i915_gem.c 143.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330
{
1331 1332
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1333

1334
	if (__i915_reset_in_progress(reset_counter)) {
1335 1336 1337 1338 1339
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1340
		return -EAGAIN;
1341 1342 1343 1344 1345
	}

	return 0;
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1378 1379
bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
1380
{
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1392

1393
	timeout_us += local_clock_us(&cpu);
1394
	do {
1395
		if (i915_gem_request_completed(req))
1396
			return true;
1397

1398 1399 1400
		if (signal_pending_state(state, current))
			break;

1401
		if (busywait_stop(timeout_us, cpu))
1402
			break;
1403

1404
		cpu_relax_lowlatency();
1405
	} while (!need_resched());
1406

1407
	return false;
1408 1409
}

1410
/**
1411 1412
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1413 1414
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415
 * @rps: RPS client
1416
 *
1417 1418 1419 1420 1421 1422 1423
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1424
 * Returns 0 if the request was found within the alloted time. Else returns the
1425 1426
 * errno with remaining time filled in timeout argument.
 */
1427
int __i915_wait_request(struct drm_i915_gem_request *req,
1428
			bool interruptible,
1429
			s64 *timeout,
1430
			struct intel_rps_client *rps)
1431
{
1432
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433
	DEFINE_WAIT(reset);
1434 1435
	struct intel_wait wait;
	unsigned long timeout_remain;
1436
	s64 before = 0; /* Only to silence a compiler warning. */
1437
	int ret = 0;
1438

1439
	might_sleep();
1440

1441 1442 1443
	if (list_empty(&req->list))
		return 0;

1444
	if (i915_gem_request_completed(req))
1445 1446
		return 0;

1447
	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 1449 1450 1451 1452 1453 1454
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

1455
		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456 1457 1458 1459 1460

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1461
	}
1462

1463
	trace_i915_gem_request_wait_begin(req);
1464

1465 1466
	if (INTEL_INFO(req->i915)->gen >= 6)
		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1467

1468
	/* Optimistic spin for the next ~jiffie before touching IRQs */
1469
	if (i915_spin_request(req, state, 5))
1470
		goto complete;
1471

1472 1473
	set_current_state(state);
	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1474

1475 1476 1477 1478 1479
	intel_wait_init(&wait, req->seqno);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
1480
		 */
1481
		goto wakeup;
1482

1483
	for (;;) {
1484
		if (signal_pending_state(state, current)) {
1485 1486 1487 1488
			ret = -ERESTARTSYS;
			break;
		}

1489 1490 1491 1492 1493 1494 1495
		/* Ensure that even if the GPU hangs, we get woken up.
		 *
		 * However, note that if no one is waiting, we never notice
		 * a gpu hang. Eventually, we will have to wait for a resource
		 * held by the GPU and so trigger a hangcheck. In the most
		 * pathological case, this will be upon memory starvation!
		 */
1496
		i915_queue_hangcheck(req->i915);
1497

1498 1499 1500 1501
		timeout_remain = io_schedule_timeout(timeout_remain);
		if (timeout_remain == 0) {
			ret = -ETIME;
			break;
1502 1503
		}

1504 1505
		if (intel_wait_complete(&wait))
			break;
1506

1507
		set_current_state(state);
1508

1509 1510 1511 1512 1513 1514 1515 1516
wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;
1517 1518 1519 1520

		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1521 1522
	}
	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1523

1524 1525 1526
	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
complete:
1527 1528
	trace_i915_gem_request_wait_end(req);

1529
	if (timeout) {
1530
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1531 1532

		*timeout = tres < 0 ? 0 : tres;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1543 1544
	}

1545
	return ret;
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1585 1586 1587

	put_pid(request->pid);
	request->pid = NULL;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1607
	if (request->previous_context) {
1608
		if (i915.enable_execlists)
1609 1610
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1611 1612
	}

1613
	i915_gem_context_unreference(request->ctx);
1614 1615 1616 1617 1618 1619
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1620
	struct intel_engine_cs *engine = req->engine;
1621 1622
	struct drm_i915_gem_request *tmp;

1623
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1638
/**
1639
 * Waits for a request to be signaled, and cleans up the
1640
 * request and object lists appropriately for that event.
1641
 * @req: request to wait on
1642 1643
 */
int
1644
i915_wait_request(struct drm_i915_gem_request *req)
1645
{
1646
	struct drm_i915_private *dev_priv = req->i915;
1647
	bool interruptible;
1648 1649
	int ret;

1650 1651
	interruptible = dev_priv->mm.interruptible;

1652
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1653

1654
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1655 1656
	if (ret)
		return ret;
1657

1658
	/* If the GPU hung, we want to keep the requests to find the guilty. */
1659
	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1660 1661
		__i915_gem_request_retire__upto(req);

1662 1663 1664
	return 0;
}

1665 1666 1667
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1668 1669
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1670
 */
1671
int
1672 1673 1674
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1675
	int ret, i;
1676

1677
	if (!obj->active)
1678 1679
		return 0;

1680 1681 1682 1683 1684
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1685

1686
			i = obj->last_write_req->engine->id;
1687 1688 1689 1690 1691 1692
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1693
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1694 1695 1696 1697 1698 1699 1700 1701 1702
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1703
		GEM_BUG_ON(obj->active);
1704 1705 1706 1707 1708 1709 1710 1711 1712
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1713
	int ring = req->engine->id;
1714 1715 1716 1717 1718 1719

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1720
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1721
		__i915_gem_request_retire__upto(req);
1722 1723
}

1724 1725 1726 1727 1728
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1729
					    struct intel_rps_client *rps,
1730 1731 1732 1733
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1734
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1735
	int ret, i, n = 0;
1736 1737 1738 1739

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1740
	if (!obj->active)
1741 1742
		return 0;

1743 1744 1745 1746 1747 1748 1749 1750 1751
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1752
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1763
	mutex_unlock(&dev->struct_mutex);
1764
	ret = 0;
1765
	for (i = 0; ret == 0 && i < n; i++)
1766
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1767 1768
	mutex_lock(&dev->struct_mutex);

1769 1770 1771 1772 1773 1774 1775
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1776 1777
}

1778 1779 1780 1781 1782 1783
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1784 1785 1786 1787 1788 1789 1790
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1791
/**
1792 1793
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1794 1795 1796
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1797 1798 1799
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1800
			  struct drm_file *file)
1801 1802
{
	struct drm_i915_gem_set_domain *args = data;
1803
	struct drm_i915_gem_object *obj;
1804 1805
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1806 1807
	int ret;

1808
	/* Only handle setting domains to types used by the CPU. */
1809
	if (write_domain & I915_GEM_GPU_DOMAINS)
1810 1811
		return -EINVAL;

1812
	if (read_domains & I915_GEM_GPU_DOMAINS)
1813 1814 1815 1816 1817 1818 1819 1820
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1821
	ret = i915_mutex_lock_interruptible(dev);
1822
	if (ret)
1823
		return ret;
1824

1825
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1826
	if (&obj->base == NULL) {
1827 1828
		ret = -ENOENT;
		goto unlock;
1829
	}
1830

1831 1832 1833 1834
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1835
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1836
							  to_rps_client(file),
1837
							  !write_domain);
1838 1839 1840
	if (ret)
		goto unref;

1841
	if (read_domains & I915_GEM_DOMAIN_GTT)
1842
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1843
	else
1844
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1845

1846
	if (write_domain != 0)
1847
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1848

1849
unref:
1850
	drm_gem_object_unreference(&obj->base);
1851
unlock:
1852 1853 1854 1855 1856 1857
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1858 1859 1860
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1861 1862 1863
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1864
			 struct drm_file *file)
1865 1866
{
	struct drm_i915_gem_sw_finish *args = data;
1867
	struct drm_i915_gem_object *obj;
1868 1869
	int ret = 0;

1870
	ret = i915_mutex_lock_interruptible(dev);
1871
	if (ret)
1872
		return ret;
1873

