i915_gem.c 135.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
	struct drm_i915_gem_get_aperture *args = data;
135 136
	struct i915_gtt *ggtt = &dev_priv->gtt;
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141 142 143 144 145 146
	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = dev_priv->gtt.base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	ssize_t remain;
770
	loff_t offset, page_base;
771
	char __user *user_data;
D
Daniel Vetter 已提交
772 773
	int page_offset, page_length, ret;

774
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
775 776 777 778 779 780 781 782 783 784
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
785

V
Ville Syrjälä 已提交
786
	user_data = to_user_ptr(args->data_ptr);
787 788
	remain = args->size;

789
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790

791
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792

793 794 795
	while (remain > 0) {
		/* Operation in this page
		 *
796 797 798
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
799
		 */
800 801
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
802 803 804 805 806
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
807 808
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
809
		 */
B
Ben Widawsky 已提交
810
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
811 812
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
813
			goto out_flush;
D
Daniel Vetter 已提交
814
		}
815

816 817 818
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
819 820
	}

821
out_flush:
822
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
823
out_unpin:
B
Ben Widawsky 已提交
824
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
825
out:
826
	return ret;
827 828
}

829 830 831 832
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
833
static int
834 835 836 837 838
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
839
{
840
	char *vaddr;
841
	int ret;
842

843
	if (unlikely(page_do_bit17_swizzling))
844
		return -EINVAL;
845

846 847 848 849
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
850 851
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
852 853 854 855
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
856

857
	return ret ? -EFAULT : 0;
858 859
}

860 861
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
862
static int
863 864 865 866 867
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
868
{
869 870
	char *vaddr;
	int ret;
871

872
	vaddr = kmap(page);
873
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 875 876
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
877 878
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 880
						user_data,
						page_length);
881 882 883 884 885
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
886 887 888
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
889
	kunmap(page);
890

891
	return ret ? -EFAULT : 0;
892 893 894
}

static int
895 896 897 898
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
899 900
{
	ssize_t remain;
901 902
	loff_t offset;
	char __user *user_data;
903
	int shmem_page_offset, page_length, ret = 0;
904
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905
	int hit_slowpath = 0;
906 907
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
908
	struct sg_page_iter sg_iter;
909

V
Ville Syrjälä 已提交
910
	user_data = to_user_ptr(args->data_ptr);
911 912
	remain = args->size;

913
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914

915 916 917 918 919
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
920
		needs_clflush_after = cpu_write_needs_clflush(obj);
921 922 923
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
924
	}
925 926 927 928 929
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
930

931 932 933 934
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

935
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936

937 938
	i915_gem_object_pin_pages(obj);

939
	offset = args->offset;
940
	obj->dirty = 1;
941

942 943
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
944
		struct page *page = sg_page_iter_page(&sg_iter);
945
		int partial_cacheline_write;
946

947 948 949
		if (remain <= 0)
			break;

950 951 952 953 954
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
955
		shmem_page_offset = offset_in_page(offset);
956 957 958 959 960

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

961 962 963 964 965 966 967
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

968 969 970
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

971 972 973 974 975 976
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
977 978 979

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
980 981 982 983
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
984

985
		mutex_lock(&dev->struct_mutex);
986 987

		if (ret)
988 989
			goto out;

990
next_page:
991
		remain -= page_length;
992
		user_data += page_length;
993
		offset += page_length;
994 995
	}

996
out:
997 998
	i915_gem_object_unpin_pages(obj);

999
	if (hit_slowpath) {
1000 1001 1002 1003 1004 1005 1006
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007
			if (i915_gem_clflush_object(obj, obj->pin_display))
1008
				needs_clflush_after = true;
1009
		}
1010
	}
1011

1012
	if (needs_clflush_after)
1013
		i915_gem_chipset_flush(dev);
1014 1015
	else
		obj->cache_dirty = true;
1016

1017
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018
	return ret;
1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028
		      struct drm_file *file)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_i915_gem_pwrite *args = data;
1032
	struct drm_i915_gem_object *obj;
1033 1034 1035 1036 1037 1038
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1039
		       to_user_ptr(args->data_ptr),
1040 1041 1042
		       args->size))
		return -EFAULT;

1043
	if (likely(!i915.prefault_disable)) {
1044 1045 1046 1047 1048
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1049

1050 1051
	intel_runtime_pm_get(dev_priv);

1052
	ret = i915_mutex_lock_interruptible(dev);
1053
	if (ret)
1054
		goto put_rpm;
1055

1056
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057
	if (&obj->base == NULL) {
1058 1059
		ret = -ENOENT;
		goto unlock;
1060
	}
1061

1062
	/* Bounds check destination. */
1063 1064
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1065
		ret = -EINVAL;
1066
		goto out;
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1077 1078
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1079
	ret = -EFAULT;
1080 1081 1082 1083 1084 1085
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1086 1087 1088
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1089
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1090 1091 1092
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1093
	}
1094

1095 1096 1097 1098 1099 1100
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1101

1102
out:
1103
	drm_gem_object_unreference(&obj->base);
1104
unlock:
1105
	mutex_unlock(&dev->struct_mutex);
1106 1107 1108
put_rpm:
	intel_runtime_pm_put(dev_priv);

1109 1110 1111
	return ret;
}

1112
int
1113
i915_gem_check_wedge(struct i915_gpu_error *error,
1114 1115
		     bool interruptible)
{
1116
	if (i915_reset_in_progress(error)) {
1117 1118 1119 1120 1121
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1122 1123
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1124 1125
			return -EIO;

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1133 1134 1135 1136 1137
	}

	return 0;
}

1138 1139 1140 1141 1142 1143
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1144
		       struct intel_engine_cs *ring)
1145 1146 1147 1148
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1181
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182
{
1183
	unsigned long timeout;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1195

1196
	if (req->ring->irq_refcount)
1197 1198
		return -EBUSY;

1199 1200 1201 1202
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1203
	timeout = local_clock_us(&cpu) + 5;
1204
	while (!need_resched()) {
D
Daniel Vetter 已提交
1205
		if (i915_gem_request_completed(req, true))
1206 1207
			return 0;

1208 1209 1210
		if (signal_pending_state(state, current))
			break;

1211
		if (busywait_stop(timeout, cpu))
1212
			break;
1213

1214 1215
		cpu_relax_lowlatency();
	}
1216

D
Daniel Vetter 已提交
1217
	if (i915_gem_request_completed(req, false))
1218 1219 1220
		return 0;

	return -EAGAIN;
1221 1222
}

1223
/**
1224 1225 1226
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1227 1228 1229
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1230 1231 1232 1233 1234 1235 1236
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1237
 * Returns 0 if the request was found within the alloted time. Else returns the
1238 1239
 * errno with remaining time filled in timeout argument.
 */
1240
int __i915_wait_request(struct drm_i915_gem_request *req,
1241
			unsigned reset_counter,
1242
			bool interruptible,
1243
			s64 *timeout,
1244
			struct intel_rps_client *rps)
1245
{
1246
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247
	struct drm_device *dev = ring->dev;
1248
	struct drm_i915_private *dev_priv = dev->dev_private;
1249 1250
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252
	DEFINE_WAIT(wait);
1253
	unsigned long timeout_expire;
1254
	s64 before = 0; /* Only to silence a compiler warning. */
1255 1256
	int ret;

1257
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258

1259 1260 1261
	if (list_empty(&req->list))
		return 0;

1262
	if (i915_gem_request_completed(req, true))
1263 1264
		return 0;

1265 1266 1267 1268 1269 1270 1271 1272 1273
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 1275 1276 1277 1278

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1279
	}
1280

1281
	if (INTEL_INFO(dev_priv)->gen >= 6)
1282
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283

1284
	trace_i915_gem_request_wait_begin(req);
1285 1286

	/* Optimistic spin for the next jiffie before touching IRQs */
1287
	ret = __i915_spin_request(req, state);
1288 1289 1290 1291 1292 1293 1294 1295
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1296 1297
	for (;;) {
		struct timer_list timer;
1298

1299
		prepare_to_wait(&ring->irq_queue, &wait, state);
1300

1301 1302
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1303 1304 1305 1306 1307 1308 1309 1310
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1311

