1544
		io_schedule();
1545 1546 1547 1548 1549 1550

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1551
	if (!irq_test_in_progress)
1552
		engine->irq_put(engine);
1553

1554
	finish_wait(&engine->irq_queue, &wait);
1555

1556 1557 1558
out:
	trace_i915_gem_request_wait_end(req);

1559
	if (timeout) {
1560
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1561 1562

		*timeout = tres < 0 ? 0 : tres;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1573 1574
	}

1575
	return ret;
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1615 1616 1617

	put_pid(request->pid);
	request->pid = NULL;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1637
	if (request->previous_context) {
1638
		if (i915.enable_execlists)
1639 1640
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1641 1642
	}

1643
	i915_gem_context_unreference(request->ctx);
1644 1645 1646 1647 1648 1649
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1650
	struct intel_engine_cs *engine = req->engine;
1651 1652
	struct drm_i915_gem_request *tmp;

1653
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1668
/**
1669
 * Waits for a request to be signaled, and cleans up the
1670
 * request and object lists appropriately for that event.
1671
 * @req: request to wait on
1672 1673
 */
int
1674
i915_wait_request(struct drm_i915_gem_request *req)
1675
{
1676
	struct drm_i915_private *dev_priv = req->i915;
1677
	bool interruptible;
1678 1679
	int ret;

1680 1681
	interruptible = dev_priv->mm.interruptible;

1682
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1683

1684
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1685 1686
	if (ret)
		return ret;
1687

1688
	/* If the GPU hung, we want to keep the requests to find the guilty. */
1689
	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1690 1691
		__i915_gem_request_retire__upto(req);

1692 1693 1694
	return 0;
}

1695 1696 1697
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1698 1699
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1700
 */
1701
int
1702 1703 1704
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1705
	int ret, i;
1706

1707
	if (!obj->active)
1708 1709
		return 0;

1710 1711 1712 1713 1714
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1715

1716
			i = obj->last_write_req->engine->id;
1717 1718 1719 1720 1721 1722
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1723
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1724 1725 1726 1727 1728 1729 1730 1731 1732
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1733
		GEM_BUG_ON(obj->active);
1734 1735 1736 1737 1738 1739 1740 1741 1742
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1743
	int ring = req->engine->id;
1744 1745 1746 1747 1748 1749

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1750
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1751
		__i915_gem_request_retire__upto(req);
1752 1753
}

1754 1755 1756 1757 1758
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1759
					    struct intel_rps_client *rps,
1760 1761 1762 1763
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1764
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1765
	int ret, i, n = 0;
1766 1767 1768 1769

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1770
	if (!obj->active)
1771 1772
		return 0;

1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1782
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1793
	mutex_unlock(&dev->struct_mutex);
1794
	ret = 0;
1795
	for (i = 0; ret == 0 && i < n; i++)
1796
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1797 1798
	mutex_lock(&dev->struct_mutex);

1799 1800 1801 1802 1803 1804 1805
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1806 1807
}

1808 1809 1810 1811 1812 1813
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1814 1815 1816 1817 1818 1819 1820
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1821
/**
1822 1823
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1824 1825 1826
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1827 1828 1829
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1830
			  struct drm_file *file)
1831 1832
{
	struct drm_i915_gem_set_domain *args = data;
1833
	struct drm_i915_gem_object *obj;
1834 1835
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1836 1837
	int ret;

1838
	/* Only handle setting domains to types used by the CPU. */
1839
	if (write_domain & I915_GEM_GPU_DOMAINS)
1840 1841
		return -EINVAL;

1842
	if (read_domains & I915_GEM_GPU_DOMAINS)
1843 1844 1845 1846 1847 1848 1849 1850
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1851
	ret = i915_mutex_lock_interruptible(dev);
1852
	if (ret)
1853
		return ret;
1854

1855
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1856
	if (&obj->base == NULL) {
1857 1858
		ret = -ENOENT;
		goto unlock;
1859
	}
1860

1861 1862 1863 1864
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1865
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1866
							  to_rps_client(file),
1867
							  !write_domain);
1868 1869 1870
	if (ret)
		goto unref;

1871
	if (read_domains & I915_GEM_DOMAIN_GTT)
1872
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1873
	else
1874
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1875

1876
	if (write_domain != 0)
1877
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1878

1879
unref:
1880
	drm_gem_object_unreference(&obj->base);
1881
unlock:
1882 1883 1884 1885 1886 1887
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1888 1889 1890
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1891 1892 1893
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1894
			 struct drm_file *file)
1895 1896
{
	struct drm_i915_gem_sw_finish *args = data;
1897
	struct drm_i915_gem_object *obj;
1898 1899
	int ret = 0;

1900
	ret = i915_mutex_lock_interruptible(dev);
1901
	if (ret)
1902
		return ret;
1903

1904
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1905
	if (&obj->base == NULL) {
1906 1907
		ret = -ENOENT;
		goto unlock;
1908 1909 1910
	}

	/* Pinned buffers may be scanout, so flush the cache */
1911
	if (obj->pin_display)
1912
		i915_gem_object_flush_cpu_write_domain(obj);
1913

1914
	drm_gem_object_unreference(&obj->base);
1915
unlock:
1916 1917 1918 1919 1920
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1921 1922 1923 1924 1925
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1926 1927 1928
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1939 1940 1941
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1942
		    struct drm_file *file)
1943 1944 1945 1946 1947
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1948 1949 1950
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1951
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1952 1953
		return -ENODEV;

1954
	obj = drm_gem_object_lookup(file, args->handle);
1955
	if (obj == NULL)
1956
		return -ENOENT;
1957

1958 1959 1960 1961 1962 1963 1964 1965
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1966
	addr = vm_mmap(obj->filp, 0, args->size,
1967 1968
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1969 1970 1971 1972
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1973 1974 1975 1976
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1977 1978 1979 1980 1981 1982 1983
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1984 1985 1986

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1987
	}
1988
	drm_gem_object_unreference_unlocked(obj);
1989 1990 1991 1992 1993 1994 1995 1996
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1997 1998
/**
 * i915_gem_fault - fault a page into the GTT
1999 2000
 * @vma: VMA in question
 * @vmf: fault info
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
2015 2016
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
2017 2018
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2019
	struct i915_ggtt_view view = i915_ggtt_view_normal;
2020 2021 2022
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
2023
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2024

2025 2026
	intel_runtime_pm_get(dev_priv);

2027 2028 2029 2030
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2031 2032 2033
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2034

C
Chris Wilson 已提交
2035 2036
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2037 2038 2039 2040 2041 2042 2043 2044 2045
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2046 2047
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2048
		ret = -EFAULT;
2049 2050 2051
		goto unlock;
	}

2052
	/* Use a partial view if the object is bigger than the aperture. */
2053
	if (obj->base.size >= ggtt->mappable_end &&
2054
	    obj->tiling_mode == I915_TILING_NONE) {
2055
		static const unsigned int chunk_size = 256; // 1 MiB
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2069 2070
	if (ret)
		goto unlock;
2071

2072 2073 2074
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2075

2076
	ret = i915_gem_object_get_fence(obj);
2077
	if (ret)
2078
		goto unpin;
2079

2080
	/* Finally, remap it using the new GTT offset */
2081
	pfn = ggtt->mappable_base +
2082
		i915_gem_obj_ggtt_offset_view(obj, &view);
2083
	pfn >>= PAGE_SHIFT;
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2094