1874
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1875
	if (&obj->base == NULL) {
1876 1877
		ret = -ENOENT;
		goto unlock;
1878 1879 1880
	}

	/* Pinned buffers may be scanout, so flush the cache */
1881
	if (obj->pin_display)
1882
		i915_gem_object_flush_cpu_write_domain(obj);
1883

1884
	drm_gem_object_unreference(&obj->base);
1885
unlock:
1886 1887 1888 1889 1890
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1891 1892 1893 1894 1895
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1896 1897 1898
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1909 1910 1911
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1912
		    struct drm_file *file)
1913 1914 1915 1916 1917
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1918 1919 1920
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1921
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1922 1923
		return -ENODEV;

1924
	obj = drm_gem_object_lookup(file, args->handle);
1925
	if (obj == NULL)
1926
		return -ENOENT;
1927

1928 1929 1930 1931 1932 1933 1934 1935
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1936
	addr = vm_mmap(obj->filp, 0, args->size,
1937 1938
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1939 1940 1941 1942
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1943 1944 1945 1946
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1947 1948 1949 1950 1951 1952 1953
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1954 1955 1956

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1957
	}
1958
	drm_gem_object_unreference_unlocked(obj);
1959 1960 1961 1962 1963 1964 1965 1966
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1967 1968
/**
 * i915_gem_fault - fault a page into the GTT
1969 1970
 * @vma: VMA in question
 * @vmf: fault info
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1985 1986
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1987 1988
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1989
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1990 1991 1992
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1993
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1994

1995 1996
	intel_runtime_pm_get(dev_priv);

1997 1998 1999 2000
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2001 2002 2003
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2004

C
Chris Wilson 已提交
2005 2006
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2007 2008 2009 2010 2011 2012 2013 2014 2015
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2016 2017
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2018
		ret = -EFAULT;
2019 2020 2021
		goto unlock;
	}

2022
	/* Use a partial view if the object is bigger than the aperture. */
2023
	if (obj->base.size >= ggtt->mappable_end &&
2024
	    obj->tiling_mode == I915_TILING_NONE) {
2025
		static const unsigned int chunk_size = 256; // 1 MiB
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2039 2040
	if (ret)
		goto unlock;
2041

2042 2043 2044
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2045

2046
	ret = i915_gem_object_get_fence(obj);
2047
	if (ret)
2048
		goto unpin;
2049

2050
	/* Finally, remap it using the new GTT offset */
2051
	pfn = ggtt->mappable_base +
2052
		i915_gem_obj_ggtt_offset_view(obj, &view);
2053
	pfn >>= PAGE_SHIFT;
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2064

2065 2066
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2067 2068 2069 2070 2071
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2093
unpin:
2094
	i915_gem_object_ggtt_unpin_view(obj, &view);
2095
unlock:
2096
	mutex_unlock(&dev->struct_mutex);
2097
out:
2098
	switch (ret) {
2099
	case -EIO:
2100 2101 2102 2103 2104 2105 2106
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2107 2108 2109
			ret = VM_FAULT_SIGBUS;
			break;
		}
2110
	case -EAGAIN:
D
Daniel Vetter 已提交
2111 2112 2113 2114
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2115
		 */
2116 2117
	case 0:
	case -ERESTARTSYS:
2118
	case -EINTR:
2119 2120 2121 2122 2123
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2124 2125
		ret = VM_FAULT_NOPAGE;
		break;
2126
	case -ENOMEM:
2127 2128
		ret = VM_FAULT_OOM;
		break;
2129
	case -ENOSPC:
2130
	case -EFAULT:
2131 2132
		ret = VM_FAULT_SIGBUS;
		break;
2133
	default:
2134
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2135 2136
		ret = VM_FAULT_SIGBUS;
		break;
2137
	}
2138 2139 2140

	intel_runtime_pm_put(dev_priv);
	return ret;
2141 2142
}

2143 2144 2145 2146
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2147
 * Preserve the reservation of the mmapping with the DRM core code, but
2148 2149 2150 2151 2152 2153 2154 2155 2156
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2157
void
2158
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2159
{
2160 2161 2162 2163 2164 2165
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2166 2167
	if (!obj->fault_mappable)
		return;
2168

2169 2170
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2181
	obj->fault_mappable = false;
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2193
uint32_t
2194
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2195
{
2196
	uint32_t gtt_size;
2197 2198

	if (INTEL_INFO(dev)->gen >= 4 ||
2199 2200
	    tiling_mode == I915_TILING_NONE)
		return size;
2201 2202

	/* Previous chips need a power-of-two fence region when tiling */
2203
	if (IS_GEN3(dev))
2204
		gtt_size = 1024*1024;
2205
	else
2206
		gtt_size = 512*1024;
2207

2208 2209
	while (gtt_size < size)
		gtt_size <<= 1;
2210

2211
	return gtt_size;
2212 2213
}

2214 2215
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2216 2217 2218 2219
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2220 2221
 *
 * Return the required GTT alignment for an object, taking into account
2222
 * potential fence register mapping.
2223
 */
2224 2225 2226
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2227 2228 2229 2230 2231
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2232
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2233
	    tiling_mode == I915_TILING_NONE)
2234 2235
		return 4096;

2236 2237 2238 2239
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2240
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2241 2242
}

2243 2244 2245 2246 2247
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2248 2249
	dev_priv->mm.shrinker_no_lock_stealing = true;

2250 2251
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2252
		goto out;
2253 2254 2255 2256 2257 2258 2259 2260

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2261 2262 2263 2264 2265
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2266 2267
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2268
		goto out;
2269 2270

	i915_gem_shrink_all(dev_priv);
2271 2272 2273 2274 2275
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2276 2277 2278 2279 2280 2281 2282
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2283
int
2284 2285
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2286
		  uint32_t handle,
2287
		  uint64_t *offset)
2288
{
2289
	struct drm_i915_gem_object *obj;
2290 2291
	int ret;

2292
	ret = i915_mutex_lock_interruptible(dev);
2293
	if (ret)
2294
		return ret;
2295

2296
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2297
	if (&obj->base == NULL) {
2298 2299 2300
		ret = -ENOENT;
		goto unlock;
	}
2301

2302
	if (obj->madv != I915_MADV_WILLNEED) {
2303
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2304
		ret = -EFAULT;
2305
		goto out;
2306 2307
	}

2308 2309 2310
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2311

2312
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2313

2314
out:
2315
	drm_gem_object_unreference(&obj->base);
2316
unlock:
2317
	mutex_unlock(&dev->struct_mutex);
2318
	return ret;
2319 2320
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2342
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2343 2344
}

D
Daniel Vetter 已提交
2345 2346 2347
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2348
{
2349
	i915_gem_object_free_mmap_offset(obj);
2350

2351 2352
	if (obj->base.filp == NULL)
		return;
2353

D
Daniel Vetter 已提交
2354 2355 2356 2357 2358
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2359
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2360 2361
	obj->madv = __I915_MADV_PURGED;
}
2362

2363 2364 2365
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2366
{
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2381 2382
}

2383
static void
2384
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2385
{
2386 2387
	struct sgt_iter sgt_iter;
	struct page *page;
2388
	int ret;
2389

2390
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2391

C
Chris Wilson 已提交
2392
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2393
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2394 2395 2396
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2397
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2398 2399 2400
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2401 2402
	i915_gem_gtt_finish_object(obj);

2403
	if (i915_gem_object_needs_bit17_swizzle(obj))
2404 2405
		i915_gem_object_save_bit_17_swizzle(obj);

2406 2407
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2408

2409
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2410
		if (obj->dirty)
2411
			set_page_dirty(page);
2412

2413
		if (obj->madv == I915_MADV_WILLNEED)
2414
			mark_page_accessed(page);
2415

2416
		put_page(page);
2417
	}
2418
	obj->dirty = 0;
2419

2420 2421
	sg_free_table(obj->pages);
	kfree(obj->pages);
2422
}
C
Chris Wilson 已提交
2423

2424
int
2425 2426 2427 2428
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2429
	if (obj->pages == NULL)
2430 2431
		return 0;