1312
		if (i915_gem_request_completed(req, false)) {
1313 1314 1315
			ret = 0;
			break;
		}
1316

1317
		if (signal_pending_state(state, current)) {
1318 1319 1320 1321
			ret = -ERESTARTSYS;
			break;
		}

1322
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 1324 1325 1326 1327 1328
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1329 1330
			unsigned long expire;

1331
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333 1334 1335
			mod_timer(&timer, expire);
		}

1336
		io_schedule();
1337 1338 1339 1340 1341 1342

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1343 1344
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1345 1346

	finish_wait(&ring->irq_queue, &wait);
1347

1348 1349 1350
out:
	trace_i915_gem_request_wait_end(req);

1351
	if (timeout) {
1352
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353 1354

		*timeout = tres < 0 ? 0 : tres;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1365 1366
	}

1367
	return ret;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->ring->dev->dev_private;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1409 1410 1411

	put_pid(request->pid);
	request->pid = NULL;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1455
/**
1456
 * Waits for a request to be signaled, and cleans up the
1457 1458 1459
 * request and object lists appropriately for that event.
 */
int
1460
i915_wait_request(struct drm_i915_gem_request *req)
1461
{
1462 1463 1464
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1465 1466
	int ret;

1467 1468 1469 1470 1471 1472
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1473 1474
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1475
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476 1477 1478
	if (ret)
		return ret;

1479 1480
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1481
				  interruptible, NULL, NULL);
1482 1483
	if (ret)
		return ret;
1484

1485
	__i915_gem_request_retire__upto(req);
1486 1487 1488
	return 0;
}

1489 1490 1491 1492
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1493
int
1494 1495 1496
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1497
	int ret, i;
1498

1499
	if (!obj->active)
1500 1501
		return 0;

1502 1503 1504 1505 1506
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1543 1544
}

1545 1546 1547 1548 1549
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550
					    struct intel_rps_client *rps,
1551 1552 1553 1554
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1555
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556
	unsigned reset_counter;
1557
	int ret, i, n = 0;
1558 1559 1560 1561

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1562
	if (!obj->active)
1563 1564
		return 0;

1565
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566 1567 1568
	if (ret)
		return ret;

1569
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1591
	mutex_unlock(&dev->struct_mutex);
1592 1593
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1594
					  NULL, rps);
1595 1596
	mutex_lock(&dev->struct_mutex);

1597 1598 1599 1600 1601 1602 1603
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1604 1605
}

1606 1607 1608 1609 1610 1611
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1612
/**
1613 1614
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1615 1616 1617
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618
			  struct drm_file *file)
1619 1620
{
	struct drm_i915_gem_set_domain *args = data;
1621
	struct drm_i915_gem_object *obj;
1622 1623
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1624 1625
	int ret;

1626
	/* Only handle setting domains to types used by the CPU. */
1627
	if (write_domain & I915_GEM_GPU_DOMAINS)
1628 1629
		return -EINVAL;

1630
	if (read_domains & I915_GEM_GPU_DOMAINS)
1631 1632 1633 1634 1635 1636 1637 1638
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1639
	ret = i915_mutex_lock_interruptible(dev);
1640
	if (ret)
1641
		return ret;
1642

1643
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644
	if (&obj->base == NULL) {
1645 1646
		ret = -ENOENT;
		goto unlock;
1647
	}
1648

1649 1650 1651 1652
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1653
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654
							  to_rps_client(file),
1655
							  !write_domain);
1656 1657 1658
	if (ret)
		goto unref;

1659
	if (read_domains & I915_GEM_DOMAIN_GTT)
1660
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661
	else
1662
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663

1664 1665 1666 1667 1668
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1669
unref:
1670
	drm_gem_object_unreference(&obj->base);
1671
unlock:
1672 1673 1674 1675 1676 1677 1678 1679 1680
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681
			 struct drm_file *file)
1682 1683
{
	struct drm_i915_gem_sw_finish *args = data;
1684
	struct drm_i915_gem_object *obj;
1685 1686
	int ret = 0;

1687
	ret = i915_mutex_lock_interruptible(dev);
1688
	if (ret)
1689
		return ret;
1690

1691
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692
	if (&obj->base == NULL) {
1693 1694
		ret = -ENOENT;
		goto unlock;
1695 1696 1697
	}

	/* Pinned buffers may be scanout, so flush the cache */
1698
	if (obj->pin_display)
1699
		i915_gem_object_flush_cpu_write_domain(obj);
1700

1701
	drm_gem_object_unreference(&obj->base);
1702
unlock:
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1723 1724 1725
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726
		    struct drm_file *file)
1727 1728 1729 1730 1731
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1732 1733 1734 1735 1736 1737
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1738
	obj = drm_gem_object_lookup(dev, file, args->handle);
1739
	if (obj == NULL)
1740
		return -ENOENT;
1741

1742 1743 1744 1745 1746 1747 1748 1749
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1750
	addr = vm_mmap(obj->filp, 0, args->size,
1751 1752
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1766
	drm_gem_object_unreference_unlocked(obj);
1767 1768 1769 1770 1771 1772 1773 1774
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1775 1776
/**
 * i915_gem_fault - fault a page into the GTT
1777 1778
 * @vma: VMA in question
 * @vmf: fault info
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1793 1794
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1795
	struct drm_i915_private *dev_priv = dev->dev_private;
1796
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 1798 1799
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1800
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801

1802 1803
	intel_runtime_pm_get(dev_priv);

1804 1805 1806 1807
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1808 1809 1810
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1811

C
Chris Wilson 已提交
1812 1813
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1823 1824
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825
		ret = -EFAULT;
1826 1827 1828
		goto unlock;
	}

1829
	/* Use a partial view if the object is bigger than the aperture. */
1830 1831
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1832
		static const unsigned int chunk_size = 256; // 1 MiB
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 1847
	if (ret)
		goto unlock;
1848

1849 1850 1851
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1852

1853
	ret = i915_gem_object_get_fence(obj);
1854
	if (ret)
1855
		goto unpin;
1856

1857
	/* Finally, remap it using the new GTT offset */
1858 1859
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1860
	pfn >>= PAGE_SHIFT;
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1871

1872 1873
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 1875 1876 1877 1878
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1900
unpin:
1901
	i915_gem_object_ggtt_unpin_view(obj, &view);
1902
unlock:
1903
	mutex_unlock(&dev->struct_mutex);
1904
out:
1905
	switch (ret) {
1906
	case -EIO:
1907 1908 1909 1910 1911 1912 1913
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 1915 1916
			ret = VM_FAULT_SIGBUS;
			break;
		}
1917
	case -EAGAIN:
D
Daniel Vetter 已提交
1918 1919 1920 1921
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1922
		 */
1923 1924
	case 0:
	case -ERESTARTSYS:
1925
	case -EINTR:
1926 1927 1928 1929 1930
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1931 1932
		ret = VM_FAULT_NOPAGE;
		break;
1933
	case -ENOMEM:
1934 1935
		ret = VM_FAULT_OOM;
		break;
1936
	case -ENOSPC:
1937
	case -EFAULT:
1938 1939
		ret = VM_FAULT_SIGBUS;
		break;
1940
	default:
1941
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 1943
		ret = VM_FAULT_SIGBUS;
		break;
1944
	}
1945 1946 1947

	intel_runtime_pm_put(dev_priv);
	return ret;
1948 1949
}

1950 1951 1952 1953
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1954
 * Preserve the reservation of the mmapping with the DRM core code, but
1955 1956 1957 1958 1959 1960 1961 1962 1963
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1964
void
1965
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966
{
1967 1968
	if (!obj->fault_mappable)
		return;
1969

1970 1971
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1972
	obj->fault_mappable = false;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1984
uint32_t
1985
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986
{
1987
	uint32_t gtt_size;
1988 1989

	if (INTEL_INFO(dev)->gen >= 4 ||
1990 1991
	    tiling_mode == I915_TILING_NONE)
		return size;
1992 1993 1994

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1995
		gtt_size = 1024*1024;
1996
	else
1997
		gtt_size = 512*1024;
1998