2095 2096
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2097 2098 2099 2100 2101
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2123
unpin:
2124
	i915_gem_object_ggtt_unpin_view(obj, &view);
2125
unlock:
2126
	mutex_unlock(&dev->struct_mutex);
2127
out:
2128
	switch (ret) {
2129
	case -EIO:
2130 2131 2132 2133 2134 2135 2136
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2137 2138 2139
			ret = VM_FAULT_SIGBUS;
			break;
		}
2140
	case -EAGAIN:
D
Daniel Vetter 已提交
2141 2142 2143 2144
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2145
		 */
2146 2147
	case 0:
	case -ERESTARTSYS:
2148
	case -EINTR:
2149 2150 2151 2152 2153
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2154 2155
		ret = VM_FAULT_NOPAGE;
		break;
2156
	case -ENOMEM:
2157 2158
		ret = VM_FAULT_OOM;
		break;
2159
	case -ENOSPC:
2160
	case -EFAULT:
2161 2162
		ret = VM_FAULT_SIGBUS;
		break;
2163
	default:
2164
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2165 2166
		ret = VM_FAULT_SIGBUS;
		break;
2167
	}
2168 2169 2170

	intel_runtime_pm_put(dev_priv);
	return ret;
2171 2172
}

2173 2174 2175 2176
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2177
 * Preserve the reservation of the mmapping with the DRM core code, but
2178 2179 2180 2181 2182 2183 2184 2185 2186
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2187
void
2188
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2189
{
2190 2191 2192 2193 2194 2195
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2196 2197
	if (!obj->fault_mappable)
		return;
2198

2199 2200
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2211
	obj->fault_mappable = false;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2223
uint32_t
2224
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2225
{
2226
	uint32_t gtt_size;
2227 2228

	if (INTEL_INFO(dev)->gen >= 4 ||
2229 2230
	    tiling_mode == I915_TILING_NONE)
		return size;
2231 2232

	/* Previous chips need a power-of-two fence region when tiling */
2233
	if (IS_GEN3(dev))
2234
		gtt_size = 1024*1024;
2235
	else
2236
		gtt_size = 512*1024;
2237

2238 2239
	while (gtt_size < size)
		gtt_size <<= 1;
2240

2241
	return gtt_size;
2242 2243
}

2244 2245
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2246 2247 2248 2249
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2250 2251
 *
 * Return the required GTT alignment for an object, taking into account
2252
 * potential fence register mapping.
2253
 */
2254 2255 2256
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2257 2258 2259 2260 2261
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2262
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2263
	    tiling_mode == I915_TILING_NONE)
2264 2265
		return 4096;

2266 2267 2268 2269
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2270
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2271 2272
}

2273 2274 2275 2276 2277
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2278 2279
	dev_priv->mm.shrinker_no_lock_stealing = true;

2280 2281
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2282
		goto out;
2283 2284 2285 2286 2287 2288 2289 2290

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2291 2292 2293 2294 2295
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2296 2297
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2298
		goto out;
2299 2300

	i915_gem_shrink_all(dev_priv);
2301 2302 2303 2304 2305
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2306 2307 2308 2309 2310 2311 2312
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2313
int
2314 2315
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2316
		  uint32_t handle,
2317
		  uint64_t *offset)
2318
{
2319
	struct drm_i915_gem_object *obj;
2320 2321
	int ret;

2322
	ret = i915_mutex_lock_interruptible(dev);
2323
	if (ret)
2324
		return ret;
2325

2326
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2327
	if (&obj->base == NULL) {
2328 2329 2330
		ret = -ENOENT;
		goto unlock;
	}
2331

2332
	if (obj->madv != I915_MADV_WILLNEED) {
2333
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2334
		ret = -EFAULT;
2335
		goto out;
2336 2337
	}

2338 2339 2340
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2341

2342
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2343

2344
out:
2345
	drm_gem_object_unreference(&obj->base);
2346
unlock:
2347
	mutex_unlock(&dev->struct_mutex);
2348
	return ret;
2349 2350
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2372
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2373 2374
}

D
Daniel Vetter 已提交
2375 2376 2377
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2378
{
2379
	i915_gem_object_free_mmap_offset(obj);
2380

2381 2382
	if (obj->base.filp == NULL)
		return;
2383

D
Daniel Vetter 已提交
2384 2385 2386 2387 2388
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2389
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2390 2391
	obj->madv = __I915_MADV_PURGED;
}
2392

2393 2394 2395
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2396
{
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2411 2412
}

2413
static void
2414
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2415
{
2416 2417
	struct sgt_iter sgt_iter;
	struct page *page;
2418
	int ret;
2419

2420
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2421

C
Chris Wilson 已提交
2422
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2423
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2424 2425 2426
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2427
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2428 2429 2430
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2431 2432
	i915_gem_gtt_finish_object(obj);

2433
	if (i915_gem_object_needs_bit17_swizzle(obj))
2434 2435
		i915_gem_object_save_bit_17_swizzle(obj);

2436 2437
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2438

2439
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2440
		if (obj->dirty)
2441
			set_page_dirty(page);
2442

2443
		if (obj->madv == I915_MADV_WILLNEED)
2444
			mark_page_accessed(page);
2445

2446
		put_page(page);
2447
	}
2448
	obj->dirty = 0;
2449

2450 2451
	sg_free_table(obj->pages);
	kfree(obj->pages);
2452
}
C
Chris Wilson 已提交
2453

2454
int
2455 2456 2457 2458
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2459
	if (obj->pages == NULL)
2460 2461
		return 0;

2462 2463 2464
	if (obj->pages_pin_count)
		return -EBUSY;

2465
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2466

2467 2468 2469
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2470
	list_del(&obj->global_list);
2471

2472
	if (obj->mapping) {
2473 2474 2475 2476
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2477 2478 2479
		obj->mapping = NULL;
	}

2480
	ops->put_pages(obj);
2481
	obj->pages = NULL;
2482

2483
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2484 2485 2486 2487

	return 0;
}

2488
static int
C
Chris Wilson 已提交
2489
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2490
{
C
Chris Wilson 已提交
2491
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2492 2493
	int page_count, i;
	struct address_space *mapping;
2494 2495
	struct sg_table *st;
	struct scatterlist *sg;
2496
	struct sgt_iter sgt_iter;
2497
	struct page *page;
2498
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2499
	int ret;
C
Chris Wilson 已提交
2500
	gfp_t gfp;
2501

C
Chris Wilson 已提交
2502 2503 2504 2505 2506 2507 2508
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2509 2510 2511 2512
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2513
	page_count = obj->base.size / PAGE_SIZE;
2514 2515
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2516
		return -ENOMEM;
2517
	}
2518

2519 2520 2521 2522 2523
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2524
	mapping = file_inode(obj->base.filp)->i_mapping;
2525
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2526
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2527 2528 2529
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2530 2531
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2532 2533 2534 2535 2536
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2537 2538 2539 2540 2541 2542 2543 2544
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2545
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2546 2547
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2548
				goto err_pages;
I
Imre Deak 已提交
2549
			}
C
Chris Wilson 已提交
2550
		}
2551 2552 2553 2554 2555 2556 2557 2558
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2559 2560 2561 2562 2563 2564 2565 2566 2567
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2568 2569 2570

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2571
	}
2572 2573 2574 2575
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2576 2577
	obj->pages = st;

I
Imre Deak 已提交
2578 2579 2580 2581
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2582
	if (i915_gem_object_needs_bit17_swizzle(obj))
2583 2584
		i915_gem_object_do_bit_17_swizzle(obj);

2585 2586 2587 2588
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2589 2590 2591
	return 0;

err_pages:
2592
	sg_mark_end(sg);
2593 2594
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2595 2596
	sg_free_table(st);
	kfree(st);
2597 2598 2599 2600 2601 2602 2603 2604 2605