2432 2433 2434
	if (obj->pages_pin_count)
		return -EBUSY;

2435
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2436

2437 2438 2439
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2440
	list_del(&obj->global_list);
2441

2442
	if (obj->mapping) {
2443 2444 2445 2446
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2447 2448 2449
		obj->mapping = NULL;
	}

2450
	ops->put_pages(obj);
2451
	obj->pages = NULL;
2452

2453
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2454 2455 2456 2457

	return 0;
}

2458
static int
C
Chris Wilson 已提交
2459
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2460
{
C
Chris Wilson 已提交
2461
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2462 2463
	int page_count, i;
	struct address_space *mapping;
2464 2465
	struct sg_table *st;
	struct scatterlist *sg;
2466
	struct sgt_iter sgt_iter;
2467
	struct page *page;
2468
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2469
	int ret;
C
Chris Wilson 已提交
2470
	gfp_t gfp;
2471

C
Chris Wilson 已提交
2472 2473 2474 2475 2476 2477 2478
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2479 2480 2481 2482
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2483
	page_count = obj->base.size / PAGE_SIZE;
2484 2485
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2486
		return -ENOMEM;
2487
	}
2488

2489 2490 2491 2492 2493
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2494
	mapping = file_inode(obj->base.filp)->i_mapping;
2495
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2496
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2497 2498 2499
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2500 2501
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2502 2503 2504 2505 2506
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2507 2508 2509 2510 2511 2512 2513 2514
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2515
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2516 2517
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2518
				goto err_pages;
I
Imre Deak 已提交
2519
			}
C
Chris Wilson 已提交
2520
		}
2521 2522 2523 2524 2525 2526 2527 2528
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2529 2530 2531 2532 2533 2534 2535 2536 2537
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2538 2539 2540

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2541
	}
2542 2543 2544 2545
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2546 2547
	obj->pages = st;

I
Imre Deak 已提交
2548 2549 2550 2551
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2552
	if (i915_gem_object_needs_bit17_swizzle(obj))
2553 2554
		i915_gem_object_do_bit_17_swizzle(obj);

2555 2556 2557 2558
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2559 2560 2561
	return 0;

err_pages:
2562
	sg_mark_end(sg);
2563 2564
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2565 2566
	sg_free_table(st);
	kfree(st);
2567 2568 2569 2570 2571 2572 2573 2574 2575

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2576 2577 2578 2579
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2580 2581
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2596
	if (obj->pages)
2597 2598
		return 0;

2599
	if (obj->madv != I915_MADV_WILLNEED) {
2600
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2601
		return -EFAULT;
2602 2603
	}

2604 2605
	BUG_ON(obj->pages_pin_count);

2606 2607 2608 2609
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2610
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2611 2612 2613 2614

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2615
	return 0;
2616 2617
}

2618 2619 2620 2621 2622
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2623 2624
	struct sgt_iter sgt_iter;
	struct page *page;
2625 2626
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2627 2628 2629 2630 2631 2632 2633
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2634 2635 2636 2637 2638 2639
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2640

2641 2642
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2643 2644 2645 2646 2647 2648

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2649 2650
	if (pages != stack_pages)
		drm_free_large(pages);
2651 2652 2653 2654 2655

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2668 2669 2670
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2671 2672 2673 2674 2675 2676 2677 2678
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2679
void i915_vma_move_to_active(struct i915_vma *vma,
2680
			     struct drm_i915_gem_request *req)
2681
{
2682
	struct drm_i915_gem_object *obj = vma->obj;
2683
	struct intel_engine_cs *engine;
2684

2685
	engine = i915_gem_request_get_engine(req);
2686 2687

	/* Add a reference if we're newly entering the active list. */
2688
	if (obj->active == 0)
2689
		drm_gem_object_reference(&obj->base);
2690
	obj->active |= intel_engine_flag(engine);
2691

2692
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2693
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2694

2695
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2696 2697
}

2698 2699
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2700
{
2701 2702
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2703 2704

	i915_gem_request_assign(&obj->last_write_req, NULL);
2705
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2706 2707
}

2708
static void
2709
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2710
{
2711
	struct i915_vma *vma;
2712

2713 2714
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2715

2716
	list_del_init(&obj->engine_list[ring]);
2717 2718
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2719
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2720 2721 2722 2723 2724
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2725

2726 2727 2728 2729 2730 2731 2732
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2733 2734 2735
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2736
	}
2737

2738
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2739
	drm_gem_object_unreference(&obj->base);
2740 2741
}

2742
static int
2743
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2744
{
2745
	struct intel_engine_cs *engine;
2746
	int ret;
2747

2748
	/* Carefully retire all requests without writing to the rings */
2749
	for_each_engine(engine, dev_priv) {
2750
		ret = intel_engine_idle(engine);
2751 2752
		if (ret)
			return ret;
2753
	}
2754
	i915_gem_retire_requests(dev_priv);
2755

2756 2757
	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2758 2759
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
2760 2761 2762
			yield();
	}

2763
	/* Finally reset hw state */
2764
	for_each_engine(engine, dev_priv)
2765
		intel_ring_init_seqno(engine, seqno);
2766

2767
	return 0;
2768 2769
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2781
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2796
int
2797
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2798
{
2799 2800
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2801
		int ret = i915_gem_init_seqno(dev_priv, 0);
2802 2803
		if (ret)
			return ret;
2804

2805 2806
		dev_priv->next_seqno = 1;
	}
2807

2808
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2809
	return 0;
2810 2811
}

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	dev_priv->gt.active_engines |= intel_engine_flag(engine);
	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

2832 2833 2834 2835 2836
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2837
void __i915_add_request(struct drm_i915_gem_request *request,
2838 2839
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2840
{
2841
	struct intel_engine_cs *engine;
2842
	struct intel_ringbuffer *ringbuf;
2843
	u32 request_start;
2844
	u32 reserved_tail;
2845 2846
	int ret;

2847
	if (WARN_ON(request == NULL))
2848
		return;
2849

2850
	engine = request->engine;
2851 2852
	ringbuf = request->ringbuf;

2853 2854 2855 2856 2857
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2858
	request_start = intel_ring_get_tail(ringbuf);
2859 2860 2861
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2862 2863 2864 2865 2866 2867 2868
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2869 2870
	if (flush_caches) {
		if (i915.enable_execlists)
2871
			ret = logical_ring_flush_all_caches(request);
2872
		else
2873
			ret = intel_ring_flush_all_caches(request);
2874 2875 2876
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2900 2901 2902 2903 2904
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2905
	request->postfix = intel_ring_get_tail(ringbuf);
2906

2907
	if (i915.enable_execlists)
2908
		ret = engine->emit_request(request);
2909
	else {
2910
		ret = engine->add_request(request);
2911 2912

		request->tail = intel_ring_get_tail(ringbuf);
2913
	}
2914 2915
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2916
	/* Sanity check that the reserved size was large enough. */
2917 2918 2919 2920 2921 2922 2923
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2924 2925

	i915_gem_mark_busy(engine);
2926 2927
}

2928
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2929
				   const struct i915_gem_context *ctx)
2930
{
2931
	unsigned long elapsed;
2932

2933 2934 2935
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2936 2937
		return true;

2938 2939
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2940
		if (!i915_gem_context_is_default(ctx)) {
2941
			DRM_DEBUG("context hanging too fast, banning!\n");
2942
			return true;
2943 2944 2945
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2946
			return true;
2947
		}
2948 2949 2950 2951 2952
	}

	return false;
}

2953
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2954
				  struct i915_gem_context *ctx,
2955
				  const bool guilty)
2956
{
2957 2958 2959 2960
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2961

2962 2963 2964
	hs = &ctx->hang_stats;

	if (guilty) {
2965
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2966 2967 2968 2969
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2970 2971 2972
	}
}

2973 2974 2975 2976
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2977
	kmem_cache_free(req->i915->requests, req);
2978 2979
}