1999 2000
	while (gtt_size < size)
		gtt_size <<= 1;
2001

2002
	return gtt_size;
2003 2004
}

2005 2006 2007 2008 2009
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2010
 * potential fence register mapping.
2011
 */
2012 2013 2014
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2015 2016 2017 2018 2019
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2020
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021
	    tiling_mode == I915_TILING_NONE)
2022 2023
		return 4096;

2024 2025 2026 2027
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2028
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 2030
}

2031 2032 2033 2034 2035
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2036
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 2038
		return 0;

2039 2040
	dev_priv->mm.shrinker_no_lock_stealing = true;

2041 2042
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2043
		goto out;
2044 2045 2046 2047 2048 2049 2050 2051

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2052 2053 2054 2055 2056
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2057 2058
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2059
		goto out;
2060 2061

	i915_gem_shrink_all(dev_priv);
2062 2063 2064 2065 2066
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2067 2068 2069 2070 2071 2072 2073
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2074
int
2075 2076
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2077
		  uint32_t handle,
2078
		  uint64_t *offset)
2079
{
2080
	struct drm_i915_gem_object *obj;
2081 2082
	int ret;

2083
	ret = i915_mutex_lock_interruptible(dev);
2084
	if (ret)
2085
		return ret;
2086

2087
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088
	if (&obj->base == NULL) {
2089 2090 2091
		ret = -ENOENT;
		goto unlock;
	}
2092

2093
	if (obj->madv != I915_MADV_WILLNEED) {
2094
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095
		ret = -EFAULT;
2096
		goto out;
2097 2098
	}

2099 2100 2101
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2102

2103
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104

2105
out:
2106
	drm_gem_object_unreference(&obj->base);
2107
unlock:
2108
	mutex_unlock(&dev->struct_mutex);
2109
	return ret;
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2133
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 2135
}

D
Daniel Vetter 已提交
2136 2137 2138
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139
{
2140
	i915_gem_object_free_mmap_offset(obj);
2141

2142 2143
	if (obj->base.filp == NULL)
		return;
2144

D
Daniel Vetter 已提交
2145 2146 2147 2148 2149
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2150
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2151 2152
	obj->madv = __I915_MADV_PURGED;
}
2153

2154 2155 2156
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2157
{
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 2173
}

2174
static void
2175
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176
{
2177 2178
	struct sg_page_iter sg_iter;
	int ret;
2179

2180
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181

C
Chris Wilson 已提交
2182 2183 2184 2185 2186 2187
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2188
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2189 2190 2191
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2192 2193
	i915_gem_gtt_finish_object(obj);

2194
	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 2196
		i915_gem_object_save_bit_17_swizzle(obj);

2197 2198
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2199

2200
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201
		struct page *page = sg_page_iter_page(&sg_iter);
2202

2203
		if (obj->dirty)
2204
			set_page_dirty(page);
2205

2206
		if (obj->madv == I915_MADV_WILLNEED)
2207
			mark_page_accessed(page);
2208

2209
		page_cache_release(page);
2210
	}
2211
	obj->dirty = 0;
2212

2213 2214
	sg_free_table(obj->pages);
	kfree(obj->pages);
2215
}
C
Chris Wilson 已提交
2216

2217
int
2218 2219 2220 2221
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2222
	if (obj->pages == NULL)
2223 2224
		return 0;

2225 2226 2227
	if (obj->pages_pin_count)
		return -EBUSY;

2228
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2229

2230 2231 2232
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2233
	list_del(&obj->global_list);
2234

2235
	ops->put_pages(obj);
2236
	obj->pages = NULL;
2237

2238
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2239 2240 2241 2242

	return 0;
}

2243
static int
C
Chris Wilson 已提交
2244
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245
{
C
Chris Wilson 已提交
2246
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 2248
	int page_count, i;
	struct address_space *mapping;
2249 2250
	struct sg_table *st;
	struct scatterlist *sg;
2251
	struct sg_page_iter sg_iter;
2252
	struct page *page;
2253
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2254
	int ret;
C
Chris Wilson 已提交
2255
	gfp_t gfp;
2256

C
Chris Wilson 已提交
2257 2258 2259 2260 2261 2262 2263
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2264 2265 2266 2267
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2268
	page_count = obj->base.size / PAGE_SIZE;
2269 2270
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2271
		return -ENOMEM;
2272
	}
2273

2274 2275 2276 2277 2278
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2279
	mapping = file_inode(obj->base.filp)->i_mapping;
2280
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 2283 2284
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2285 2286
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2287 2288 2289 2290 2291
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2292 2293 2294 2295 2296 2297 2298 2299
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2300
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2301 2302
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2303
				goto err_pages;
I
Imre Deak 已提交
2304
			}
C
Chris Wilson 已提交
2305
		}
2306 2307 2308 2309 2310 2311 2312 2313
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2314 2315 2316 2317 2318 2319 2320 2321 2322
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2323 2324 2325

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326
	}
2327 2328 2329 2330
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2331 2332
	obj->pages = st;

I
Imre Deak 已提交
2333 2334 2335 2336
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2337
	if (i915_gem_object_needs_bit17_swizzle(obj))
2338 2339
		i915_gem_object_do_bit_17_swizzle(obj);

2340 2341 2342 2343
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2344 2345 2346
	return 0;

err_pages:
2347 2348
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349
		page_cache_release(sg_page_iter_page(&sg_iter));
2350 2351
	sg_free_table(st);
	kfree(st);
2352 2353 2354 2355 2356 2357 2358 2359 2360

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2361 2362 2363 2364
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2381
	if (obj->pages)
2382 2383
		return 0;

2384
	if (obj->madv != I915_MADV_WILLNEED) {
2385
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386
		return -EFAULT;
2387 2388
	}

2389 2390
	BUG_ON(obj->pages_pin_count);

2391 2392 2393 2394
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2395
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396 2397 2398 2399

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2400
	return 0;
2401 2402
}

2403
void i915_vma_move_to_active(struct i915_vma *vma,
2404
			     struct drm_i915_gem_request *req)
2405
{
2406
	struct drm_i915_gem_object *obj = vma->obj;
2407 2408 2409
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2410 2411

	/* Add a reference if we're newly entering the active list. */
2412
	if (obj->active == 0)
2413
		drm_gem_object_reference(&obj->base);
2414
	obj->active |= intel_ring_flag(ring);
2415

2416
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418

2419
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2420 2421
}

2422 2423
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2424
{
2425 2426 2427 2428
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
2429
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2430 2431
}

2432
static void
2433
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434
{
2435
	struct i915_vma *vma;
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2449

2450 2451 2452 2453 2454 2455 2456
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2457 2458 2459
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2460
	}
2461

2462
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463
	drm_gem_object_unreference(&obj->base);
2464 2465
}

2466
static int
2467
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468
{
2469
	struct drm_i915_private *dev_priv = dev->dev_private;
2470
	struct intel_engine_cs *ring;
2471
	int ret, i, j;
2472

2473
	/* Carefully retire all requests without writing to the rings */
2474
	for_each_ring(ring, dev_priv, i) {
2475 2476 2477
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2478 2479
	}
	i915_gem_retire_requests(dev);
2480 2481

	/* Finally reset hw state */
2482
	for_each_ring(ring, dev_priv, i) {
2483
		intel_ring_init_seqno(ring, seqno);
2484

2485 2486
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2487
	}
2488

2489
	return 0;
2490 2491
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2518 2519
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520
{
2521 2522 2523 2524
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2525
		int ret = i915_gem_init_seqno(dev, 0);
2526 2527
		if (ret)
			return ret;
2528

2529 2530
		dev_priv->next_seqno = 1;
	}
2531

2532
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533
	return 0;
2534 2535
}

2536 2537 2538 2539 2540
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2541
void __i915_add_request(struct drm_i915_gem_request *request,
2542 2543
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2544
{
2545 2546
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2547
	struct intel_ringbuffer *ringbuf;
2548
	u32 request_start;
2549 2550
	int ret;

2551
	if (WARN_ON(request == NULL))
2552
		return;
2553

2554 2555 2556 2557
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

2558 2559 2560 2561 2562 2563 2564
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2565
	request_start = intel_ring_get_tail(ringbuf);
2566 2567 2568 2569 2570 2571 2572
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2573 2574
	if (flush_caches) {
		if (i915.enable_execlists)
2575
			ret = logical_ring_flush_all_caches(request);
2576
		else
2577
			ret = intel_ring_flush_all_caches(request);
2578 2579 2580
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2581