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2606 2607 2608 2609
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2610 2611
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2626
	if (obj->pages)
2627 2628
		return 0;

2629
	if (obj->madv != I915_MADV_WILLNEED) {
2630
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2631
		return -EFAULT;
2632 2633
	}

2634 2635
	BUG_ON(obj->pages_pin_count);

2636 2637 2638 2639
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2640
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2641 2642 2643 2644

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2645
	return 0;
2646 2647
}

2648 2649 2650 2651 2652
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2653 2654
	struct sgt_iter sgt_iter;
	struct page *page;
2655 2656
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2657 2658 2659 2660 2661 2662 2663
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2664 2665 2666 2667 2668 2669
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2670

2671 2672
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2673 2674 2675 2676 2677 2678

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2679 2680
	if (pages != stack_pages)
		drm_free_large(pages);
2681 2682 2683 2684 2685

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2698 2699 2700
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2701 2702 2703 2704 2705 2706 2707 2708
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2709
void i915_vma_move_to_active(struct i915_vma *vma,
2710
			     struct drm_i915_gem_request *req)
2711
{
2712
	struct drm_i915_gem_object *obj = vma->obj;
2713
	struct intel_engine_cs *engine;
2714

2715
	engine = i915_gem_request_get_engine(req);
2716 2717

	/* Add a reference if we're newly entering the active list. */
2718
	if (obj->active == 0)
2719
		drm_gem_object_reference(&obj->base);
2720
	obj->active |= intel_engine_flag(engine);
2721

2722
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2723
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2724

2725
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2726 2727
}

2728 2729
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2730
{
2731 2732
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2733 2734

	i915_gem_request_assign(&obj->last_write_req, NULL);
2735
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2736 2737
}

2738
static void
2739
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2740
{
2741
	struct i915_vma *vma;
2742

2743 2744
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2745

2746
	list_del_init(&obj->engine_list[ring]);
2747 2748
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2749
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2750 2751 2752 2753 2754
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2755

2756 2757 2758 2759 2760 2761 2762
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2763 2764 2765
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2766
	}
2767

2768
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2769
	drm_gem_object_unreference(&obj->base);
2770 2771
}

2772
static int
2773
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2774
{
2775
	struct intel_engine_cs *engine;
2776
	int ret;
2777

2778
	/* Carefully retire all requests without writing to the rings */
2779
	for_each_engine(engine, dev_priv) {
2780
		ret = intel_engine_idle(engine);
2781 2782
		if (ret)
			return ret;
2783
	}
2784
	i915_gem_retire_requests(dev_priv);
2785 2786

	/* Finally reset hw state */
2787
	for_each_engine(engine, dev_priv)
2788
		intel_ring_init_seqno(engine, seqno);
2789

2790
	return 0;
2791 2792
}

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2804
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2819
int
2820
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2821
{
2822 2823
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2824
		int ret = i915_gem_init_seqno(dev_priv, 0);
2825 2826
		if (ret)
			return ret;
2827

2828 2829
		dev_priv->next_seqno = 1;
	}
2830

2831
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2832
	return 0;
2833 2834
}

2835 2836 2837 2838 2839
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2840
void __i915_add_request(struct drm_i915_gem_request *request,
2841 2842
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2843
{
2844
	struct intel_engine_cs *engine;
2845
	struct drm_i915_private *dev_priv;
2846
	struct intel_ringbuffer *ringbuf;
2847
	u32 request_start;
2848
	u32 reserved_tail;
2849 2850
	int ret;

2851
	if (WARN_ON(request == NULL))
2852
		return;
2853

2854
	engine = request->engine;
2855
	dev_priv = request->i915;
2856 2857
	ringbuf = request->ringbuf;

2858 2859 2860 2861 2862
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2863
	request_start = intel_ring_get_tail(ringbuf);
2864 2865 2866
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2867 2868 2869 2870 2871 2872 2873
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2874 2875
	if (flush_caches) {
		if (i915.enable_execlists)
2876
			ret = logical_ring_flush_all_caches(request);
2877
		else
2878
			ret = intel_ring_flush_all_caches(request);
2879 2880 2881
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2905 2906 2907 2908 2909
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2910
	request->postfix = intel_ring_get_tail(ringbuf);
2911

2912
	if (i915.enable_execlists)
2913
		ret = engine->emit_request(request);
2914
	else {
2915
		ret = engine->add_request(request);
2916 2917

		request->tail = intel_ring_get_tail(ringbuf);
2918
	}
2919 2920
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2921

2922
	i915_queue_hangcheck(engine->i915);
2923

2924 2925 2926
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2927
	intel_mark_busy(dev_priv);
2928

2929
	/* Sanity check that the reserved size was large enough. */
2930 2931 2932 2933 2934 2935 2936
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2937 2938
}

2939
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2940
				   const struct i915_gem_context *ctx)
2941
{
2942
	unsigned long elapsed;
2943

2944 2945 2946
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2947 2948
		return true;

2949 2950
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2951
		if (!i915_gem_context_is_default(ctx)) {
2952
			DRM_DEBUG("context hanging too fast, banning!\n");
2953
			return true;
2954 2955 2956
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2957
			return true;
2958
		}
2959 2960 2961 2962 2963
	}

	return false;
}

2964
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2965
				  struct i915_gem_context *ctx,
2966
				  const bool guilty)
2967
{
2968 2969 2970 2971
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2972

2973 2974 2975
	hs = &ctx->hang_stats;

	if (guilty) {
2976
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2977 2978 2979 2980
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2981 2982 2983
	}
}

2984 2985 2986 2987
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2988
	kmem_cache_free(req->i915->requests, req);
2989 2990
}

2991
static inline int
2992
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2993
			 struct i915_gem_context *ctx,
2994
			 struct drm_i915_gem_request **req_out)
2995
{
2996
	struct drm_i915_private *dev_priv = engine->i915;
2997
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2998
	struct drm_i915_gem_request *req;
2999 3000
	int ret;

3001 3002 3003
	if (!req_out)
		return -EINVAL;

3004
	*req_out = NULL;
3005

3006 3007 3008 3009 3010
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3011 3012 3013
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3014 3015
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3016 3017
		return -ENOMEM;

3018
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3019 3020
	if (ret)
		goto err;
3021

3022 3023
	kref_init(&req->ref);
	req->i915 = dev_priv;
3024
	req->engine = engine;
3025 3026
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3027

3028 3029 3030 3031 3032 3033 3034
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3035
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036 3037 3038 3039 3040 3041 3042

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3043

3044
	*req_out = req;
3045
	return 0;
3046

3047 3048
err_ctx:
	i915_gem_context_unreference(ctx);
3049 3050 3051
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3052 3053
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3068
		       struct i915_gem_context *ctx)
3069 3070 3071 3072 3073
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3074
		ctx = engine->i915->kernel_context;
3075 3076 3077 3078
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3079
struct drm_i915_gem_request *
3080
i915_gem_find_active_request(struct intel_engine_cs *engine)
3081
{
3082 3083
	struct drm_i915_gem_request *request;

3084
	list_for_each_entry(request, &engine->request_list, list) {
3085
		if (i915_gem_request_completed(request, false))
3086
			continue;
3087

3088
		return request;
3089
	}
3090 3091 3092 3093

	return NULL;
}

3094
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3095
				       struct intel_engine_cs *engine)
3096 3097 3098 3099
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3100
	request = i915_gem_find_active_request(engine);
3101 3102 3103 3104

	if (request == NULL)
		return;

3105
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3106

3107
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3108

3109
	list_for_each_entry_continue(request, &engine->request_list, list)
3110
		i915_set_reset_status(dev_priv, request->ctx, false);
3111
}
3112