2980
static inline int
2981
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2982
			 struct i915_gem_context *ctx,
2983
			 struct drm_i915_gem_request **req_out)
2984
{
2985
	struct drm_i915_private *dev_priv = engine->i915;
2986
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2987
	struct drm_i915_gem_request *req;
2988 2989
	int ret;

2990 2991 2992
	if (!req_out)
		return -EINVAL;

2993
	*req_out = NULL;
2994

2995 2996 2997 2998 2999
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3000 3001 3002
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3003 3004
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3005 3006
		return -ENOMEM;

3007
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3008 3009
	if (ret)
		goto err;
3010

3011 3012
	kref_init(&req->ref);
	req->i915 = dev_priv;
3013
	req->engine = engine;
3014 3015
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3016

3017 3018 3019 3020 3021 3022 3023
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3024
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3025 3026 3027 3028 3029 3030 3031

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3032

3033
	*req_out = req;
3034
	return 0;
3035

3036 3037
err_ctx:
	i915_gem_context_unreference(ctx);
3038 3039 3040
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3041 3042
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3057
		       struct i915_gem_context *ctx)
3058 3059 3060 3061 3062
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3063
		ctx = engine->i915->kernel_context;
3064 3065 3066 3067
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3068
struct drm_i915_gem_request *
3069
i915_gem_find_active_request(struct intel_engine_cs *engine)
3070
{
3071 3072
	struct drm_i915_gem_request *request;

3073 3074 3075 3076 3077 3078 3079 3080
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
3081
	list_for_each_entry(request, &engine->request_list, list) {
3082
		if (i915_gem_request_completed(request))
3083
			continue;
3084

3085
		return request;
3086
	}
3087 3088 3089 3090

	return NULL;
}

3091
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3092
				       struct intel_engine_cs *engine)
3093 3094 3095 3096
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3097
	request = i915_gem_find_active_request(engine);
3098 3099 3100 3101

	if (request == NULL)
		return;

3102
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3103

3104
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3105

3106
	list_for_each_entry_continue(request, &engine->request_list, list)
3107
		i915_set_reset_status(dev_priv, request->ctx, false);
3108
}
3109

3110
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3111
					struct intel_engine_cs *engine)
3112
{
3113 3114
	struct intel_ringbuffer *buffer;

3115
	while (!list_empty(&engine->active_list)) {
3116
		struct drm_i915_gem_object *obj;
3117

3118
		obj = list_first_entry(&engine->active_list,
3119
				       struct drm_i915_gem_object,
3120
				       engine_list[engine->id]);
3121

3122
		i915_gem_object_retire__read(obj, engine->id);
3123
	}
3124

3125 3126 3127 3128 3129 3130
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3131
	if (i915.enable_execlists) {
3132 3133
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3134

3135
		intel_execlists_cancel_requests(engine);
3136 3137
	}

3138 3139 3140 3141 3142 3143 3144
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3145
	while (!list_empty(&engine->request_list)) {
3146 3147
		struct drm_i915_gem_request *request;

3148
		request = list_first_entry(&engine->request_list,
3149 3150 3151
					   struct drm_i915_gem_request,
					   list);

3152
		i915_gem_request_retire(request);
3153
	}
3154 3155 3156 3157 3158 3159 3160 3161

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3162
	list_for_each_entry(buffer, &engine->buffers, link) {
3163 3164 3165
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3166 3167

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3168 3169
}

3170
void i915_gem_reset(struct drm_device *dev)
3171
{
3172
	struct drm_i915_private *dev_priv = dev->dev_private;
3173
	struct intel_engine_cs *engine;
3174

3175 3176 3177 3178 3179
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3180
	for_each_engine(engine, dev_priv)
3181
		i915_gem_reset_engine_status(dev_priv, engine);
3182

3183
	for_each_engine(engine, dev_priv)
3184
		i915_gem_reset_engine_cleanup(dev_priv, engine);
3185

3186 3187
	i915_gem_context_reset(dev);

3188
	i915_gem_restore_fences(dev);
3189 3190

	WARN_ON(i915_verify_lists(dev));
3191 3192 3193 3194
}

/**
 * This function clears the request list as sequence numbers are passed.
3195
 * @engine: engine to retire requests on
3196
 */
3197
void
3198
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3199
{
3200
	WARN_ON(i915_verify_lists(engine->dev));
3201

3202 3203 3204 3205
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3206
	 */
3207
	while (!list_empty(&engine->request_list)) {
3208 3209
		struct drm_i915_gem_request *request;

3210
		request = list_first_entry(&engine->request_list,
3211 3212 3213
					   struct drm_i915_gem_request,
					   list);

3214
		if (!i915_gem_request_completed(request))
3215 3216
			break;

3217
		i915_gem_request_retire(request);
3218
	}
3219

3220 3221 3222 3223
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3224
	while (!list_empty(&engine->active_list)) {
3225 3226
		struct drm_i915_gem_object *obj;

3227 3228
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3229
				       engine_list[engine->id]);
3230

3231
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3232 3233
			break;

3234
		i915_gem_object_retire__read(obj, engine->id);
3235 3236
	}

3237
	WARN_ON(i915_verify_lists(engine->dev));
3238 3239
}

3240
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3241
{
3242
	struct intel_engine_cs *engine;
3243 3244 3245 3246 3247 3248 3249

	lockdep_assert_held(&dev_priv->dev->struct_mutex);

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
3250

3251
	for_each_engine(engine, dev_priv) {
3252
		i915_gem_retire_requests_ring(engine);
3253 3254
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3255 3256
	}

3257
	if (dev_priv->gt.active_engines == 0)
3258 3259 3260
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
3261 3262
}

3263
static void
3264 3265
i915_gem_retire_work_handler(struct work_struct *work)
{
3266
	struct drm_i915_private *dev_priv =
3267
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3268
	struct drm_device *dev = dev_priv->dev;
3269

3270
	/* Come back later if the device is busy... */
3271
	if (mutex_trylock(&dev->struct_mutex)) {
3272
		i915_gem_retire_requests(dev_priv);
3273
		mutex_unlock(&dev->struct_mutex);
3274
	}
3275 3276 3277 3278 3279 3280 3281 3282

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
	if (lockless_dereference(dev_priv->gt.awake))
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3283
				   round_jiffies_up_relative(HZ));
3284
}
3285

3286 3287 3288 3289
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3290
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3291
	struct drm_device *dev = dev_priv->dev;
3292
	struct intel_engine_cs *engine;
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
3315

3316
	for_each_engine(engine, dev_priv)
3317
		i915_gem_batch_pool_fini(&engine->batch_pool);
3318

3319 3320 3321
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3322

3323 3324 3325 3326 3327
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
3328

3329 3330 3331 3332 3333
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3334

3335 3336 3337 3338
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3339
	}
3340 3341
}

3342 3343 3344 3345
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3346
 * @obj: object to flush
3347 3348 3349 3350
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3351
	int i;
3352 3353 3354

	if (!obj->active)
		return 0;
3355

3356
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3357
		struct drm_i915_gem_request *req;
3358

3359 3360 3361 3362
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3363
		if (i915_gem_request_completed(req))
3364
			i915_gem_object_retire__read(obj, i);
3365 3366 3367 3368 3369
	}

	return 0;
}

3370 3371
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3372 3373 3374
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3399
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3400 3401
	int i, n = 0;
	int ret;
3402

3403 3404 3405
	if (args->flags != 0)
		return -EINVAL;

3406 3407 3408 3409
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3410
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3411 3412 3413 3414 3415
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3416 3417
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3418 3419 3420
	if (ret)
		goto out;

3421
	if (!obj->active)
3422
		goto out;
3423 3424

	/* Do this after OLR check to make sure we make forward progress polling
3425
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3426
	 */
3427
	if (args->timeout_ns == 0) {
3428 3429 3430 3431 3432
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3433

3434
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3435 3436 3437 3438 3439 3440
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3441 3442
	mutex_unlock(&dev->struct_mutex);