2582 2583 2584 2585 2586
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2587
	request->postfix = intel_ring_get_tail(ringbuf);
2588

2589
	if (i915.enable_execlists)
2590
		ret = ring->emit_request(request);
2591
	else {
2592
		ret = ring->add_request(request);
2593 2594

		request->tail = intel_ring_get_tail(ringbuf);
2595
	}
2596 2597
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2598

2599 2600 2601 2602 2603 2604 2605 2606
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2607
	request->batch_obj = obj;
2608

2609
	request->emitted_jiffies = jiffies;
2610
	request->previous_seqno = ring->last_submitted_seqno;
2611
	ring->last_submitted_seqno = request->seqno;
2612
	list_add_tail(&request->list, &ring->request_list);
2613

2614
	trace_i915_gem_request_add(request);
C
Chris Wilson 已提交
2615

2616
	i915_queue_hangcheck(ring->dev);
2617

2618 2619 2620 2621
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2622

2623 2624
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2625 2626
}

2627
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628
				   const struct intel_context *ctx)
2629
{
2630
	unsigned long elapsed;
2631

2632 2633 2634
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2635 2636
		return true;

2637 2638
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2639
		if (!i915_gem_context_is_default(ctx)) {
2640
			DRM_DEBUG("context hanging too fast, banning!\n");
2641
			return true;
2642 2643 2644
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2645
			return true;
2646
		}
2647 2648 2649 2650 2651
	}

	return false;
}

2652
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653
				  struct intel_context *ctx,
2654
				  const bool guilty)
2655
{
2656 2657 2658 2659
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2660

2661 2662 2663
	hs = &ctx->hang_stats;

	if (guilty) {
2664
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2665 2666 2667 2668
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2669 2670 2671
	}
}

2672 2673 2674 2675 2676 2677
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2678 2679 2680
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2681 2682
	if (ctx) {
		if (i915.enable_execlists) {
2683 2684
			if (ctx != req->ring->default_context)
				intel_lr_context_unpin(req);
2685
		}
2686

2687 2688
		i915_gem_context_unreference(ctx);
	}
2689

2690
	kmem_cache_free(req->i915->requests, req);
2691 2692
}

2693
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2694 2695
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2696
{
2697
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2698
	struct drm_i915_gem_request *req;
2699 2700
	int ret;

2701 2702 2703
	if (!req_out)
		return -EINVAL;

2704
	*req_out = NULL;
2705

D
Daniel Vetter 已提交
2706 2707
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2708 2709
		return -ENOMEM;

D
Daniel Vetter 已提交
2710
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2711 2712
	if (ret)
		goto err;
2713

2714 2715
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2716
	req->ring = ring;
2717 2718
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2719 2720

	if (i915.enable_execlists)
2721
		ret = intel_logical_ring_alloc_request_extras(req);
2722
	else
D
Daniel Vetter 已提交
2723
		ret = intel_ring_alloc_request_extras(req);
2724 2725
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2726
		goto err;
2727
	}
2728

2729 2730 2731 2732 2733 2734 2735
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2749

2750
	*req_out = req;
2751
	return 0;
2752 2753 2754 2755

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2756 2757
}

2758 2759 2760 2761 2762 2763 2764
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2765
struct drm_i915_gem_request *
2766
i915_gem_find_active_request(struct intel_engine_cs *ring)
2767
{
2768 2769 2770
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2771
		if (i915_gem_request_completed(request, false))
2772
			continue;
2773

2774
		return request;
2775
	}
2776 2777 2778 2779 2780

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2781
				       struct intel_engine_cs *ring)
2782 2783 2784 2785
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2786
	request = i915_gem_find_active_request(ring);
2787 2788 2789 2790 2791 2792

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2793
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2794 2795

	list_for_each_entry_continue(request, &ring->request_list, list)
2796
		i915_set_reset_status(dev_priv, request->ctx, false);
2797
}
2798

2799
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2800
					struct intel_engine_cs *ring)
2801
{
2802 2803
	struct intel_ringbuffer *buffer;

2804
	while (!list_empty(&ring->active_list)) {
2805
		struct drm_i915_gem_object *obj;
2806

2807 2808
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2809
				       ring_list[ring->id]);
2810

2811
		i915_gem_object_retire__read(obj, ring->id);
2812
	}
2813

2814 2815 2816 2817 2818 2819
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2820 2821
	if (i915.enable_execlists) {
		spin_lock_irq(&ring->execlist_lock);
2822

2823 2824 2825
		/* list_splice_tail_init checks for empty lists */
		list_splice_tail_init(&ring->execlist_queue,
				      &ring->execlist_retired_req_list);
2826

2827
		spin_unlock_irq(&ring->execlist_lock);
2828
		intel_execlists_retire_requests(ring);
2829 2830
	}

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2845
		i915_gem_request_retire(request);
2846
	}
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
	list_for_each_entry(buffer, &ring->buffers, link) {
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2859 2860
}

2861
void i915_gem_reset(struct drm_device *dev)
2862
{
2863
	struct drm_i915_private *dev_priv = dev->dev_private;
2864
	struct intel_engine_cs *ring;
2865
	int i;
2866

2867 2868 2869 2870 2871 2872 2873 2874
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2875
	for_each_ring(ring, dev_priv, i)
2876
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2877

2878 2879
	i915_gem_context_reset(dev);

2880
	i915_gem_restore_fences(dev);
2881 2882

	WARN_ON(i915_verify_lists(dev));
2883 2884 2885 2886 2887
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2888
void
2889
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2890
{
C
Chris Wilson 已提交
2891
	WARN_ON(i915_verify_lists(ring->dev));
2892

2893 2894 2895 2896
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2897
	 */
2898
	while (!list_empty(&ring->request_list)) {
2899 2900
		struct drm_i915_gem_request *request;

2901
		request = list_first_entry(&ring->request_list,
2902 2903 2904
					   struct drm_i915_gem_request,
					   list);

2905
		if (!i915_gem_request_completed(request, true))
2906 2907
			break;

2908
		i915_gem_request_retire(request);
2909
	}
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2920
				      ring_list[ring->id]);
2921

2922
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2923 2924
			break;

2925
		i915_gem_object_retire__read(obj, ring->id);
2926 2927
	}

2928 2929
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2930
		ring->irq_put(ring);
2931
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2932
	}
2933

C
Chris Wilson 已提交
2934
	WARN_ON(i915_verify_lists(ring->dev));
2935 2936
}

2937
bool
2938 2939
i915_gem_retire_requests(struct drm_device *dev)
{
2940
	struct drm_i915_private *dev_priv = dev->dev_private;
2941
	struct intel_engine_cs *ring;
2942
	bool idle = true;
2943
	int i;
2944

2945
	for_each_ring(ring, dev_priv, i) {
2946
		i915_gem_retire_requests_ring(ring);
2947
		idle &= list_empty(&ring->request_list);
2948 2949 2950 2951 2952 2953 2954 2955 2956
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2957 2958 2959 2960 2961 2962 2963 2964
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2965 2966
}

2967
static void
2968 2969
i915_gem_retire_work_handler(struct work_struct *work)
{
2970 2971 2972
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2973
	bool idle;
2974

2975
	/* Come back later if the device is busy... */
2976 2977 2978 2979
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2980
	}
2981
	if (!idle)
2982 2983
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2984
}
2985

2986 2987 2988 2989 2990
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2991
	struct drm_device *dev = dev_priv->dev;
2992 2993
	struct intel_engine_cs *ring;
	int i;
2994

2995 2996 2997
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2998

2999 3000 3001 3002
	/* we probably should sync with hangcheck here, using cancel_work_sync.
	 * Also locking seems to be fubar here, ring->request_list is protected
	 * by dev->struct_mutex. */

3003 3004 3005 3006 3007 3008 3009 3010
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
3011