3113
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3114
					struct intel_engine_cs *engine)
3115
{
3116 3117
	struct intel_ringbuffer *buffer;

3118
	while (!list_empty(&engine->active_list)) {
3119
		struct drm_i915_gem_object *obj;
3120

3121
		obj = list_first_entry(&engine->active_list,
3122
				       struct drm_i915_gem_object,
3123
				       engine_list[engine->id]);
3124

3125
		i915_gem_object_retire__read(obj, engine->id);
3126
	}
3127

3128 3129 3130 3131 3132 3133
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3134
	if (i915.enable_execlists) {
3135 3136
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3137

3138
		intel_execlists_cancel_requests(engine);
3139 3140
	}

3141 3142 3143 3144 3145 3146 3147
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3148
	while (!list_empty(&engine->request_list)) {
3149 3150
		struct drm_i915_gem_request *request;

3151
		request = list_first_entry(&engine->request_list,
3152 3153 3154
					   struct drm_i915_gem_request,
					   list);

3155
		i915_gem_request_retire(request);
3156
	}
3157 3158 3159 3160 3161 3162 3163 3164

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3165
	list_for_each_entry(buffer, &engine->buffers, link) {
3166 3167 3168
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3169 3170

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3171 3172
}

3173
void i915_gem_reset(struct drm_device *dev)
3174
{
3175
	struct drm_i915_private *dev_priv = dev->dev_private;
3176
	struct intel_engine_cs *engine;
3177

3178 3179 3180 3181 3182
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3183
	for_each_engine(engine, dev_priv)
3184
		i915_gem_reset_engine_status(dev_priv, engine);
3185

3186
	for_each_engine(engine, dev_priv)
3187
		i915_gem_reset_engine_cleanup(dev_priv, engine);
3188

3189 3190
	i915_gem_context_reset(dev);

3191
	i915_gem_restore_fences(dev);
3192 3193

	WARN_ON(i915_verify_lists(dev));
3194 3195 3196 3197
}

/**
 * This function clears the request list as sequence numbers are passed.
3198
 * @engine: engine to retire requests on
3199
 */
3200
void
3201
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3202
{
3203
	WARN_ON(i915_verify_lists(engine->dev));
3204

3205 3206 3207 3208
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3209
	 */
3210
	while (!list_empty(&engine->request_list)) {
3211 3212
		struct drm_i915_gem_request *request;

3213
		request = list_first_entry(&engine->request_list,
3214 3215 3216
					   struct drm_i915_gem_request,
					   list);

3217
		if (!i915_gem_request_completed(request, true))
3218 3219
			break;

3220
		i915_gem_request_retire(request);
3221
	}
3222

3223 3224 3225 3226
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3227
	while (!list_empty(&engine->active_list)) {
3228 3229
		struct drm_i915_gem_object *obj;

3230 3231
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3232
				       engine_list[engine->id]);
3233

3234
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3235 3236
			break;

3237
		i915_gem_object_retire__read(obj, engine->id);
3238 3239
	}

3240 3241 3242 3243
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3244
	}
3245

3246
	WARN_ON(i915_verify_lists(engine->dev));
3247 3248
}

3249
bool
3250
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251
{
3252
	struct intel_engine_cs *engine;
3253
	bool idle = true;
3254

3255
	for_each_engine(engine, dev_priv) {
3256 3257
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3258
		if (i915.enable_execlists) {
3259
			spin_lock_bh(&engine->execlist_lock);
3260
			idle &= list_empty(&engine->execlist_queue);
3261
			spin_unlock_bh(&engine->execlist_lock);
3262
		}
3263 3264 3265 3266 3267 3268 3269 3270
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3271 3272
}

3273
static void
3274 3275
i915_gem_retire_work_handler(struct work_struct *work)
{
3276 3277 3278
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3279
	bool idle;
3280

3281
	/* Come back later if the device is busy... */
3282 3283
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3284
		idle = i915_gem_retire_requests(dev_priv);
3285
		mutex_unlock(&dev->struct_mutex);
3286
	}
3287
	if (!idle)
3288 3289
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3290
}
3291

3292 3293 3294 3295 3296
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3297
	struct drm_device *dev = dev_priv->dev;
3298
	struct intel_engine_cs *engine;
3299

3300 3301
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3302
			return;
3303

3304
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3305
	 * Also locking seems to be fubar here, engine->request_list is protected
3306 3307
	 * by dev->struct_mutex. */

3308
	intel_mark_idle(dev_priv);
3309 3310

	if (mutex_trylock(&dev->struct_mutex)) {
3311
		for_each_engine(engine, dev_priv)
3312
			i915_gem_batch_pool_fini(&engine->batch_pool);
3313

3314 3315
		mutex_unlock(&dev->struct_mutex);
	}
3316 3317
}

3318 3319 3320 3321
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3322
 * @obj: object to flush
3323 3324 3325 3326
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3327
	int i;
3328 3329 3330

	if (!obj->active)
		return 0;
3331

3332
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3333
		struct drm_i915_gem_request *req;
3334

3335 3336 3337 3338
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3339
		if (i915_gem_request_completed(req, true))
3340
			i915_gem_object_retire__read(obj, i);
3341 3342 3343 3344 3345
	}

	return 0;
}

3346 3347
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3348 3349 3350
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3375
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3376 3377
	int i, n = 0;
	int ret;
3378

3379 3380 3381
	if (args->flags != 0)
		return -EINVAL;

3382 3383 3384 3385
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3386
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3387 3388 3389 3390 3391
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3392 3393
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3394 3395 3396
	if (ret)
		goto out;

3397
	if (!obj->active)
3398
		goto out;
3399 3400

	/* Do this after OLR check to make sure we make forward progress polling
3401
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3402
	 */
3403
	if (args->timeout_ns == 0) {
3404 3405 3406 3407 3408
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3409

3410
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3411 3412 3413 3414 3415 3416
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3417 3418
	mutex_unlock(&dev->struct_mutex);

3419 3420
	for (i = 0; i < n; i++) {
		if (ret == 0)
3421
			ret = __i915_wait_request(req[i], true,
3422
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3423
						  to_rps_client(file));
3424
		i915_gem_request_unreference(req[i]);
3425
	}
3426
	return ret;
3427 3428 3429 3430 3431 3432 3433

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3434 3435 3436
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3437 3438
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3439 3440 3441 3442
{
	struct intel_engine_cs *from;
	int ret;

3443
	from = i915_gem_request_get_engine(from_req);
3444 3445 3446
	if (to == from)
		return 0;

3447
	if (i915_gem_request_completed(from_req, true))
3448 3449
		return 0;

3450
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3451
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3452
		ret = __i915_wait_request(from_req,
3453 3454 3455
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3456 3457 3458
		if (ret)
			return ret;

3459
		i915_gem_object_retire_request(obj, from_req);
3460 3461
	} else {
		int idx = intel_ring_sync_index(from, to);
3462 3463 3464
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3465 3466 3467 3468

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3469
		if (*to_req == NULL) {
3470 3471 3472 3473 3474 3475 3476
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3477 3478
		}

3479 3480
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3495 3496 3497 3498 3499
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3500 3501 3502
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3503 3504 3505
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3506
 * rather than a particular GPU ring. Conceptually we serialise writes
3507
 * between engines inside the GPU. We only allow one engine to write
3508 3509 3510 3511 3512 3513 3514 3515 3516
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3517
 *
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3528 3529
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3530 3531
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3532 3533
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3534
{
3535
	const bool readonly = obj->base.pending_write_domain == 0;
3536
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3537
	int ret, i, n;
3538