3443 3444
	for (i = 0; i < n; i++) {
		if (ret == 0)
3445
			ret = __i915_wait_request(req[i], true,
3446
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3447
						  to_rps_client(file));
3448
		i915_gem_request_unreference(req[i]);
3449
	}
3450
	return ret;
3451 3452 3453 3454 3455 3456 3457

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3458 3459 3460
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3461 3462
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3463 3464 3465 3466
{
	struct intel_engine_cs *from;
	int ret;

3467
	from = i915_gem_request_get_engine(from_req);
3468 3469 3470
	if (to == from)
		return 0;

3471
	if (i915_gem_request_completed(from_req))
3472 3473
		return 0;

3474
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3475
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3476
		ret = __i915_wait_request(from_req,
3477 3478 3479
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3480 3481 3482
		if (ret)
			return ret;

3483
		i915_gem_object_retire_request(obj, from_req);
3484 3485
	} else {
		int idx = intel_ring_sync_index(from, to);
3486 3487 3488
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3489 3490 3491 3492

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3493
		if (*to_req == NULL) {
3494 3495 3496 3497 3498 3499 3500
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3501 3502
		}

3503 3504
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3519 3520 3521 3522 3523
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3524 3525 3526
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3527 3528 3529
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3530
 * rather than a particular GPU ring. Conceptually we serialise writes
3531
 * between engines inside the GPU. We only allow one engine to write
3532 3533 3534 3535 3536 3537 3538 3539 3540
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3541
 *
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3552 3553
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3554 3555
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3556 3557
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3558
{
3559
	const bool readonly = obj->base.pending_write_domain == 0;
3560
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3561
	int ret, i, n;
3562

3563
	if (!obj->active)
3564 3565
		return 0;

3566 3567
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3568

3569 3570 3571 3572 3573
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3574
		for (i = 0; i < I915_NUM_ENGINES; i++)
3575 3576 3577 3578
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3579
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3580 3581 3582
		if (ret)
			return ret;
	}
3583

3584
	return 0;
3585 3586
}

3587 3588 3589 3590 3591 3592 3593
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3594 3595 3596
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3619
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3620
{
3621
	struct drm_i915_gem_object *obj = vma->obj;
3622
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3623
	int ret;
3624

3625
	if (list_empty(&vma->obj_link))
3626 3627
		return 0;

3628 3629 3630 3631
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3632

B
Ben Widawsky 已提交
3633
	if (vma->pin_count)
3634
		return -EBUSY;
3635

3636 3637
	BUG_ON(obj->pages == NULL);

3638 3639 3640 3641 3642
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3643

3644
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3645
		i915_gem_object_finish_gtt(obj);
3646

3647 3648 3649 3650
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3651 3652

		__i915_vma_iounmap(vma);
3653
	}
3654

3655
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3656

3657
	vma->vm->unbind_vma(vma);
3658
	vma->bound = 0;
3659

3660
	list_del_init(&vma->vm_link);
3661
	if (vma->is_ggtt) {
3662 3663 3664 3665 3666 3667
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3668
		vma->ggtt_view.pages = NULL;
3669
	}
3670

B
Ben Widawsky 已提交
3671 3672 3673 3674
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3675
	 * no more VMAs exist. */
I
Imre Deak 已提交
3676
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3677
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3678

3679 3680 3681 3682 3683 3684
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3685
	return 0;
3686 3687
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3698
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3699
{
3700
	struct intel_engine_cs *engine;
3701
	int ret;
3702

3703 3704
	lockdep_assert_held(&dev_priv->dev->struct_mutex);

3705
	for_each_engine(engine, dev_priv) {
3706 3707 3708
		if (engine->last_context == NULL)
			continue;

3709
		ret = intel_engine_idle(engine);
3710 3711 3712
		if (ret)
			return ret;
	}
3713

3714
	WARN_ON(i915_verify_lists(dev));
3715
	return 0;
3716 3717
}

3718
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3719 3720
				     unsigned long cache_level)
{
3721
	struct drm_mm_node *gtt_space = &vma->node;
3722 3723
	struct drm_mm_node *other;

3724 3725 3726 3727 3728 3729
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3730
	 */
3731
	if (vma->vm->mm.color_adjust == NULL)
3732 3733
		return true;

3734
	if (!drm_mm_node_allocated(gtt_space))
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3751
/**
3752 3753
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3754 3755 3756 3757 3758
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3759
 */
3760
static struct i915_vma *
3761 3762
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3763
			   const struct i915_ggtt_view *ggtt_view,
3764
			   unsigned alignment,
3765
			   uint64_t flags)
3766
{
3767
	struct drm_device *dev = obj->base.dev;
3768 3769
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3770
	u32 fence_alignment, unfenced_alignment;
3771 3772
	u32 search_flag, alloc_flag;
	u64 start, end;
3773
	u64 size, fence_size;
B
Ben Widawsky 已提交
3774
	struct i915_vma *vma;
3775
	int ret;
3776

3777 3778 3779 3780 3781
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3782

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3812

3813 3814 3815
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3816
		end = min_t(u64, end, ggtt->mappable_end);
3817
	if (flags & PIN_ZONE_4G)
3818
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3819

3820
	if (alignment == 0)
3821
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3822
						unfenced_alignment;
3823
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3824 3825 3826
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3827
		return ERR_PTR(-EINVAL);
3828 3829
	}

3830 3831 3832
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3833
	 */
3834
	if (size > end) {
3835
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3836 3837
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3838
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3839
			  end);
3840
		return ERR_PTR(-E2BIG);
3841 3842
	}

3843
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3844
	if (ret)
3845
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3846

3847 3848
	i915_gem_object_pin_pages(obj);

3849 3850 3851
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3852
	if (IS_ERR(vma))
3853
		goto err_unpin;
B
Ben Widawsky 已提交
3854

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3873
	} else {
3874 3875 3876 3877 3878 3879 3880
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3881

3882
search_free:
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3896

3897 3898
			goto err_free_vma;
		}
3899
	}
3900
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3901
		ret = -EINVAL;
3902
		goto err_remove_node;
3903 3904
	}

3905
	trace_i915_vma_bind(vma, flags);
3906
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3907
	if (ret)
I
Imre Deak 已提交
3908
		goto err_remove_node;
3909

3910
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3911
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3912

3913
	return vma;
B
Ben Widawsky 已提交
3914

3915
err_remove_node:
3916
	drm_mm_remove_node(&vma->node);
3917
err_free_vma:
B
Ben Widawsky 已提交
3918
	i915_gem_vma_destroy(vma);
3919
	vma = ERR_PTR(ret);
3920
err_unpin:
B
Ben Widawsky 已提交
3921
	i915_gem_object_unpin_pages(obj);
3922
	return vma;
3923 3924
}

3925
bool
3926 3927
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3928 3929 3930 3931 3932
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3933
	if (obj->pages == NULL)
3934
		return false;
3935

3936 3937 3938 3939
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3940
	if (obj->stolen || obj->phys_handle)
3941
		return false;
3942

3943 3944 3945 3946 3947 3948 3949 3950
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3951 3952
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3953
		return false;
3954
	}
3955

C
Chris Wilson 已提交
3956
	trace_i915_gem_object_clflush(obj);
3957
	drm_clflush_sg(obj->pages);
3958
	obj->cache_dirty = false;
3959 3960

	return true;
3961 3962 3963 3964
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3965
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3966
{
C
Chris Wilson 已提交
3967 3968
	uint32_t old_write_domain;

3969
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3970 3971
		return;

3972
	/* No actual flushing is required for the GTT write domain.  Writes
3973 3974
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3975 3976 3977 3978
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3979
	 */
3980 3981
	wmb();

3982 3983
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3984

3985
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3986

C
Chris Wilson 已提交
3987
	trace_i915_gem_object_change_domain(obj,
3988
					    obj->base.read_domains,
C
Chris Wilson 已提交
3989
					    old_write_domain);
3990 3991 3992 3993
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3994
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3995
{
C
Chris Wilson 已提交
3996
	uint32_t old_write_domain;
3997

3998
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3999 4000
		return;