3012 3013
		mutex_unlock(&dev->struct_mutex);
	}
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3024
	int i;
3025 3026 3027

	if (!obj->active)
		return 0;
3028

3029 3030
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
3031

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3044 3045 3046 3047 3048
	}

	return 0;
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3074
	struct drm_i915_private *dev_priv = dev->dev_private;
3075 3076
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3077
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3078
	unsigned reset_counter;
3079 3080
	int i, n = 0;
	int ret;
3081

3082 3083 3084
	if (args->flags != 0)
		return -EINVAL;

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3095 3096
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3097 3098 3099
	if (ret)
		goto out;

3100
	if (!obj->active)
3101
		goto out;
3102 3103

	/* Do this after OLR check to make sure we make forward progress polling
3104
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3105
	 */
3106
	if (args->timeout_ns == 0) {
3107 3108 3109 3110 3111
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3112
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3113 3114 3115 3116 3117 3118 3119 3120

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3121 3122
	mutex_unlock(&dev->struct_mutex);

3123 3124 3125 3126
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3127
						  to_rps_client(file));
3128 3129
		i915_gem_request_unreference__unlocked(req[i]);
	}
3130
	return ret;
3131 3132 3133 3134 3135 3136 3137

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3138 3139 3140
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3141 3142
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3143 3144 3145 3146
{
	struct intel_engine_cs *from;
	int ret;

3147
	from = i915_gem_request_get_ring(from_req);
3148 3149 3150
	if (to == from)
		return 0;

3151
	if (i915_gem_request_completed(from_req, true))
3152 3153 3154
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3155
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3156
		ret = __i915_wait_request(from_req,
3157 3158 3159 3160
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3161 3162 3163
		if (ret)
			return ret;

3164
		i915_gem_object_retire_request(obj, from_req);
3165 3166
	} else {
		int idx = intel_ring_sync_index(from, to);
3167 3168 3169
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3170 3171 3172 3173

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3174 3175 3176 3177 3178 3179
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

3180 3181
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3196 3197 3198 3199 3200
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3201 3202 3203
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3204 3205 3206
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3207
 * rather than a particular GPU ring. Conceptually we serialise writes
3208
 * between engines inside the GPU. We only allow one engine to write
3209 3210 3211 3212 3213 3214 3215 3216 3217
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3218
 *
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3229 3230
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3231 3232
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3233 3234
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3235
{
3236 3237 3238
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3239

3240
	if (!obj->active)
3241 3242
		return 0;

3243 3244
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3245

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3256
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3257 3258 3259
		if (ret)
			return ret;
	}
3260

3261
	return 0;
3262 3263
}

3264 3265 3266 3267 3268 3269 3270
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3271 3272 3273
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3274 3275 3276
	/* Wait for any direct GTT access to complete */
	mb();

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3288
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3289
{
3290
	struct drm_i915_gem_object *obj = vma->obj;
3291
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3292
	int ret;
3293

3294
	if (list_empty(&vma->vma_link))
3295 3296
		return 0;

3297 3298 3299 3300
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3301

B
Ben Widawsky 已提交
3302
	if (vma->pin_count)
3303
		return -EBUSY;
3304

3305 3306
	BUG_ON(obj->pages == NULL);

3307 3308 3309 3310 3311
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3312

3313 3314
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3315
		i915_gem_object_finish_gtt(obj);
3316

3317 3318 3319 3320 3321
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3322

3323
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3324

3325
	vma->vm->unbind_vma(vma);
3326
	vma->bound = 0;
3327

3328
	list_del_init(&vma->mm_list);
3329 3330 3331 3332 3333 3334 3335
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3336
		vma->ggtt_view.pages = NULL;
3337
	}
3338

B
Ben Widawsky 已提交
3339 3340 3341 3342
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3343
	 * no more VMAs exist. */
I
Imre Deak 已提交
3344
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3345
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3346

3347 3348 3349 3350 3351 3352
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3353
	return 0;
3354 3355
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3366
int i915_gpu_idle(struct drm_device *dev)
3367
{
3368
	struct drm_i915_private *dev_priv = dev->dev_private;
3369
	struct intel_engine_cs *ring;
3370
	int ret, i;
3371 3372

	/* Flush everything onto the inactive list. */
3373
	for_each_ring(ring, dev_priv, i) {
3374
		if (!i915.enable_execlists) {
3375 3376 3377
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3378 3379
			if (ret)
				return ret;
3380

3381
			ret = i915_switch_context(req);
3382 3383 3384 3385 3386
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3387
			i915_add_request_no_flush(req);
3388
		}
3389

3390
		ret = intel_ring_idle(ring);
3391 3392 3393
		if (ret)
			return ret;
	}
3394

3395
	WARN_ON(i915_verify_lists(dev));
3396
	return 0;
3397 3398
}

3399
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3400 3401
				     unsigned long cache_level)
{
3402
	struct drm_mm_node *gtt_space = &vma->node;
3403 3404
	struct drm_mm_node *other;

3405 3406 3407 3408 3409 3410
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3411
	 */
3412
	if (vma->vm->mm.color_adjust == NULL)
3413 3414
		return true;

3415
	if (!drm_mm_node_allocated(gtt_space))
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3432
/**
3433 3434
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3435
 */
3436
static struct i915_vma *
3437 3438
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3439
			   const struct i915_ggtt_view *ggtt_view,
3440
			   unsigned alignment,
3441
			   uint64_t flags)
3442
{
3443
	struct drm_device *dev = obj->base.dev;
3444
	struct drm_i915_private *dev_priv = dev->dev_private;
3445
	u32 fence_alignment, unfenced_alignment;
3446 3447
	u32 search_flag, alloc_flag;
	u64 start, end;
3448
	u64 size, fence_size;
B
Ben Widawsky 已提交
3449
	struct i915_vma *vma;
3450
	int ret;
3451

3452 3453 3454 3455 3456
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3487

3488 3489 3490 3491 3492
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
		end = min_t(u64, end, dev_priv->gtt.mappable_end);
	if (flags & PIN_ZONE_4G)
3493
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3494

3495
	if (alignment == 0)
3496
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3497
						unfenced_alignment;
3498
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3499 3500 3501
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3502
		return ERR_PTR(-EINVAL);
3503 3504
	}

3505 3506 3507
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3508
	 */
3509
	if (size > end) {
3510
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3511 3512
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3513
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3514
			  end);
3515
		return ERR_PTR(-E2BIG);
3516 3517
	}

3518
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3519
	if (ret)
3520
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3521

3522 3523
	i915_gem_object_pin_pages(obj);

3524 3525 3526
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3527
	if (IS_ERR(vma))
3528
		goto err_unpin;
B
Ben Widawsky 已提交
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3548
	} else {
3549 3550 3551 3552 3553 3554 3555
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3556

3557
search_free:
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3571

3572 3573
			goto err_free_vma;
		}
3574
	}
3575
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3576
		ret = -EINVAL;
3577
		goto err_remove_node;
3578 3579
	}

3580
	trace_i915_vma_bind(vma, flags);
3581
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3582
	if (ret)
I
Imre Deak 已提交
3583
		goto err_remove_node;
3584

3585
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3586
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3587

3588
	return vma;
B
Ben Widawsky 已提交
3589

3590
err_remove_node:
3591
	drm_mm_remove_node(&vma->node);
3592
err_free_vma:
B
Ben Widawsky 已提交
3593
	i915_gem_vma_destroy(vma);
3594
	vma = ERR_PTR(ret);
3595
err_unpin:
B
Ben Widawsky 已提交
3596
	i915_gem_object_unpin_pages(obj);
3597
	return vma;
3598 3599
}

3600
bool
3601 3602
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3603 3604 3605 3606 3607
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3608
	if (obj->pages == NULL)
3609
		return false;
3610

3611 3612 3613 3614
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3615
	if (obj->stolen || obj->phys_handle)
3616
		return false;
3617

3618 3619 3620 3621 3622 3623 3624 3625
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3626 3627
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3628
		return false;
3629
	}
3630

C
Chris Wilson 已提交
3631
	trace_i915_gem_object_clflush(obj);
3632
	drm_clflush_sg(obj->pages);
3633
	obj->cache_dirty = false;
3634 3635

	return true;
3636 3637 3638 3639
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3640
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3641
{
C
Chris Wilson 已提交
3642 3643
	uint32_t old_write_domain;

3644
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3645 3646
		return;

