i915_gem.c 128.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247
	if (ret) {
248 249 250
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
251
		return ret;
252
	}
253

254 255 256 257
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

258
	args->handle = handle;
259 260 261
	return 0;
}

262 263 264 265 266 267
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
268
	char *vaddr;
269
	int ret;
270 271

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272
	ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 274
	kunmap_atomic(vaddr, KM_USER0);

275
	return ret;
276 277
}

278 279 280
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
281
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
282 283 284 285 286

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

287
static inline void
288 289 290 291 292 293 294 295
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

296 297
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
298 299 300

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

301 302
	kunmap(src_page);
	kunmap(dst_page);
303 304
}

305
static inline void
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

325 326
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

350 351
	kunmap(cpu_page);
	kunmap(gpu_page);
352 353
}

354 355 356 357 358 359 360 361 362 363
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
364
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 366 367 368 369 370 371 372
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

373
	obj_priv = to_intel_bo(obj);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

389 390 391 392
		if (fast_shmem_read(obj_priv->pages,
				    page_base, page_offset,
				    user_data, page_length))
			return -EFAULT;
393 394 395 396 397 398

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

399
	return 0;
400 401
}

402 403 404 405 406
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

407
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
408 409 410 411 412 413 414

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

415 416
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
417 418 419
		if (ret)
			return ret;

420
		ret = i915_gem_object_get_pages(obj, 0);
421 422 423 424 425
	}

	return ret;
}

426 427 428 429 430 431 432 433 434 435 436
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
437
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 439 440 441 442 443 444 445 446 447
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
448
	int do_bit17_swizzling;
449 450 451 452 453 454 455 456 457 458 459

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

460
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 462 463
	if (user_pages == NULL)
		return -ENOMEM;

464
	mutex_unlock(&dev->struct_mutex);
465 466
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467
				      num_pages, 1, 0, user_pages, NULL);
468
	up_read(&mm->mmap_sem);
469
	mutex_lock(&dev->struct_mutex);
470 471
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
472
		goto out;
473 474
	}

475 476 477
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
478
	if (ret)
479
		goto out;
480

481
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
482

483
	obj_priv = to_intel_bo(obj);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

506
		if (do_bit17_swizzling) {
507
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508
					      shmem_page_offset,
509 510 511 512 513 514 515 516 517 518
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
519
		}
520 521 522 523 524 525

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

526
out:
527 528 529 530
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
531
	drm_free_large(user_pages);
532 533 534 535

	return ret;
}

536 537 538 539 540 541 542 543 544 545 546 547
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
548
	int ret = 0;
549

550
	ret = i915_mutex_lock_interruptible(dev);
551
	if (ret)
552
		return ret;
553 554 555 556 557

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
558
	}
559
	obj_priv = to_intel_bo(obj);
560

561 562
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
563
		ret = -EINVAL;
564
		goto out;
C
Chris Wilson 已提交
565 566
	}

567 568 569
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
570 571 572 573
	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
574
		goto out;
575 576
	}

577 578 579 580 581 582 583
	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

584 585 586 587 588 589 590 591 592 593 594 595
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
		goto out;

	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
		goto out_put;

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
596
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 598
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
599

600 601
out_put:
	i915_gem_object_put_pages(obj);
602
out:
603
	drm_gem_object_unreference(obj);
604
unlock:
605
	mutex_unlock(&dev->struct_mutex);
606
	return ret;
607 608
}

609 610
/* This is the fast write path which cannot handle
 * page faults in the source data
611
 */
612 613 614 615 616 617

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
618 619
{
	char *vaddr_atomic;
620
	unsigned long unwritten;
621

622
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
623 624
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
625
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
626
	return unwritten;
627 628 629 630 631 632
}

/* Here's the write path which can sleep for
 * page faults
 */

633
static inline void
634 635 636 637
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
638
{
639 640
	char __iomem *dst_vaddr;
	char *src_vaddr;
641

642 643 644 645 646 647 648 649 650
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
651 652
}

653 654 655 656 657 658
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
659
	char *vaddr;
660
	int ret;
661 662

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
663
	ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 665
	kunmap_atomic(vaddr, KM_USER0);

666
	return ret;
667 668
}

669 670 671 672
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
673
static int
674 675 676
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
677
{
678
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679
	drm_i915_private_t *dev_priv = dev->dev_private;
680
	ssize_t remain;
681
	loff_t offset, page_base;
682
	char __user *user_data;
683
	int page_offset, page_length;
684 685 686 687