3539
	if (!obj->active)
3540 3541
		return 0;

3542 3543
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3544

3545 3546 3547 3548 3549
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3550
		for (i = 0; i < I915_NUM_ENGINES; i++)
3551 3552 3553 3554
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3555
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3556 3557 3558
		if (ret)
			return ret;
	}
3559

3560
	return 0;
3561 3562
}

3563 3564 3565 3566 3567 3568 3569
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3570 3571 3572
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3595
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3596
{
3597
	struct drm_i915_gem_object *obj = vma->obj;
3598
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3599
	int ret;
3600

3601
	if (list_empty(&vma->obj_link))
3602 3603
		return 0;

3604 3605 3606 3607
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3608

B
Ben Widawsky 已提交
3609
	if (vma->pin_count)
3610
		return -EBUSY;
3611

3612 3613
	BUG_ON(obj->pages == NULL);

3614 3615 3616 3617 3618
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3619

3620
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3621
		i915_gem_object_finish_gtt(obj);
3622

3623 3624 3625 3626
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3627 3628

		__i915_vma_iounmap(vma);
3629
	}
3630

3631
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3632

3633
	vma->vm->unbind_vma(vma);
3634
	vma->bound = 0;
3635

3636
	list_del_init(&vma->vm_link);
3637
	if (vma->is_ggtt) {
3638 3639 3640 3641 3642 3643
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3644
		vma->ggtt_view.pages = NULL;
3645
	}
3646

B
Ben Widawsky 已提交
3647 3648 3649 3650
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3651
	 * no more VMAs exist. */
I
Imre Deak 已提交
3652
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3653
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3654

3655 3656 3657 3658 3659 3660
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3661
	return 0;
3662 3663
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3674
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3675
{
3676
	struct intel_engine_cs *engine;
3677
	int ret;
3678

3679 3680
	lockdep_assert_held(&dev_priv->dev->struct_mutex);

3681
	for_each_engine(engine, dev_priv) {
3682 3683 3684
		if (engine->last_context == NULL)
			continue;

3685
		ret = intel_engine_idle(engine);
3686 3687 3688
		if (ret)
			return ret;
	}
3689

3690
	WARN_ON(i915_verify_lists(dev));
3691
	return 0;
3692 3693
}

3694
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3695 3696
				     unsigned long cache_level)
{
3697
	struct drm_mm_node *gtt_space = &vma->node;
3698 3699
	struct drm_mm_node *other;

3700 3701 3702 3703 3704 3705
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3706
	 */
3707
	if (vma->vm->mm.color_adjust == NULL)
3708 3709
		return true;

3710
	if (!drm_mm_node_allocated(gtt_space))
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3727
/**
3728 3729
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3730 3731 3732 3733 3734
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3735
 */
3736
static struct i915_vma *
3737 3738
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3739
			   const struct i915_ggtt_view *ggtt_view,
3740
			   unsigned alignment,
3741
			   uint64_t flags)
3742
{
3743
	struct drm_device *dev = obj->base.dev;
3744 3745
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3746
	u32 fence_alignment, unfenced_alignment;
3747 3748
	u32 search_flag, alloc_flag;
	u64 start, end;
3749
	u64 size, fence_size;
B
Ben Widawsky 已提交
3750
	struct i915_vma *vma;
3751
	int ret;
3752

3753 3754 3755 3756 3757
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3758

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3788

3789 3790 3791
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3792
		end = min_t(u64, end, ggtt->mappable_end);
3793
	if (flags & PIN_ZONE_4G)
3794
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3795

3796
	if (alignment == 0)
3797
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3798
						unfenced_alignment;
3799
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3800 3801 3802
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3803
		return ERR_PTR(-EINVAL);
3804 3805
	}

3806 3807 3808
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3809
	 */
3810
	if (size > end) {
3811
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3812 3813
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3814
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3815
			  end);
3816
		return ERR_PTR(-E2BIG);
3817 3818
	}

3819
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3820
	if (ret)
3821
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3822

3823 3824
	i915_gem_object_pin_pages(obj);

3825 3826 3827
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3828
	if (IS_ERR(vma))
3829
		goto err_unpin;
B
Ben Widawsky 已提交
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3849
	} else {
3850 3851 3852 3853 3854 3855 3856
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3857

3858
search_free:
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3872

3873 3874
			goto err_free_vma;
		}
3875
	}
3876
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3877
		ret = -EINVAL;
3878
		goto err_remove_node;
3879 3880
	}

3881
	trace_i915_vma_bind(vma, flags);
3882
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3883
	if (ret)
I
Imre Deak 已提交
3884
		goto err_remove_node;
3885

3886
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3887
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3888

3889
	return vma;
B
Ben Widawsky 已提交
3890

3891
err_remove_node:
3892
	drm_mm_remove_node(&vma->node);
3893
err_free_vma:
B
Ben Widawsky 已提交
3894
	i915_gem_vma_destroy(vma);
3895
	vma = ERR_PTR(ret);
3896
err_unpin:
B
Ben Widawsky 已提交
3897
	i915_gem_object_unpin_pages(obj);
3898
	return vma;
3899 3900
}

3901
bool
3902 3903
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3904 3905 3906 3907 3908
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3909
	if (obj->pages == NULL)
3910
		return false;
3911

3912 3913 3914 3915
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3916
	if (obj->stolen || obj->phys_handle)
3917
		return false;
3918

3919 3920 3921 3922 3923 3924 3925 3926
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3927 3928
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3929
		return false;
3930
	}
3931

C
Chris Wilson 已提交
3932
	trace_i915_gem_object_clflush(obj);
3933
	drm_clflush_sg(obj->pages);
3934
	obj->cache_dirty = false;
3935 3936

	return true;
3937 3938 3939 3940
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3941
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3942
{
C
Chris Wilson 已提交
3943 3944
	uint32_t old_write_domain;

3945
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3946 3947
		return;

3948
	/* No actual flushing is required for the GTT write domain.  Writes
3949 3950
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3951 3952 3953 3954
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3955
	 */
3956 3957
	wmb();

3958 3959
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3960

3961
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3962

C
Chris Wilson 已提交
3963
	trace_i915_gem_object_change_domain(obj,
3964
					    obj->base.read_domains,
C
Chris Wilson 已提交
3965
					    old_write_domain);
3966 3967 3968 3969
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3970
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3971
{
C
Chris Wilson 已提交
3972
	uint32_t old_write_domain;
3973

3974
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3975 3976
		return;

3977
	if (i915_gem_clflush_object(obj, obj->pin_display))
3978
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3979

3980 3981
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3982

3983
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3984

C
Chris Wilson 已提交
3985
	trace_i915_gem_object_change_domain(obj,
3986
					    obj->base.read_domains,
C
Chris Wilson 已提交
3987
					    old_write_domain);
3988 3989
}

3990 3991
/**
 * Moves a single object to the GTT read, and possibly write domain.
3992 3993
 * @obj: object to act on
 * @write: ask for write access or read only
3994 3995 3996 3997
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3998
int
3999
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4000
{
4001 4002 4003
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4004
	uint32_t old_write_domain, old_read_domains;
4005
	struct i915_vma *vma;
4006
	int ret;
4007

4008 4009 4010
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4011
	ret = i915_gem_object_wait_rendering(obj, !write);
4012 4013 4014
	if (ret)
		return ret;

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4027
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4028

4029 4030 4031 4032 4033 4034 4035
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4036 4037
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4038

4039 4040 4041
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4042 4043
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4044
	if (write) {
4045 4046 4047
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4048 4049
	}