3647
	/* No actual flushing is required for the GTT write domain.  Writes
3648 3649
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3650 3651 3652 3653
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3654
	 */
3655 3656
	wmb();

3657 3658
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3659

3660
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3661

C
Chris Wilson 已提交
3662
	trace_i915_gem_object_change_domain(obj,
3663
					    obj->base.read_domains,
C
Chris Wilson 已提交
3664
					    old_write_domain);
3665 3666 3667 3668
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3669
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3670
{
C
Chris Wilson 已提交
3671
	uint32_t old_write_domain;
3672

3673
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3674 3675
		return;

3676
	if (i915_gem_clflush_object(obj, obj->pin_display))
3677 3678
		i915_gem_chipset_flush(obj->base.dev);

3679 3680
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3681

3682
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3683

C
Chris Wilson 已提交
3684
	trace_i915_gem_object_change_domain(obj,
3685
					    obj->base.read_domains,
C
Chris Wilson 已提交
3686
					    old_write_domain);
3687 3688
}

3689 3690 3691 3692 3693 3694
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3695
int
3696
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3697
{
C
Chris Wilson 已提交
3698
	uint32_t old_write_domain, old_read_domains;
3699
	struct i915_vma *vma;
3700
	int ret;
3701

3702 3703 3704
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3705
	ret = i915_gem_object_wait_rendering(obj, !write);
3706 3707 3708
	if (ret)
		return ret;

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3721
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3722

3723 3724 3725 3726 3727 3728 3729
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3730 3731
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3732

3733 3734 3735
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3736 3737
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3738
	if (write) {
3739 3740 3741
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3742 3743
	}

C
Chris Wilson 已提交
3744 3745 3746 3747
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3748
	/* And bump the LRU for this access */
3749 3750
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3751
		list_move_tail(&vma->mm_list,
3752
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3753

3754 3755 3756
	return 0;
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3770 3771 3772
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3773
	struct drm_device *dev = obj->base.dev;
3774
	struct i915_vma *vma, *next;
3775
	bool bound = false;
3776
	int ret = 0;
3777 3778

	if (obj->cache_level == cache_level)
3779
		goto out;
3780

3781 3782 3783 3784 3785
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3786
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3787 3788 3789 3790 3791 3792 3793 3794
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3795
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3796
			ret = i915_vma_unbind(vma);
3797 3798
			if (ret)
				return ret;
3799 3800
		} else
			bound = true;
3801 3802
	}

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3815
		ret = i915_gem_object_wait_rendering(obj, false);
3816 3817 3818
		if (ret)
			return ret;

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3836 3837 3838
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3839 3840 3841 3842 3843 3844 3845 3846
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3847 3848
		}

3849 3850 3851 3852 3853 3854 3855 3856
		list_for_each_entry(vma, &obj->vma_list, vma_link) {
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3857 3858
	}

3859 3860 3861 3862
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3863
out:
3864 3865 3866 3867
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3868 3869 3870 3871 3872
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3873 3874 3875 3876 3877
	}

	return 0;
}

B
Ben Widawsky 已提交
3878 3879
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3880
{
B
Ben Widawsky 已提交
3881
	struct drm_i915_gem_caching *args = data;
3882 3883 3884
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3885 3886
	if (&obj->base == NULL)
		return -ENOENT;
3887

3888 3889 3890 3891 3892 3893
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3894 3895 3896 3897
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3898 3899 3900 3901
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3902

3903 3904
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3905 3906
}

B
Ben Widawsky 已提交
3907 3908
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3909
{
3910
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3911
	struct drm_i915_gem_caching *args = data;
3912 3913 3914 3915
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3916 3917
	switch (args->caching) {
	case I915_CACHING_NONE:
3918 3919
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3920
	case I915_CACHING_CACHED:
3921 3922 3923 3924 3925 3926
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3927
		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3928 3929
			return -ENODEV;

3930 3931
		level = I915_CACHE_LLC;
		break;
3932 3933 3934
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3935 3936 3937 3938
	default:
		return -EINVAL;
	}

3939 3940
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3941 3942
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3943
		goto rpm_put;
B
Ben Widawsky 已提交
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3956 3957 3958
rpm_put:
	intel_runtime_pm_put(dev_priv);

3959 3960 3961
	return ret;
}

3962
/*
3963 3964 3965
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3966 3967
 */
int
3968 3969
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3970
				     const struct i915_ggtt_view *view)
3971
{
3972
	u32 old_read_domains, old_write_domain;
3973 3974
	int ret;

3975 3976 3977
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3978
	obj->pin_display++;
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3989 3990
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3991
	if (ret)
3992
		goto err_unpin_display;
3993

3994 3995 3996 3997
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3998 3999 4000
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4001
	if (ret)
4002
		goto err_unpin_display;
4003

4004
	i915_gem_object_flush_cpu_write_domain(obj);
4005

4006
	old_write_domain = obj->base.write_domain;
4007
	old_read_domains = obj->base.read_domains;
4008 4009 4010 4011

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4012
	obj->base.write_domain = 0;
4013
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4014 4015 4016

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4017
					    old_write_domain);
4018 4019

	return 0;
4020 4021

err_unpin_display:
4022
	obj->pin_display--;
4023 4024 4025 4026
	return ret;
}

void
4027 4028
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4029
{
4030 4031 4032
	if (WARN_ON(obj->pin_display == 0))
		return;

4033 4034
	i915_gem_object_ggtt_unpin_view(obj, view);

4035
	obj->pin_display--;
4036 4037
}

4038 4039 4040 4041 4042 4043
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4044
int
4045
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4046
{
C
Chris Wilson 已提交
4047
	uint32_t old_write_domain, old_read_domains;
4048 4049
	int ret;

4050 4051 4052
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4053
	ret = i915_gem_object_wait_rendering(obj, !write);
4054 4055 4056
	if (ret)
		return ret;

4057
	i915_gem_object_flush_gtt_write_domain(obj);
4058

4059 4060
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4061

4062
	/* Flush the CPU cache if it's still invalid. */
4063
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4064
		i915_gem_clflush_object(obj, false);
4065

4066
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4067 4068 4069 4070 4071
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4072
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4073 4074 4075 4076 4077

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4078 4079
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4080
	}
4081

C
Chris Wilson 已提交
4082 4083 4084 4085
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4086 4087 4088
	return 0;
}

4089 4090 4091
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4092 4093 4094 4095
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4096 4097 4098
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4099
static int
4100
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4101
{
4102 4103
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4104
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4105
	struct drm_i915_gem_request *request, *target = NULL;
4106
	unsigned reset_counter;
4107
	int ret;
4108

4109 4110 4111 4112 4113 4114 4115
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4116

4117
	spin_lock(&file_priv->mm.lock);
4118
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4119 4120
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4121

4122 4123 4124 4125 4126 4127 4128
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4129
		target = request;
4130
	}
4131
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4132 4133
	if (target)
		i915_gem_request_reference(target);
4134
	spin_unlock(&file_priv->mm.lock);
4135

4136
	if (target == NULL)
4137
		return 0;
4138

4139
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4140 4141
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4142

4143
	i915_gem_request_unreference__unlocked(target);
4144

4145 4146 4147
	return ret;
}

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4164 4165 4166 4167
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4168 4169 4170
	return false;
}

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
		    to_i915(obj->base.dev)->gtt.mappable_end);

	obj->map_and_fenceable = mappable && fenceable;
}

4194 4195 4196 4197 4198 4199
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4200
{
4201
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4202
	struct i915_vma *vma;
4203
	unsigned bound;
4204 4205
	int ret;

4206 4207 4208
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4209
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4210
		return -EINVAL;
4211

4212 4213 4214
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4215 4216 4217 4218 4219 4220 4221 4222 4223
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4224
	if (vma) {
B
Ben Widawsky 已提交
4225 4226 4227
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4228
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4229
			WARN(vma->pin_count,
4230
			     "bo is already pinned in %s with incorrect alignment:"
4231
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4232
			     " obj->map_and_fenceable=%d\n",
4233
			     ggtt_view ? "ggtt" : "ppgtt",
4234 4235
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4236
			     alignment,
4237
			     !!(flags & PIN_MAPPABLE),
4238
			     obj->map_and_fenceable);
4239
			ret = i915_vma_unbind(vma);
4240 4241
			if (ret)
				return ret;
4242 4243

			vma = NULL;
4244 4245 4246
		}
	}

4247
	bound = vma ? vma->bound : 0;
4248
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4249 4250
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4251 4252
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4253 4254
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4255 4256 4257
		if (ret)
			return ret;
	}
4258