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

688
	obj_priv = to_intel_bo(obj);
689 690 691 692 693
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
694 695 696
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
697
		 */
698 699 700 701 702 703 704
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
705 706
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
707
		 */
708 709 710 711
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
712

713 714 715
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
716 717
	}

718
	return 0;
719 720
}

721 722 723 724 725 726 727
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
728
static int
729 730 731
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
732
{
733
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 735 736 737 738 739 740 741
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
742
	int ret;
743 744 745 746 747 748 749 750 751 752 753 754
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

755
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 757 758
	if (user_pages == NULL)
		return -ENOMEM;

759
	mutex_unlock(&dev->struct_mutex);
760 761 762 763
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
764
	mutex_lock(&dev->struct_mutex);
765 766 767 768
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
769

770 771
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
772
		goto out_unpin_pages;
773

774
	obj_priv = to_intel_bo(obj);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

797 798 799 800 801
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
802 803 804 805 806 807 808 809 810

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
811
	drm_free_large(user_pages);
812 813 814 815

	return ret;
}

816 817 818 819
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
820
static int
821 822 823
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
824
{
825
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 827 828 829 830 831 832
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
833

834
	obj_priv = to_intel_bo(obj);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

851
		if (fast_shmem_write(obj_priv->pages,
852
				       page_base, page_offset,
853 854
				       user_data, page_length))
			return -EFAULT;
855 856 857 858 859 860

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

861
	return 0;
862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
876
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 878 879 880 881 882 883 884 885 886
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
887
	int do_bit17_swizzling;
888 889 890 891 892 893 894 895 896 897 898

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

899
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 901 902
	if (user_pages == NULL)
		return -ENOMEM;

903
	mutex_unlock(&dev->struct_mutex);
904 905 906 907
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
908
	mutex_lock(&dev->struct_mutex);
909 910
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
911
		goto out;
912 913
	}

914
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915
	if (ret)
916
		goto out;
917

918
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
919

920
	obj_priv = to_intel_bo(obj);
921
	offset = args->offset;
922
	obj_priv->dirty = 1;
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

944
		if (do_bit17_swizzling) {
945
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 947 948
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
949 950 951 952 953 954 955 956
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
957
		}
958 959 960 961

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
962 963
	}

964
out:
965 966
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
967
	drm_free_large(user_pages);
968

969
	return ret;
970 971 972 973 974 975 976 977 978
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979
		      struct drm_file *file)
980 981 982 983 984 985
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

986
	ret = i915_mutex_lock_interruptible(dev);
987
	if (ret)
988
		return ret;
989 990 991 992 993

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
994
	}
995 996
	obj_priv = to_intel_bo(obj);

997

998 999
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1000
		ret = -EINVAL;
1001
		goto out;
C
Chris Wilson 已提交
1002 1003
	}

1004 1005 1006
	if (args->size == 0)
		goto out;

C
Chris Wilson 已提交
1007 1008 1009 1010
	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size)) {
		ret = -EFAULT;
1011
		goto out;
1012 1013
	}

1014 1015 1016 1017 1018 1019 1020
	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret) {
		ret = -EFAULT;
		goto out;
	}

1021 1022 1023 1024 1025 1026
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1027
	if (obj_priv->phys_obj)
1028
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030
		 obj_priv->gtt_space &&
1031
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		ret = i915_gem_object_pin(obj, 0);
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1046
	} else {
1047 1048 1049
		ret = i915_gem_object_get_pages_or_evict(obj);
		if (ret)
			goto out;
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			goto out_put;

		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);

out_put:
		i915_gem_object_put_pages(obj);
	}
1064

1065
out:
1066
	drm_gem_object_unreference(obj);
1067
unlock:
1068
	mutex_unlock(&dev->struct_mutex);
1069 1070 1071 1072
	return ret;
}

/**
1073 1074
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1075 1076 1077 1078 1079
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1080
	struct drm_i915_private *dev_priv = dev->dev_private;
1081 1082
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1083
	struct drm_i915_gem_object *obj_priv;
1084 1085
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1086 1087 1088 1089 1090
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1091
	/* Only handle setting domains to types used by the CPU. */
1092
	if (write_domain & I915_GEM_GPU_DOMAINS)
1093 1094
		return -EINVAL;