4001
	if (i915_gem_clflush_object(obj, obj->pin_display))
4002
		i915_gem_chipset_flush(to_i915(obj->base.dev));
4003

4004 4005
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
4006

4007
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4008

C
Chris Wilson 已提交
4009
	trace_i915_gem_object_change_domain(obj,
4010
					    obj->base.read_domains,
C
Chris Wilson 已提交
4011
					    old_write_domain);
4012 4013
}

4014 4015
/**
 * Moves a single object to the GTT read, and possibly write domain.
4016 4017
 * @obj: object to act on
 * @write: ask for write access or read only
4018 4019 4020 4021
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
4022
int
4023
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4024
{
4025 4026 4027
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4028
	uint32_t old_write_domain, old_read_domains;
4029
	struct i915_vma *vma;
4030
	int ret;
4031

4032 4033 4034
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4035
	ret = i915_gem_object_wait_rendering(obj, !write);
4036 4037 4038
	if (ret)
		return ret;

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4051
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4052

4053 4054 4055 4056 4057 4058 4059
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4060 4061
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4062

4063 4064 4065
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4066 4067
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4068
	if (write) {
4069 4070 4071
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4072 4073
	}

C
Chris Wilson 已提交
4074 4075 4076 4077
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4078
	/* And bump the LRU for this access */
4079 4080
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4081
		list_move_tail(&vma->vm_link,
4082
			       &ggtt->base.inactive_list);
4083

4084 4085 4086
	return 0;
}

4087 4088
/**
 * Changes the cache-level of an object across all VMA.
4089 4090
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4102 4103 4104
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4105
	struct drm_device *dev = obj->base.dev;
4106
	struct i915_vma *vma, *next;
4107
	bool bound = false;
4108
	int ret = 0;
4109 4110

	if (obj->cache_level == cache_level)
4111
		goto out;
4112

4113 4114 4115 4116 4117
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4118
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4119 4120 4121 4122 4123 4124 4125 4126
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4127
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4128
			ret = i915_vma_unbind(vma);
4129 4130
			if (ret)
				return ret;
4131 4132
		} else
			bound = true;
4133 4134
	}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4147
		ret = i915_gem_object_wait_rendering(obj, false);
4148 4149 4150
		if (ret)
			return ret;

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4168 4169 4170
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4171 4172 4173 4174 4175 4176 4177 4178
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4179 4180
		}

4181
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4182 4183 4184 4185 4186 4187 4188
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4189 4190
	}

4191
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4192 4193 4194
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4195
out:
4196 4197 4198 4199
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4200
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4201
		if (i915_gem_clflush_object(obj, true))
4202
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4203 4204 4205 4206 4207
	}

	return 0;
}

B
Ben Widawsky 已提交
4208 4209
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4210
{
B
Ben Widawsky 已提交
4211
	struct drm_i915_gem_caching *args = data;
4212 4213
	struct drm_i915_gem_object *obj;

4214
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4215 4216
	if (&obj->base == NULL)
		return -ENOENT;
4217

4218 4219 4220 4221 4222 4223
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4224 4225 4226 4227
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4228 4229 4230 4231
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4232

4233 4234
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4235 4236
}

B
Ben Widawsky 已提交
4237 4238
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4239
{
4240
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
4241
	struct drm_i915_gem_caching *args = data;
4242 4243 4244 4245
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4246 4247
	switch (args->caching) {
	case I915_CACHING_NONE:
4248 4249
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4250
	case I915_CACHING_CACHED:
4251 4252 4253 4254 4255 4256
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4257
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4258 4259
			return -ENODEV;

4260 4261
		level = I915_CACHE_LLC;
		break;
4262 4263 4264
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4265 4266 4267 4268
	default:
		return -EINVAL;
	}

4269 4270
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4271 4272
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4273
		goto rpm_put;
B
Ben Widawsky 已提交
4274

4275
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4286 4287 4288
rpm_put:
	intel_runtime_pm_put(dev_priv);

4289 4290 4291
	return ret;
}

4292
/*
4293 4294 4295
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4296 4297
 */
int
4298 4299
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4300
				     const struct i915_ggtt_view *view)
4301
{
4302
	u32 old_read_domains, old_write_domain;
4303 4304
	int ret;

4305 4306 4307
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4308
	obj->pin_display++;
4309

4310 4311 4312 4313 4314 4315 4316 4317 4318
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4319 4320
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4321
	if (ret)
4322
		goto err_unpin_display;
4323

4324 4325 4326 4327
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4328 4329 4330
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4331
	if (ret)
4332
		goto err_unpin_display;
4333

4334
	i915_gem_object_flush_cpu_write_domain(obj);
4335

4336
	old_write_domain = obj->base.write_domain;
4337
	old_read_domains = obj->base.read_domains;
4338 4339 4340 4341

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4342
	obj->base.write_domain = 0;
4343
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4344 4345 4346

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4347
					    old_write_domain);
4348 4349

	return 0;
4350 4351

err_unpin_display:
4352
	obj->pin_display--;
4353 4354 4355 4356
	return ret;
}

void
4357 4358
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4359
{
4360 4361 4362
	if (WARN_ON(obj->pin_display == 0))
		return;

4363 4364
	i915_gem_object_ggtt_unpin_view(obj, view);

4365
	obj->pin_display--;
4366 4367
}

4368 4369
/**
 * Moves a single object to the CPU read, and possibly write domain.
4370 4371
 * @obj: object to act on
 * @write: requesting write or read-only access
4372 4373 4374 4375
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4376
int
4377
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4378
{
C
Chris Wilson 已提交
4379
	uint32_t old_write_domain, old_read_domains;
4380 4381
	int ret;

4382 4383 4384
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4385
	ret = i915_gem_object_wait_rendering(obj, !write);
4386 4387 4388
	if (ret)
		return ret;

4389
	i915_gem_object_flush_gtt_write_domain(obj);
4390

4391 4392
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4393

4394
	/* Flush the CPU cache if it's still invalid. */
4395
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4396
		i915_gem_clflush_object(obj, false);
4397

4398
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4399 4400 4401 4402 4403
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4404
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4405 4406 4407 4408 4409

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4410 4411
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4412
	}
4413

C
Chris Wilson 已提交
4414 4415 4416 4417
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4418 4419 4420
	return 0;
}

4421 4422 4423
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4424 4425 4426 4427
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4428 4429 4430
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4431
static int
4432
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4433
{
4434 4435
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4436
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4437
	struct drm_i915_gem_request *request, *target = NULL;
4438
	int ret;
4439

4440 4441 4442 4443
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4444 4445 4446
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4447

4448
	spin_lock(&file_priv->mm.lock);
4449
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4450 4451
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4452

4453 4454 4455 4456 4457 4458 4459
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4460
		target = request;
4461
	}
4462 4463
	if (target)
		i915_gem_request_reference(target);
4464
	spin_unlock(&file_priv->mm.lock);
4465

4466
	if (target == NULL)
4467
		return 0;
4468

4469
	ret = __i915_wait_request(target, true, NULL, NULL);
4470
	i915_gem_request_unreference(target);
4471

4472 4473 4474
	return ret;
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4491 4492 4493 4494
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4495 4496 4497
	return false;
}

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4516
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4517 4518 4519 4520

	obj->map_and_fenceable = mappable && fenceable;
}

4521 4522 4523 4524 4525 4526
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4527
{
4528
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4529
	struct i915_vma *vma;
4530
	unsigned bound;
4531 4532
	int ret;

4533 4534 4535
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4536
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4537
		return -EINVAL;
4538

4539 4540 4541
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4542 4543 4544 4545 4546 4547
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4548
	if (vma) {
B
Ben Widawsky 已提交
4549 4550 4551
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4552
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4553
			WARN(vma->pin_count,
4554
			     "bo is already pinned in %s with incorrect alignment:"
4555
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4556
			     " obj->map_and_fenceable=%d\n",
4557
			     ggtt_view ? "ggtt" : "ppgtt",
4558 4559
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4560
			     alignment,
4561
			     !!(flags & PIN_MAPPABLE),
4562
			     obj->map_and_fenceable);
4563
			ret = i915_vma_unbind(vma);
4564 4565
			if (ret)
				return ret;
4566 4567

			vma = NULL;
4568 4569 4570
		}
	}

4571
	bound = vma ? vma->bound : 0;
4572
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4573 4574
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4575 4576
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4577 4578
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4579 4580 4581
		if (ret)
			return ret;
	}
4582