4259 4260
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4261
		__i915_vma_set_map_and_fenceable(vma);
4262 4263
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4264

4265
	vma->pin_count++;
4266 4267 4268
	return 0;
}

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4290
				      alignment, flags | PIN_GLOBAL);
4291 4292
}

4293
void
4294 4295
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4296
{
4297
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4298

B
Ben Widawsky 已提交
4299
	BUG_ON(!vma);
4300
	WARN_ON(vma->pin_count == 0);
4301
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4302

4303
	--vma->pin_count;
4304 4305 4306 4307
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4308
		    struct drm_file *file)
4309 4310
{
	struct drm_i915_gem_busy *args = data;
4311
	struct drm_i915_gem_object *obj;
4312 4313
	int ret;

4314
	ret = i915_mutex_lock_interruptible(dev);
4315
	if (ret)
4316
		return ret;
4317

4318
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4319
	if (&obj->base == NULL) {
4320 4321
		ret = -ENOENT;
		goto unlock;
4322
	}
4323

4324 4325 4326 4327
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4328
	 */
4329
	ret = i915_gem_object_flush_active(obj);
4330 4331
	if (ret)
		goto unref;
4332

4333 4334 4335 4336
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4337

4338
unref:
4339
	drm_gem_object_unreference(&obj->base);
4340
unlock:
4341
	mutex_unlock(&dev->struct_mutex);
4342
	return ret;
4343 4344 4345 4346 4347 4348
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4349
	return i915_gem_ring_throttle(dev, file_priv);
4350 4351
}

4352 4353 4354 4355
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4356
	struct drm_i915_private *dev_priv = dev->dev_private;
4357
	struct drm_i915_gem_madvise *args = data;
4358
	struct drm_i915_gem_object *obj;
4359
	int ret;
4360 4361 4362 4363 4364 4365 4366 4367 4368

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4369 4370 4371 4372
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4373
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4374
	if (&obj->base == NULL) {
4375 4376
		ret = -ENOENT;
		goto unlock;
4377 4378
	}

B
Ben Widawsky 已提交
4379
	if (i915_gem_obj_is_pinned(obj)) {
4380 4381
		ret = -EINVAL;
		goto out;
4382 4383
	}

4384 4385 4386 4387 4388 4389 4390 4391 4392
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4393 4394
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4395

C
Chris Wilson 已提交
4396
	/* if the object is no longer attached, discard its backing storage */
4397
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4398 4399
		i915_gem_object_truncate(obj);

4400
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4401

4402
out:
4403
	drm_gem_object_unreference(&obj->base);
4404
unlock:
4405
	mutex_unlock(&dev->struct_mutex);
4406
	return ret;
4407 4408
}

4409 4410
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4411
{
4412 4413
	int i;

4414
	INIT_LIST_HEAD(&obj->global_list);
4415 4416
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4417
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4418
	INIT_LIST_HEAD(&obj->vma_list);
4419
	INIT_LIST_HEAD(&obj->batch_pool_link);
4420

4421 4422
	obj->ops = ops;

4423 4424 4425 4426 4427 4428
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4429 4430 4431 4432 4433
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4434 4435
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4436
{
4437
	struct drm_i915_gem_object *obj;
4438
	struct address_space *mapping;
D
Daniel Vetter 已提交
4439
	gfp_t mask;
4440

4441
	obj = i915_gem_object_alloc(dev);
4442 4443
	if (obj == NULL)
		return NULL;
4444

4445
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4446
		i915_gem_object_free(obj);
4447 4448
		return NULL;
	}
4449

4450 4451 4452 4453 4454 4455 4456
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4457
	mapping = file_inode(obj->base.filp)->i_mapping;
4458
	mapping_set_gfp_mask(mapping, mask);
4459

4460
	i915_gem_object_init(obj, &i915_gem_object_ops);
4461

4462 4463
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4464

4465 4466
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4482 4483
	trace_i915_gem_object_create(obj);

4484
	return obj;
4485 4486
}

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4511
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4512
{
4513
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4514
	struct drm_device *dev = obj->base.dev;
4515
	struct drm_i915_private *dev_priv = dev->dev_private;
4516
	struct i915_vma *vma, *next;
4517

4518 4519
	intel_runtime_pm_get(dev_priv);

4520 4521
	trace_i915_gem_object_destroy(obj);

4522
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4523 4524 4525 4526
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4527 4528
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4529

4530 4531
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4532

4533
			WARN_ON(i915_vma_unbind(vma));
4534

4535 4536
			dev_priv->mm.interruptible = was_interruptible;
		}
4537 4538
	}

B
Ben Widawsky 已提交
4539 4540 4541 4542 4543
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4544 4545
	WARN_ON(obj->frontbuffer_bits);

4546 4547 4548 4549 4550
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4551 4552
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4553
	if (discard_backing_storage(obj))
4554
		obj->madv = I915_MADV_DONTNEED;
4555
	i915_gem_object_put_pages(obj);
4556
	i915_gem_object_free_mmap_offset(obj);
4557

4558 4559
	BUG_ON(obj->pages);

4560 4561
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4562

4563 4564 4565
	if (obj->ops->release)
		obj->ops->release(obj);

4566 4567
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4568

4569
	kfree(obj->bit_17);
4570
	i915_gem_object_free(obj);
4571 4572

	intel_runtime_pm_put(dev_priv);
4573 4574
}

4575 4576
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4577 4578
{
	struct i915_vma *vma;
4579
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4580 4581
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4582
			return vma;
4583 4584 4585 4586 4587 4588 4589 4590 4591
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4592

4593 4594 4595 4596
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4597 4598
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4599
			return vma;
4600 4601 4602
	return NULL;
}

B
Ben Widawsky 已提交
4603 4604
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4605
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4606
	WARN_ON(vma->node.allocated);
4607 4608 4609 4610 4611

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4612 4613
	vm = vma->vm;

4614 4615
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4616

4617
	list_del(&vma->vma_link);
4618

4619
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4620 4621
}

4622 4623 4624 4625
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4626
	struct intel_engine_cs *ring;
4627 4628 4629
	int i;

	for_each_ring(ring, dev_priv, i)
4630
		dev_priv->gt.stop_ring(ring);
4631 4632
}

4633
int
4634
i915_gem_suspend(struct drm_device *dev)
4635
{
4636
	struct drm_i915_private *dev_priv = dev->dev_private;
4637
	int ret = 0;
4638

4639
	mutex_lock(&dev->struct_mutex);
4640
	ret = i915_gpu_idle(dev);
4641
	if (ret)
4642
		goto err;
4643

4644
	i915_gem_retire_requests(dev);
4645

4646
	i915_gem_stop_ringbuffers(dev);
4647 4648
	mutex_unlock(&dev->struct_mutex);

4649
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4650
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4651
	flush_delayed_work(&dev_priv->mm.idle_work);
4652

4653 4654 4655 4656 4657
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4658
	return 0;
4659 4660 4661 4662

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4663 4664
}

4665
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4666
{
4667
	struct intel_engine_cs *ring = req->ring;
4668
	struct drm_device *dev = ring->dev;
4669
	struct drm_i915_private *dev_priv = dev->dev_private;
4670
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4671
	int i, ret;
B
Ben Widawsky 已提交
4672

4673
	if (!HAS_L3_DPF(dev) || !remap_info)
4674
		return 0;
B
Ben Widawsky 已提交
4675

4676
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4677 4678
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4679

4680 4681 4682 4683 4684
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4685
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4686
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4687
		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4688
		intel_ring_emit(ring, remap_info[i]);
B
Ben Widawsky 已提交
4689 4690
	}

4691
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4692

4693
	return ret;
B
Ben Widawsky 已提交
4694 4695
}

4696 4697
void i915_gem_init_swizzling(struct drm_device *dev)
{
4698
	struct drm_i915_private *dev_priv = dev->dev_private;
4699