C
Chris Wilson 已提交
4050 4051 4052 4053
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4054
	/* And bump the LRU for this access */
4055 4056
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4057
		list_move_tail(&vma->vm_link,
4058
			       &ggtt->base.inactive_list);
4059

4060 4061 4062
	return 0;
}

4063 4064
/**
 * Changes the cache-level of an object across all VMA.
4065 4066
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4078 4079 4080
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4081
	struct drm_device *dev = obj->base.dev;
4082
	struct i915_vma *vma, *next;
4083
	bool bound = false;
4084
	int ret = 0;
4085 4086

	if (obj->cache_level == cache_level)
4087
		goto out;
4088

4089 4090 4091 4092 4093
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4094
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4095 4096 4097 4098 4099 4100 4101 4102
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4103
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4104
			ret = i915_vma_unbind(vma);
4105 4106
			if (ret)
				return ret;
4107 4108
		} else
			bound = true;
4109 4110
	}

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4123
		ret = i915_gem_object_wait_rendering(obj, false);
4124 4125 4126
		if (ret)
			return ret;

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4144 4145 4146
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4147 4148 4149 4150 4151 4152 4153 4154
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4155 4156
		}

4157
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4158 4159 4160 4161 4162 4163 4164
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4165 4166
	}

4167
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4168 4169 4170
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4171
out:
4172 4173 4174 4175
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4176
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4177
		if (i915_gem_clflush_object(obj, true))
4178
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4179 4180 4181 4182 4183
	}

	return 0;
}

B
Ben Widawsky 已提交
4184 4185
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4186
{
B
Ben Widawsky 已提交
4187
	struct drm_i915_gem_caching *args = data;
4188 4189
	struct drm_i915_gem_object *obj;

4190
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4191 4192
	if (&obj->base == NULL)
		return -ENOENT;
4193

4194 4195 4196 4197 4198 4199
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4200 4201 4202 4203
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4204 4205 4206 4207
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4208

4209 4210
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4211 4212
}

B
Ben Widawsky 已提交
4213 4214
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4215
{
4216
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4217
	struct drm_i915_gem_caching *args = data;
4218 4219 4220 4221
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4222 4223
	switch (args->caching) {
	case I915_CACHING_NONE:
4224 4225
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4226
	case I915_CACHING_CACHED:
4227 4228 4229 4230 4231 4232
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4233
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4234 4235
			return -ENODEV;

4236 4237
		level = I915_CACHE_LLC;
		break;
4238 4239 4240
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4241 4242 4243 4244
	default:
		return -EINVAL;
	}

4245 4246
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4247 4248
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4249
		goto rpm_put;
B
Ben Widawsky 已提交
4250

4251
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4262 4263 4264
rpm_put:
	intel_runtime_pm_put(dev_priv);

4265 4266 4267
	return ret;
}

4268
/*
4269 4270 4271
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4272 4273
 */
int
4274 4275
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4276
				     const struct i915_ggtt_view *view)
4277
{
4278
	u32 old_read_domains, old_write_domain;
4279 4280
	int ret;

4281 4282 4283
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4284
	obj->pin_display++;
4285

4286 4287 4288 4289 4290 4291 4292 4293 4294
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4295 4296
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4297
	if (ret)
4298
		goto err_unpin_display;
4299

4300 4301 4302 4303
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4304 4305 4306
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4307
	if (ret)
4308
		goto err_unpin_display;
4309

4310
	i915_gem_object_flush_cpu_write_domain(obj);
4311

4312
	old_write_domain = obj->base.write_domain;
4313
	old_read_domains = obj->base.read_domains;
4314 4315 4316 4317

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4318
	obj->base.write_domain = 0;
4319
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4320 4321 4322

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4323
					    old_write_domain);
4324 4325

	return 0;
4326 4327

err_unpin_display:
4328
	obj->pin_display--;
4329 4330 4331 4332
	return ret;
}

void
4333 4334
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4335
{
4336 4337 4338
	if (WARN_ON(obj->pin_display == 0))
		return;

4339 4340
	i915_gem_object_ggtt_unpin_view(obj, view);

4341
	obj->pin_display--;
4342 4343
}

4344 4345
/**
 * Moves a single object to the CPU read, and possibly write domain.
4346 4347
 * @obj: object to act on
 * @write: requesting write or read-only access
4348 4349 4350 4351
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4352
int
4353
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4354
{
C
Chris Wilson 已提交
4355
	uint32_t old_write_domain, old_read_domains;
4356 4357
	int ret;

4358 4359 4360
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4361
	ret = i915_gem_object_wait_rendering(obj, !write);
4362 4363 4364
	if (ret)
		return ret;

4365
	i915_gem_object_flush_gtt_write_domain(obj);
4366

4367 4368
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4369

4370
	/* Flush the CPU cache if it's still invalid. */
4371
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4372
		i915_gem_clflush_object(obj, false);
4373

4374
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4375 4376 4377 4378 4379
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4380
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4381 4382 4383 4384 4385

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4386 4387
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4388
	}
4389

C
Chris Wilson 已提交
4390 4391 4392 4393
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4394 4395 4396
	return 0;
}

4397 4398 4399
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4400 4401 4402 4403
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4404 4405 4406
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4407
static int
4408
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4409
{
4410 4411
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4412
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4413
	struct drm_i915_gem_request *request, *target = NULL;
4414
	int ret;
4415

4416 4417 4418 4419
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4420 4421 4422
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4423

4424
	spin_lock(&file_priv->mm.lock);
4425
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4426 4427
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4428

4429 4430 4431 4432 4433 4434 4435
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4436
		target = request;
4437
	}
4438 4439
	if (target)
		i915_gem_request_reference(target);
4440
	spin_unlock(&file_priv->mm.lock);
4441

4442
	if (target == NULL)
4443
		return 0;
4444

4445
	ret = __i915_wait_request(target, true, NULL, NULL);
4446 4447
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4448

4449
	i915_gem_request_unreference(target);
4450

4451 4452 4453
	return ret;
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4470 4471 4472 4473
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4474 4475 4476
	return false;
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4495
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4496 4497 4498 4499

	obj->map_and_fenceable = mappable && fenceable;
}

4500 4501 4502 4503 4504 4505
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4506
{
4507
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4508
	struct i915_vma *vma;
4509
	unsigned bound;
4510 4511
	int ret;

4512 4513 4514
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4515
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4516
		return -EINVAL;
4517

4518 4519 4520
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4521 4522 4523 4524 4525 4526
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4527
	if (vma) {
B
Ben Widawsky 已提交
4528 4529 4530
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4531
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4532
			WARN(vma->pin_count,
4533
			     "bo is already pinned in %s with incorrect alignment:"
4534
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4535
			     " obj->map_and_fenceable=%d\n",
4536
			     ggtt_view ? "ggtt" : "ppgtt",
4537 4538
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4539
			     alignment,
4540
			     !!(flags & PIN_MAPPABLE),
4541
			     obj->map_and_fenceable);
4542
			ret = i915_vma_unbind(vma);
4543 4544
			if (ret)
				return ret;
4545 4546

			vma = NULL;
4547 4548 4549
		}
	}

4550
	bound = vma ? vma->bound : 0;
4551
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4552 4553
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4554 4555
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4556 4557
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4558 4559 4560
		if (ret)
			return ret;
	}
4561

4562 4563
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4564
		__i915_vma_set_map_and_fenceable(vma);
4565 4566
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4567

4568
	vma->pin_count++;
4569 4570 4571
	return 0;
}

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4589 4590 4591 4592
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4593
	BUG_ON(!view);
4594

4595
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4596
				      alignment, flags | PIN_GLOBAL);
4597 4598
}