1095
	if (read_domains & I915_GEM_GPU_DOMAINS)
1096 1097 1098 1099 1100 1101 1102 1103
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1104
	ret = i915_mutex_lock_interruptible(dev);
1105
	if (ret)
1106
		return ret;
1107 1108 1109 1110 1111

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1112
	}
1113
	obj_priv = to_intel_bo(obj);
1114 1115 1116

	intel_mark_busy(dev, obj);

1117 1118
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1119

1120 1121 1122 1123
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 1125 1126
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1127 1128 1129
				       &dev_priv->mm.fence_list);
		}

1130 1131 1132 1133 1134 1135
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1136
	} else {
1137
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1138 1139
	}

1140 1141
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1143

1144
	drm_gem_object_unreference(obj);
1145
unlock:
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1164
	ret = i915_mutex_lock_interruptible(dev);
1165
	if (ret)
1166
		return ret;
1167 1168 1169 1170 1171

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1172 1173 1174
	}

	/* Pinned buffers may be scanout, so flush the cache */
1175
	if (to_intel_bo(obj)->pin_count)
1176 1177
		i915_gem_object_flush_cpu_write_domain(obj);

1178
	drm_gem_object_unreference(obj);
1179
unlock:
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1205
		return -ENOENT;
1206 1207 1208 1209 1210 1211 1212 1213

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1214
	drm_gem_object_unreference_unlocked(obj);
1215 1216 1217 1218 1219 1220 1221 1222
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1243
	drm_i915_private_t *dev_priv = dev->dev_private;
1244
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 1246 1247
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1248
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1249 1250 1251 1252 1253 1254 1255 1256

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1257
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 1259
		if (ret)
			goto unlock;
1260 1261

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 1263
		if (ret)
			goto unlock;
1264 1265 1266
	}

	/* Need a new fence register? */
1267
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268
		ret = i915_gem_object_get_fence_reg(obj, true);
1269 1270
		if (ret)
			goto unlock;
1271
	}
1272

1273
	if (i915_gem_object_is_inactive(obj_priv))
1274
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1275

1276 1277 1278 1279 1280
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281
unlock:
1282 1283 1284
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1285 1286 1287
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1288 1289 1290 1291
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1292
		return VM_FAULT_SIGBUS;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1312
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313
	struct drm_map_list *list;
1314
	struct drm_local_map *map;
1315 1316 1317 1318
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1319
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333
		ret = -ENOSPC;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1345 1346
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1360
	kfree(list->map);
1361 1362 1363 1364

	return ret;
}

1365 1366 1367 1368
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1369
 * Preserve the reservation of the mmapping with the DRM core code, but
1370 1371 1372 1373 1374 1375 1376 1377 1378
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1379
void
1380 1381 1382
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1383
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1384 1385 1386 1387 1388 1389

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1390 1391 1392 1393
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1394
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1407
		kfree(list->map);
1408 1409 1410 1411 1412 1413
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1425
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 1427 1428 1429 1430 1431
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1432
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 1434 1435 1436 1437 1438
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1439
	if (INTEL_INFO(dev)->gen == 3)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1477
	ret = i915_mutex_lock_interruptible(dev);
1478
	if (ret)
1479
		return ret;
1480

1481 1482 1483 1484 1485
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1486
	obj_priv = to_intel_bo(obj);
1487

1488 1489
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 1491
		ret = -EINVAL;
		goto out;
1492 1493
	}

1494 1495
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1496 1497
		if (ret)
			goto out;
1498 1499 1500 1501 1502 1503 1504 1505 1506
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1507
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 1509
		if (ret)
			goto out;
1510 1511
	}

1512
out:
1513
	drm_gem_object_unreference(obj);
1514
unlock:
1515
	mutex_unlock(&dev->struct_mutex);
1516
	return ret;
1517 1518
}

1519
static void
1520
i915_gem_object_put_pages(struct drm_gem_object *obj)
1521
{
1522
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 1524 1525
	int page_count = obj->size / PAGE_SIZE;
	int i;

1526
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1527
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1528

1529 1530
	if (--obj_priv->pages_refcount != 0)
		return;
1531

1532 1533 1534
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1535
	if (obj_priv->madv == I915_MADV_DONTNEED)
1536
		obj_priv->dirty = 0;
1537 1538 1539 1540 1541 1542

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1543
			mark_page_accessed(obj_priv->pages[i]);
1544 1545 1546

		page_cache_release(obj_priv->pages[i]);
	}
1547 1548
	obj_priv->dirty = 0;