4700
	if (INTEL_INFO(dev)->gen < 5 ||
4701 4702 4703 4704 4705 4706
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4707 4708 4709
	if (IS_GEN5(dev))
		return;

4710 4711
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4712
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4713
	else if (IS_GEN7(dev))
4714
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4715 4716
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4717 4718
	else
		BUG();
4719
}
D
Daniel Vetter 已提交
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4748
int i915_gem_init_rings(struct drm_device *dev)
4749
{
4750
	struct drm_i915_private *dev_priv = dev->dev_private;
4751
	int ret;
4752

4753
	ret = intel_init_render_ring_buffer(dev);
4754
	if (ret)
4755
		return ret;
4756 4757

	if (HAS_BSD(dev)) {
4758
		ret = intel_init_bsd_ring_buffer(dev);
4759 4760
		if (ret)
			goto cleanup_render_ring;
4761
	}
4762

4763
	if (HAS_BLT(dev)) {
4764 4765 4766 4767 4768
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4769 4770 4771 4772 4773 4774
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4775 4776 4777 4778 4779
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4780

4781 4782
	return 0;

B
Ben Widawsky 已提交
4783 4784
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4798
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4799
	struct intel_engine_cs *ring;
4800
	int ret, i, j;
4801 4802 4803 4804

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4805 4806 4807
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4808
	if (dev_priv->ellc_size)
4809
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4810

4811 4812 4813
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4814

4815
	if (HAS_PCH_NOP(dev)) {
4816 4817 4818 4819 4820 4821 4822 4823 4824
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4825 4826
	}

4827 4828
	i915_gem_init_swizzling(dev);

4829 4830 4831 4832 4833 4834 4835 4836
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4837 4838
	BUG_ON(!dev_priv->ring[RCS].default_context);

4839 4840 4841 4842 4843 4844 4845
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
4846 4847 4848
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4849
			goto out;
D
Daniel Vetter 已提交
4850
	}
4851

4852
	/* We can't enable contexts until all firmware is loaded */
4853 4854 4855
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4856 4857 4858
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4859
		}
4860 4861
	}

4862 4863 4864 4865 4866 4867 4868 4869
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4870 4871
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
4872 4873
		struct drm_i915_gem_request *req;

4874 4875
		WARN_ON(!ring->default_context);

4876 4877 4878 4879 4880 4881
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

4882 4883
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4884
				i915_gem_l3_remap(req, j);
4885
		}
4886

4887
		ret = i915_ppgtt_init_ring(req);
4888 4889
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4890
			i915_gem_request_cancel(req);
4891 4892 4893
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4894

4895
		ret = i915_gem_context_enable(req);
4896 4897
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4898
			i915_gem_request_cancel(req);
4899 4900 4901
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
4902

4903
		i915_add_request_no_flush(req);
4904
	}
D
Daniel Vetter 已提交
4905

4906 4907
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4908
	return ret;
4909 4910
}

4911 4912 4913 4914 4915
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4916 4917 4918
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4919
	mutex_lock(&dev->struct_mutex);
4920

4921
	if (!i915.enable_execlists) {
4922
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4923 4924 4925
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4926
	} else {
4927
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4928 4929 4930
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4931 4932
	}

4933 4934 4935 4936 4937 4938 4939 4940
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4941
	ret = i915_gem_init_userptr(dev);
4942 4943
	if (ret)
		goto out_unlock;
4944

4945
	i915_gem_init_global_gtt(dev);
4946

4947
	ret = i915_gem_context_init(dev);
4948 4949
	if (ret)
		goto out_unlock;
4950

D
Daniel Vetter 已提交
4951 4952
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4953
		goto out_unlock;
4954

4955
	ret = i915_gem_init_hw(dev);
4956 4957 4958 4959 4960 4961
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4962
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4963
		ret = 0;
4964
	}
4965 4966

out_unlock:
4967
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4968
	mutex_unlock(&dev->struct_mutex);
4969

4970
	return ret;
4971 4972
}

4973 4974 4975
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4976
	struct drm_i915_private *dev_priv = dev->dev_private;
4977
	struct intel_engine_cs *ring;
4978
	int i;
4979

4980
	for_each_ring(ring, dev_priv, i)
4981
		dev_priv->gt.cleanup_ring(ring);
4982 4983 4984 4985 4986 4987 4988 4989

    if (i915.enable_execlists)
            /*
             * Neither the BIOS, ourselves or any other kernel
             * expects the system to be in execlists mode on startup,
             * so we need to reset the GPU back to legacy mode.
             */
            intel_gpu_reset(dev);
4990 4991
}

4992
static void
4993
init_ring_lists(struct intel_engine_cs *ring)
4994 4995 4996 4997 4998
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4999 5000 5001
void
i915_gem_load(struct drm_device *dev)
{
5002
	struct drm_i915_private *dev_priv = dev->dev_private;
5003 5004
	int i;

5005
	dev_priv->objects =
5006 5007 5008 5009
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5010 5011 5012 5013 5014
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5015 5016 5017 5018 5019
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5020

B
Ben Widawsky 已提交
5021
	INIT_LIST_HEAD(&dev_priv->vm_list);
5022
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5023 5024
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5025
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5026 5027
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5028
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5029
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5030 5031
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5032 5033
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5034
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5035

5036 5037
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5038
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5039 5040
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5041 5042 5043 5044
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5045 5046 5047 5048
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5049 5050 5051 5052 5053 5054 5055 5056
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5057
	/* Initialize fence registers to zero */
5058 5059
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5060

5061
	i915_gem_detect_bit_6_swizzle(dev);
5062
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5063

5064 5065
	dev_priv->mm.interruptible = true;

5066
	i915_gem_shrinker_init(dev_priv);
5067 5068

	mutex_init(&dev_priv->fb_tracking.lock);
5069
}
5070

5071
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5072
{
5073
	struct drm_i915_file_private *file_priv = file->driver_priv;
5074 5075 5076 5077 5078

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5079
	spin_lock(&file_priv->mm.lock);
5080 5081 5082 5083 5084 5085 5086 5087 5088
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5089
	spin_unlock(&file_priv->mm.lock);
5090

5091
	if (!list_empty(&file_priv->rps.link)) {
5092
		spin_lock(&to_i915(dev)->rps.client_lock);
5093
		list_del(&file_priv->rps.link);
5094
		spin_unlock(&to_i915(dev)->rps.client_lock);
5095
	}
5096 5097 5098 5099 5100
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5101
	int ret;
5102 5103 5104 5105 5106 5107 5108 5109 5110

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5111
	file_priv->file = file;
5112
	INIT_LIST_HEAD(&file_priv->rps.link);
5113 5114 5115 5116

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5117 5118 5119
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5120

5121
	return ret;
5122 5123
}

5124 5125
/**
 * i915_gem_track_fb - update frontbuffer tracking
5126 5127 5128
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5129 5130 5131 5132
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5150
/* All the new VM stuff */
5151 5152
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5153 5154 5155 5156
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5157
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5158 5159

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5160 5161 5162 5163
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5164 5165
			return vma->node.start;
	}
5166

5167 5168
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5169 5170 5171
	return -1;
}

5172 5173
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5174
{
5175
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5176 5177 5178
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5179 5180
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5181 5182
			return vma->node.start;

5183
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5204
				  const struct i915_ggtt_view *view)
5205 5206 5207 5208 5209 5210
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5211
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5212
		    drm_mm_node_allocated(&vma->node))
5213 5214 5215 5216 5217 5218 5219
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5220
	struct i915_vma *vma;
5221

5222 5223
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5235
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5236 5237 5238

	BUG_ON(list_empty(&o->vma_list));

5239 5240 5241 5242
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5243 5244
		if (vma->vm == vm)
			return vma->node.size;
5245
	}
5246 5247 5248
	return 0;
}

5249
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5250 5251
{
	struct i915_vma *vma;
5252
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5253 5254
		if (vma->pin_count > 0)
			return true;
5255

5256
	return false;
5257
}
5258

5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
	if (WARN_ON(obj->ops != &i915_gem_object_ops))
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5299
	obj->dirty = 1;		/* Backing store is now out of date */
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}