4583 4584
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4585
		__i915_vma_set_map_and_fenceable(vma);
4586 4587
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4588

4589
	vma->pin_count++;
4590 4591 4592
	return 0;
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4610 4611 4612 4613
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4614
	BUG_ON(!view);
4615

4616
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4617
				      alignment, flags | PIN_GLOBAL);
4618 4619
}

4620
void
4621 4622
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4623
{
4624
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4625

4626
	WARN_ON(vma->pin_count == 0);
4627
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4628

4629
	--vma->pin_count;
4630 4631 4632 4633
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4634
		    struct drm_file *file)
4635 4636
{
	struct drm_i915_gem_busy *args = data;
4637
	struct drm_i915_gem_object *obj;
4638 4639
	int ret;

4640
	ret = i915_mutex_lock_interruptible(dev);
4641
	if (ret)
4642
		return ret;
4643

4644
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4645
	if (&obj->base == NULL) {
4646 4647
		ret = -ENOENT;
		goto unlock;
4648
	}
4649

4650 4651 4652 4653
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4654
	 */
4655
	ret = i915_gem_object_flush_active(obj);
4656 4657
	if (ret)
		goto unref;
4658

4659 4660 4661 4662
	args->busy = 0;
	if (obj->active) {
		int i;

4663
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4664 4665 4666 4667
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4668
				args->busy |= 1 << (16 + req->engine->exec_id);
4669 4670
		}
		if (obj->last_write_req)
4671
			args->busy |= obj->last_write_req->engine->exec_id;
4672
	}
4673

4674
unref:
4675
	drm_gem_object_unreference(&obj->base);
4676
unlock:
4677
	mutex_unlock(&dev->struct_mutex);
4678
	return ret;
4679 4680 4681 4682 4683 4684
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4685
	return i915_gem_ring_throttle(dev, file_priv);
4686 4687
}

4688 4689 4690 4691
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4692
	struct drm_i915_private *dev_priv = dev->dev_private;
4693
	struct drm_i915_gem_madvise *args = data;
4694
	struct drm_i915_gem_object *obj;
4695
	int ret;
4696 4697 4698 4699 4700 4701 4702 4703 4704

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4705 4706 4707 4708
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4709
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4710
	if (&obj->base == NULL) {
4711 4712
		ret = -ENOENT;
		goto unlock;
4713 4714
	}

B
Ben Widawsky 已提交
4715
	if (i915_gem_obj_is_pinned(obj)) {
4716 4717
		ret = -EINVAL;
		goto out;
4718 4719
	}

4720 4721 4722 4723 4724 4725 4726 4727 4728
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4729 4730
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4731

C
Chris Wilson 已提交
4732
	/* if the object is no longer attached, discard its backing storage */
4733
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4734 4735
		i915_gem_object_truncate(obj);

4736
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4737

4738
out:
4739
	drm_gem_object_unreference(&obj->base);
4740
unlock:
4741
	mutex_unlock(&dev->struct_mutex);
4742
	return ret;
4743 4744
}

4745 4746
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4747
{
4748 4749
	int i;

4750
	INIT_LIST_HEAD(&obj->global_list);
4751
	for (i = 0; i < I915_NUM_ENGINES; i++)
4752
		INIT_LIST_HEAD(&obj->engine_list[i]);
4753
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4754
	INIT_LIST_HEAD(&obj->vma_list);
4755
	INIT_LIST_HEAD(&obj->batch_pool_link);
4756

4757 4758
	obj->ops = ops;

4759 4760 4761 4762 4763 4764
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4765
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4766
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4767 4768 4769 4770
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4771
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4772
						  size_t size)
4773
{
4774
	struct drm_i915_gem_object *obj;
4775
	struct address_space *mapping;
D
Daniel Vetter 已提交
4776
	gfp_t mask;
4777
	int ret;
4778

4779
	obj = i915_gem_object_alloc(dev);
4780
	if (obj == NULL)
4781
		return ERR_PTR(-ENOMEM);
4782

4783 4784 4785
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4786

4787 4788 4789 4790 4791 4792 4793
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4794
	mapping = file_inode(obj->base.filp)->i_mapping;
4795
	mapping_set_gfp_mask(mapping, mask);
4796

4797
	i915_gem_object_init(obj, &i915_gem_object_ops);
4798

4799 4800
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4801

4802 4803
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4819 4820
	trace_i915_gem_object_create(obj);

4821
	return obj;
4822 4823 4824 4825 4826

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4827 4828
}

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4853
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4854
{
4855
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4856
	struct drm_device *dev = obj->base.dev;
4857
	struct drm_i915_private *dev_priv = dev->dev_private;
4858
	struct i915_vma *vma, *next;
4859

4860 4861
	intel_runtime_pm_get(dev_priv);

4862 4863
	trace_i915_gem_object_destroy(obj);

4864
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4865 4866 4867 4868
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4869 4870
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4871

4872 4873
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4874

4875
			WARN_ON(i915_vma_unbind(vma));
4876

4877 4878
			dev_priv->mm.interruptible = was_interruptible;
		}
4879 4880
	}

B
Ben Widawsky 已提交
4881 4882 4883 4884 4885
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4886 4887
	WARN_ON(obj->frontbuffer_bits);

4888 4889 4890 4891 4892
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4893 4894
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4895
	if (discard_backing_storage(obj))
4896
		obj->madv = I915_MADV_DONTNEED;
4897
	i915_gem_object_put_pages(obj);
4898
	i915_gem_object_free_mmap_offset(obj);
4899

4900 4901
	BUG_ON(obj->pages);

4902 4903
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4904

4905 4906 4907
	if (obj->ops->release)
		obj->ops->release(obj);

4908 4909
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4910

4911
	kfree(obj->bit_17);
4912
	i915_gem_object_free(obj);
4913 4914

	intel_runtime_pm_put(dev_priv);
4915 4916
}

4917 4918
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4919 4920
{
	struct i915_vma *vma;
4921
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4922 4923
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4924
			return vma;
4925 4926 4927 4928 4929 4930 4931 4932
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4933

4934
	GEM_BUG_ON(!view);
4935

4936
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4937
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4938
			return vma;
4939 4940 4941
	return NULL;
}

B
Ben Widawsky 已提交
4942 4943 4944
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4945 4946 4947 4948 4949

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4950 4951
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4952

4953
	list_del(&vma->obj_link);
4954

4955
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4956 4957
}

4958
static void
4959
i915_gem_stop_engines(struct drm_device *dev)
4960 4961
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4962
	struct intel_engine_cs *engine;
4963

4964
	for_each_engine(engine, dev_priv)
4965
		dev_priv->gt.stop_engine(engine);
4966 4967
}

4968
int
4969
i915_gem_suspend(struct drm_device *dev)
4970
{
4971
	struct drm_i915_private *dev_priv = dev->dev_private;
4972
	int ret = 0;
4973

4974
	mutex_lock(&dev->struct_mutex);
4975
	ret = i915_gem_wait_for_idle(dev_priv);
4976
	if (ret)
4977
		goto err;
4978

4979
	i915_gem_retire_requests(dev_priv);
4980

4981
	i915_gem_stop_engines(dev);
4982
	i915_gem_context_lost(dev_priv);
4983 4984
	mutex_unlock(&dev->struct_mutex);

4985
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4986 4987
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4988

4989 4990 4991
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4992
	WARN_ON(dev_priv->gt.awake);
4993

4994
	return 0;
4995 4996 4997 4998

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4999 5000
}

5001 5002
void i915_gem_init_swizzling(struct drm_device *dev)
{
5003
	struct drm_i915_private *dev_priv = dev->dev_private;
5004