4599
void
4600 4601
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4602
{
4603
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4604

4605
	WARN_ON(vma->pin_count == 0);
4606
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4607

4608
	--vma->pin_count;
4609 4610 4611 4612
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4613
		    struct drm_file *file)
4614 4615
{
	struct drm_i915_gem_busy *args = data;
4616
	struct drm_i915_gem_object *obj;
4617 4618
	int ret;

4619
	ret = i915_mutex_lock_interruptible(dev);
4620
	if (ret)
4621
		return ret;
4622

4623
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4624
	if (&obj->base == NULL) {
4625 4626
		ret = -ENOENT;
		goto unlock;
4627
	}
4628

4629 4630 4631 4632
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4633
	 */
4634
	ret = i915_gem_object_flush_active(obj);
4635 4636
	if (ret)
		goto unref;
4637

4638 4639 4640 4641
	args->busy = 0;
	if (obj->active) {
		int i;

4642
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4643 4644 4645 4646
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4647
				args->busy |= 1 << (16 + req->engine->exec_id);
4648 4649
		}
		if (obj->last_write_req)
4650
			args->busy |= obj->last_write_req->engine->exec_id;
4651
	}
4652

4653
unref:
4654
	drm_gem_object_unreference(&obj->base);
4655
unlock:
4656
	mutex_unlock(&dev->struct_mutex);
4657
	return ret;
4658 4659 4660 4661 4662 4663
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4664
	return i915_gem_ring_throttle(dev, file_priv);
4665 4666
}

4667 4668 4669 4670
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4671
	struct drm_i915_private *dev_priv = dev->dev_private;
4672
	struct drm_i915_gem_madvise *args = data;
4673
	struct drm_i915_gem_object *obj;
4674
	int ret;
4675 4676 4677 4678 4679 4680 4681 4682 4683

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4684 4685 4686 4687
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4688
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4689
	if (&obj->base == NULL) {
4690 4691
		ret = -ENOENT;
		goto unlock;
4692 4693
	}

B
Ben Widawsky 已提交
4694
	if (i915_gem_obj_is_pinned(obj)) {
4695 4696
		ret = -EINVAL;
		goto out;
4697 4698
	}

4699 4700 4701 4702 4703 4704 4705 4706 4707
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4708 4709
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4710

C
Chris Wilson 已提交
4711
	/* if the object is no longer attached, discard its backing storage */
4712
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4713 4714
		i915_gem_object_truncate(obj);

4715
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4716

4717
out:
4718
	drm_gem_object_unreference(&obj->base);
4719
unlock:
4720
	mutex_unlock(&dev->struct_mutex);
4721
	return ret;
4722 4723
}

4724 4725
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4726
{
4727 4728
	int i;

4729
	INIT_LIST_HEAD(&obj->global_list);
4730
	for (i = 0; i < I915_NUM_ENGINES; i++)
4731
		INIT_LIST_HEAD(&obj->engine_list[i]);
4732
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4733
	INIT_LIST_HEAD(&obj->vma_list);
4734
	INIT_LIST_HEAD(&obj->batch_pool_link);
4735

4736 4737
	obj->ops = ops;

4738 4739 4740 4741 4742 4743
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4744
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4745
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4746 4747 4748 4749
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4750
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4751
						  size_t size)
4752
{
4753
	struct drm_i915_gem_object *obj;
4754
	struct address_space *mapping;
D
Daniel Vetter 已提交
4755
	gfp_t mask;
4756
	int ret;
4757

4758
	obj = i915_gem_object_alloc(dev);
4759
	if (obj == NULL)
4760
		return ERR_PTR(-ENOMEM);
4761

4762 4763 4764
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4765

4766 4767 4768 4769 4770 4771 4772
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4773
	mapping = file_inode(obj->base.filp)->i_mapping;
4774
	mapping_set_gfp_mask(mapping, mask);
4775

4776
	i915_gem_object_init(obj, &i915_gem_object_ops);
4777

4778 4779
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4780

4781 4782
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4798 4799
	trace_i915_gem_object_create(obj);

4800
	return obj;
4801 4802 4803 4804 4805

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4806 4807
}

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4832
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4833
{
4834
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4835
	struct drm_device *dev = obj->base.dev;
4836
	struct drm_i915_private *dev_priv = dev->dev_private;
4837
	struct i915_vma *vma, *next;
4838

4839 4840
	intel_runtime_pm_get(dev_priv);

4841 4842
	trace_i915_gem_object_destroy(obj);

4843
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4844 4845 4846 4847
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4848 4849
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4850

4851 4852
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4853

4854
			WARN_ON(i915_vma_unbind(vma));
4855

4856 4857
			dev_priv->mm.interruptible = was_interruptible;
		}
4858 4859
	}

B
Ben Widawsky 已提交
4860 4861 4862 4863 4864
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4865 4866
	WARN_ON(obj->frontbuffer_bits);

4867 4868 4869 4870 4871
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4872 4873
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4874
	if (discard_backing_storage(obj))
4875
		obj->madv = I915_MADV_DONTNEED;
4876
	i915_gem_object_put_pages(obj);
4877
	i915_gem_object_free_mmap_offset(obj);
4878

4879 4880
	BUG_ON(obj->pages);

4881 4882
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4883

4884 4885 4886
	if (obj->ops->release)
		obj->ops->release(obj);

4887 4888
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4889

4890
	kfree(obj->bit_17);
4891
	i915_gem_object_free(obj);
4892 4893

	intel_runtime_pm_put(dev_priv);
4894 4895
}

4896 4897
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4898 4899
{
	struct i915_vma *vma;
4900
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4901 4902
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4903
			return vma;
4904 4905 4906 4907 4908 4909 4910 4911
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4912

4913
	GEM_BUG_ON(!view);
4914

4915
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4916
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4917
			return vma;
4918 4919 4920
	return NULL;
}

B
Ben Widawsky 已提交
4921 4922 4923
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4924 4925 4926 4927 4928

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4929 4930
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4931

4932
	list_del(&vma->obj_link);
4933

4934
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4935 4936
}

4937
static void
4938
i915_gem_stop_engines(struct drm_device *dev)
4939 4940
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4941
	struct intel_engine_cs *engine;
4942

4943
	for_each_engine(engine, dev_priv)
4944
		dev_priv->gt.stop_engine(engine);
4945 4946
}

4947
int
4948
i915_gem_suspend(struct drm_device *dev)
4949
{
4950
	struct drm_i915_private *dev_priv = dev->dev_private;
4951
	int ret = 0;
4952

4953
	mutex_lock(&dev->struct_mutex);
4954
	ret = i915_gem_wait_for_idle(dev_priv);
4955
	if (ret)
4956
		goto err;
4957

4958
	i915_gem_retire_requests(dev_priv);
4959

4960
	i915_gem_stop_engines(dev);
4961
	i915_gem_context_lost(dev_priv);
4962 4963
	mutex_unlock(&dev->struct_mutex);

4964
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4965
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4966
	flush_delayed_work(&dev_priv->mm.idle_work);
4967

4968 4969 4970 4971 4972
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4973
	return 0;
4974 4975 4976 4977

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4978 4979
}

4980 4981
void i915_gem_init_swizzling(struct drm_device *dev)
{
4982
	struct drm_i915_private *dev_priv = dev->dev_private;
4983

4984
	if (INTEL_INFO(dev)->gen < 5 ||
4985 4986 4987 4988 4989 4990
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4991 4992 4993
	if (IS_GEN5(dev))
		return;

4994 4995
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4996
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4997
	else if (IS_GEN7(dev))
4998
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4999 5000
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5001 5002
	else
		BUG();
5003
}
D
Daniel Vetter 已提交
5004

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5032
int i915_gem_init_engines(struct drm_device *dev)
5033
{
5034
	struct drm_i915_private *dev_priv = dev->dev_private;
5035
	int ret;
5036

5037
	ret = intel_init_render_ring_buffer(dev);
5038
	if (ret)
5039
		return ret;
5040 5041

	if (HAS_BSD(dev)) {
5042
		ret = intel_init_bsd_ring_buffer(dev);
5043 5044
		if (ret)
			goto cleanup_render_ring;
5045
	}
5046

5047
	if (HAS_BLT(dev)) {
5048 5049 5050 5051 5052
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5053 5054 5055 5056 5057 5058
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5059 5060 5061 5062 5063
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5064

5065 5066
	return 0;

B
Ben Widawsky 已提交
5067
cleanup_vebox_ring:
5068
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5069
cleanup_blt_ring:
5070
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5071
cleanup_bsd_ring:
5072
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5073
cleanup_render_ring:
5074
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5075 5076 5077 5078 5079 5080 5081

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5082
	struct drm_i915_private *dev_priv = dev->dev_private;
5083
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5084
	int ret;
5085

5086 5087 5088
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5089
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5090
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5091

5092 5093 5094
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5095

5096
	if (HAS_PCH_NOP(dev)) {
5097 5098 5099 5100 5101 5102 5103 5104 5105
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5106 5107
	}

5108 5109
	i915_gem_init_swizzling(dev);

5110 5111 5112 5113 5114 5115 5116 5117
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5118
	BUG_ON(!dev_priv->kernel_context);
5119

5120 5121 5122 5123 5124 5125 5126
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5127
	for_each_engine(engine, dev_priv) {
5128
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5129
		if (ret)
5130
			goto out;
D
Daniel Vetter 已提交
5131
	}
5132

5133 5134
	intel_mocs_init_l3cc_table(dev);

5135
	/* We can't enable contexts until all firmware is loaded */
5136 5137 5138
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5139

5140 5141 5142 5143 5144
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
5145

5146 5147
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5148
	return ret;
5149 5150
}

5151 5152 5153 5154 5155 5156
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
5157

5158
	if (!i915.enable_execlists) {
5159
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5160 5161 5162
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5163
	} else {
5164
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5165 5166 5167
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5168 5169
	}

5170 5171 5172 5173 5174 5175 5176 5177
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5178
	i915_gem_init_userptr(dev_priv);
5179
	i915_gem_init_ggtt(dev);
5180

5181
	ret = i915_gem_context_init(dev);
5182 5183
	if (ret)
		goto out_unlock;
5184

5185
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5186
	if (ret)
5187
		goto out_unlock;
5188

5189
	ret = i915_gem_init_hw(dev);
5190 5191 5192 5193 5194 5195
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5196
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5197
		ret = 0;
5198
	}
5199 5200

out_unlock:
5201
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5202
	mutex_unlock(&dev->struct_mutex);
5203

5204
	return ret;
5205 5206
}

5207
void
5208
i915_gem_cleanup_engines(struct drm_device *dev)
5209
{
5210
	struct drm_i915_private *dev_priv = dev->dev_private;
5211
	struct intel_engine_cs *engine;
5212

5213
	for_each_engine(engine, dev_priv)
5214
		dev_priv->gt.cleanup_engine(engine);
5215 5216
}

5217
static void
5218
init_engine_lists(struct intel_engine_cs *engine)
5219
{
5220 5221
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5222 5223
}

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5238
	if (intel_vgpu_active(dev_priv))
5239 5240 5241 5242 5243 5244 5245 5246 5247
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5248
void
5249
i915_gem_load_init(struct drm_device *dev)
5250
{
5251
	struct drm_i915_private *dev_priv = dev->dev_private;
5252 5253
	int i;

5254
	dev_priv->objects =
5255 5256 5257 5258
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5259 5260 5261 5262 5263
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5264 5265 5266 5267 5268
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5269

B
Ben Widawsky 已提交
5270
	INIT_LIST_HEAD(&dev_priv->vm_list);
5271
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5272 5273
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5274
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5275 5276
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5277
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5278
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5279 5280
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5281 5282
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5283
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5284

5285 5286
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5287 5288 5289 5290 5291 5292 5293 5294
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5295
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5296

5297
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5298

5299 5300
	dev_priv->mm.interruptible = true;

5301
	mutex_init(&dev_priv->fb_tracking.lock);
5302
}
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5341
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5342
{
5343
	struct drm_i915_file_private *file_priv = file->driver_priv;
5344 5345 5346 5347 5348

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5349
	spin_lock(&file_priv->mm.lock);
5350 5351 5352 5353 5354 5355 5356 5357 5358
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5359
	spin_unlock(&file_priv->mm.lock);
5360

5361
	if (!list_empty(&file_priv->rps.link)) {
5362
		spin_lock(&to_i915(dev)->rps.client_lock);
5363
		list_del(&file_priv->rps.link);
5364
		spin_unlock(&to_i915(dev)->rps.client_lock);
5365
	}
5366 5367 5368 5369 5370
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5371
	int ret;
5372 5373 5374 5375 5376 5377 5378 5379 5380

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5381
	file_priv->file = file;
5382
	INIT_LIST_HEAD(&file_priv->rps.link);
5383 5384 5385 5386

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5387 5388
	file_priv->bsd_ring = -1;

5389 5390 5391
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5392

5393
	return ret;
5394 5395
}

5396 5397
/**
 * i915_gem_track_fb - update frontbuffer tracking
5398 5399 5400
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5401 5402 5403 5404
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5422
/* All the new VM stuff */
5423 5424
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5425 5426 5427 5428
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5429
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5430

5431
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5432
		if (vma->is_ggtt &&
5433 5434 5435
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5436 5437
			return vma->node.start;
	}
5438

5439 5440
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5441 5442 5443
	return -1;
}

5444 5445
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5446 5447 5448
{
	struct i915_vma *vma;

5449
	list_for_each_entry(vma, &o->vma_list, obj_link)
5450
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5451 5452
			return vma->node.start;

5453
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5454 5455 5456 5457 5458 5459 5460 5461
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5462
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5463
		if (vma->is_ggtt &&
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5474
				  const struct i915_ggtt_view *view)
5475 5476 5477
{
	struct i915_vma *vma;

5478
	list_for_each_entry(vma, &o->vma_list, obj_link)
5479
		if (vma->is_ggtt &&
5480
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5481
		    drm_mm_node_allocated(&vma->node))
5482 5483 5484 5485 5486 5487 5488
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5489
	struct i915_vma *vma;
5490

5491
	list_for_each_entry(vma, &o->vma_list, obj_link)
5492
		if (drm_mm_node_allocated(&vma->node))
5493 5494 5495 5496 5497
			return true;

	return false;
}

5498
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5499 5500 5501
{
	struct i915_vma *vma;

5502
	GEM_BUG_ON(list_empty(&o->vma_list));
5503

5504
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5505
		if (vma->is_ggtt &&
5506
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5507
			return vma->node.size;
5508
	}
5509

5510 5511 5512
	return 0;
}

5513
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5514 5515
{
	struct i915_vma *vma;
5516
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5517 5518
		if (vma->pin_count > 0)
			return true;
5519

5520
	return false;
5521
}
5522

5523 5524 5525 5526 5527 5528 5529
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5530
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5531 5532 5533 5534 5535 5536 5537
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5548
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5549
	if (IS_ERR(obj))
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5563
	obj->dirty = 1;		/* Backing store is now out of date */
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}