5005
	if (INTEL_INFO(dev)->gen < 5 ||
5006 5007 5008 5009 5010 5011
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5012 5013 5014
	if (IS_GEN5(dev))
		return;

5015 5016
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
5017
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5018
	else if (IS_GEN7(dev))
5019
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
5020 5021
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5022 5023
	else
		BUG();
5024
}
D
Daniel Vetter 已提交
5025

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5053
int i915_gem_init_engines(struct drm_device *dev)
5054
{
5055
	struct drm_i915_private *dev_priv = dev->dev_private;
5056
	int ret;
5057

5058
	ret = intel_init_render_ring_buffer(dev);
5059
	if (ret)
5060
		return ret;
5061 5062

	if (HAS_BSD(dev)) {
5063
		ret = intel_init_bsd_ring_buffer(dev);
5064 5065
		if (ret)
			goto cleanup_render_ring;
5066
	}
5067

5068
	if (HAS_BLT(dev)) {
5069 5070 5071 5072 5073
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5074 5075 5076 5077 5078 5079
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5080 5081 5082 5083 5084
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5085

5086 5087
	return 0;

B
Ben Widawsky 已提交
5088
cleanup_vebox_ring:
5089
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5090
cleanup_blt_ring:
5091
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5092
cleanup_bsd_ring:
5093
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5094
cleanup_render_ring:
5095
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5096 5097 5098 5099 5100 5101 5102

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5103
	struct drm_i915_private *dev_priv = dev->dev_private;
5104
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5105
	int ret;
5106

5107 5108 5109
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5110
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5111
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5112

5113 5114 5115
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5116

5117
	if (HAS_PCH_NOP(dev)) {
5118 5119 5120 5121 5122 5123 5124 5125 5126
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5127 5128
	}

5129 5130
	i915_gem_init_swizzling(dev);

5131 5132 5133 5134 5135 5136 5137 5138
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5139
	BUG_ON(!dev_priv->kernel_context);
5140

5141 5142 5143 5144 5145 5146 5147
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5148
	for_each_engine(engine, dev_priv) {
5149
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5150
		if (ret)
5151
			goto out;
D
Daniel Vetter 已提交
5152
	}
5153

5154 5155
	intel_mocs_init_l3cc_table(dev);

5156
	/* We can't enable contexts until all firmware is loaded */
5157 5158 5159
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5160

5161 5162
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5163
	return ret;
5164 5165
}

5166 5167 5168 5169 5170 5171
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
5172

5173
	if (!i915.enable_execlists) {
5174
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5175 5176 5177
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5178
	} else {
5179
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5180 5181 5182
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5183 5184
	}

5185 5186 5187 5188 5189 5190 5191 5192
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5193
	i915_gem_init_userptr(dev_priv);
5194
	i915_gem_init_ggtt(dev);
5195

5196
	ret = i915_gem_context_init(dev);
5197 5198
	if (ret)
		goto out_unlock;
5199

5200
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5201
	if (ret)
5202
		goto out_unlock;
5203

5204
	ret = i915_gem_init_hw(dev);
5205 5206 5207 5208 5209 5210
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5211
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5212
		ret = 0;
5213
	}
5214 5215

out_unlock:
5216
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5217
	mutex_unlock(&dev->struct_mutex);
5218

5219
	return ret;
5220 5221
}

5222
void
5223
i915_gem_cleanup_engines(struct drm_device *dev)
5224
{
5225
	struct drm_i915_private *dev_priv = dev->dev_private;
5226
	struct intel_engine_cs *engine;
5227

5228
	for_each_engine(engine, dev_priv)
5229
		dev_priv->gt.cleanup_engine(engine);
5230 5231
}

5232
static void
5233
init_engine_lists(struct intel_engine_cs *engine)
5234
{
5235 5236
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5237 5238
}

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5253
	if (intel_vgpu_active(dev_priv))
5254 5255 5256 5257 5258 5259 5260 5261 5262
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5263
void
5264
i915_gem_load_init(struct drm_device *dev)
5265
{
5266
	struct drm_i915_private *dev_priv = dev->dev_private;
5267 5268
	int i;

5269
	dev_priv->objects =
5270 5271 5272 5273
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5274 5275 5276 5277 5278
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5279 5280 5281 5282 5283
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5284

B
Ben Widawsky 已提交
5285
	INIT_LIST_HEAD(&dev_priv->vm_list);
5286
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5287 5288
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5289
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5290 5291
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5292
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5293
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5294
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5295
			  i915_gem_retire_work_handler);
5296
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5297
			  i915_gem_idle_work_handler);
5298
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5299
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5300

5301 5302
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5303
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5304

5305
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5306

5307 5308
	dev_priv->mm.interruptible = true;

5309
	mutex_init(&dev_priv->fb_tracking.lock);
5310
}
5311

5312 5313 5314 5315 5316 5317 5318 5319 5320
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5349
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5350
{
5351
	struct drm_i915_file_private *file_priv = file->driver_priv;
5352 5353 5354 5355 5356

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5357
	spin_lock(&file_priv->mm.lock);
5358 5359 5360 5361 5362 5363 5364 5365 5366
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5367
	spin_unlock(&file_priv->mm.lock);
5368

5369
	if (!list_empty(&file_priv->rps.link)) {
5370
		spin_lock(&to_i915(dev)->rps.client_lock);
5371
		list_del(&file_priv->rps.link);
5372
		spin_unlock(&to_i915(dev)->rps.client_lock);
5373
	}
5374 5375 5376 5377 5378
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5379
	int ret;
5380 5381 5382 5383 5384 5385 5386 5387 5388

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5389
	file_priv->file = file;
5390
	INIT_LIST_HEAD(&file_priv->rps.link);
5391 5392 5393 5394

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5395 5396
	file_priv->bsd_ring = -1;

5397 5398 5399
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5400

5401
	return ret;
5402 5403
}

5404 5405
/**
 * i915_gem_track_fb - update frontbuffer tracking
5406 5407 5408
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5409 5410 5411 5412
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5430
/* All the new VM stuff */
5431 5432
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5433 5434 5435 5436
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5437
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5438

5439
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5440
		if (vma->is_ggtt &&
5441 5442 5443
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5444 5445
			return vma->node.start;
	}
5446

5447 5448
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5449 5450 5451
	return -1;
}

5452 5453
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5454 5455 5456
{
	struct i915_vma *vma;

5457
	list_for_each_entry(vma, &o->vma_list, obj_link)
5458
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5459 5460
			return vma->node.start;

5461
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5462 5463 5464 5465 5466 5467 5468 5469
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5470
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5471
		if (vma->is_ggtt &&
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5482
				  const struct i915_ggtt_view *view)
5483 5484 5485
{
	struct i915_vma *vma;

5486
	list_for_each_entry(vma, &o->vma_list, obj_link)
5487
		if (vma->is_ggtt &&
5488
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5489
		    drm_mm_node_allocated(&vma->node))
5490 5491 5492 5493 5494 5495 5496
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5497
	struct i915_vma *vma;
5498

5499
	list_for_each_entry(vma, &o->vma_list, obj_link)
5500
		if (drm_mm_node_allocated(&vma->node))
5501 5502 5503 5504 5505
			return true;

	return false;
}

5506
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5507 5508 5509
{
	struct i915_vma *vma;

5510
	GEM_BUG_ON(list_empty(&o->vma_list));
5511

5512
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5513
		if (vma->is_ggtt &&
5514
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5515
			return vma->node.size;
5516
	}
5517

5518 5519 5520
	return 0;
}

5521
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5522 5523
{
	struct i915_vma *vma;
5524
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5525 5526
		if (vma->pin_count > 0)
			return true;
5527

5528
	return false;
5529
}
5530

5531 5532 5533 5534 5535 5536 5537
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5538
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5539 5540 5541 5542 5543 5544 5545
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5556
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5557
	if (IS_ERR(obj))
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5571
	obj->dirty = 1;		/* Backing store is now out of date */
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}