1549
	drm_free_large(obj_priv->pages);
1550
	obj_priv->pages = NULL;
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1563
static void
1564
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565
			       struct intel_ring_buffer *ring)
1566
{
1567
	struct drm_device *dev = obj->dev;
1568
	struct drm_i915_private *dev_priv = dev->dev_private;
1569
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1570
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1571

1572 1573
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1574 1575 1576 1577 1578 1579

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1580

1581
	/* Move from whatever list we were on to the tail of execution. */
1582 1583
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1584
	obj_priv->last_rendering_seqno = seqno;
1585 1586
}

1587 1588 1589 1590 1591
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1592
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1593 1594

	BUG_ON(!obj_priv->active);
1595 1596
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1597 1598
	obj_priv->last_rendering_seqno = 0;
}
1599

1600 1601 1602 1603
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1604
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1605
	struct inode *inode;
1606

1607 1608 1609 1610 1611 1612
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1613
	inode = obj->filp->f_path.dentry->d_inode;
1614 1615 1616
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1617 1618

	obj_priv->madv = __I915_MADV_PURGED;
1619 1620 1621 1622 1623 1624 1625 1626
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1627 1628 1629 1630 1631
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1632
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1633 1634

	if (obj_priv->pin_count != 0)
1635
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1636
	else
1637 1638
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1639

1640 1641
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1642
	obj_priv->last_rendering_seqno = 0;
1643
	obj_priv->ring = NULL;
1644 1645 1646 1647
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1648
	WARN_ON(i915_verify_lists(dev));
1649 1650
}

1651
static void
1652
i915_gem_process_flushing_list(struct drm_device *dev,
1653
			       uint32_t flush_domains,
1654
			       struct intel_ring_buffer *ring)
1655 1656 1657 1658 1659 1660 1661
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1662
		struct drm_gem_object *obj = &obj_priv->base;
1663

1664 1665
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1666 1667 1668 1669
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1670
			i915_gem_object_move_to_active(obj, ring);
1671 1672

			/* update the fence lru list */
1673 1674 1675 1676
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1677
						&dev_priv->mm.fence_list);
1678
			}
1679 1680 1681 1682 1683 1684 1685

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1686

1687
uint32_t
1688
i915_add_request(struct drm_device *dev,
1689
		 struct drm_file *file,
C
Chris Wilson 已提交
1690
		 struct drm_i915_gem_request *request,
1691
		 struct intel_ring_buffer *ring)
1692 1693
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1694
	struct drm_i915_file_private *file_priv = NULL;
1695 1696 1697
	uint32_t seqno;
	int was_empty;

1698 1699
	if (file != NULL)
		file_priv = file->driver_priv;
1700

C
Chris Wilson 已提交
1701 1702 1703 1704 1705
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1706

1707
	seqno = ring->add_request(dev, ring, 0);
1708
	ring->outstanding_lazy_request = false;
1709 1710

	request->seqno = seqno;
1711
	request->ring = ring;
1712
	request->emitted_jiffies = jiffies;
1713 1714 1715
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1716
	if (file_priv) {
1717
		spin_lock(&file_priv->mm.lock);
1718
		request->file_priv = file_priv;
1719
		list_add_tail(&request->client_list,
1720
			      &file_priv->mm.request_list);
1721
		spin_unlock(&file_priv->mm.lock);
1722
	}
1723

B
Ben Gamari 已提交
1724
	if (!dev_priv->mm.suspended) {
1725 1726
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1727
		if (was_empty)
1728 1729
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1730
	}
1731 1732 1733 1734 1735 1736 1737 1738 1739
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1740
static void
1741
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1742 1743 1744 1745
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1746
	if (INTEL_INFO(dev)->gen >= 4)
1747
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1748 1749 1750

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1751 1752
}

1753 1754
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1755
{
1756 1757 1758 1759 1760 1761 1762 1763 1764
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1765 1766
}

1767 1768
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1769
{
1770 1771
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1772

1773 1774 1775 1776 1777
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1778
		i915_gem_request_remove_from_client(request);
1779 1780 1781 1782
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1783 1784
		struct drm_i915_gem_object *obj_priv;

1785
		obj_priv = list_first_entry(&ring->active_list,
1786
					    struct drm_i915_gem_object,
1787
					    ring_list);
1788 1789

		obj_priv->base.write_domain = 0;
1790
		list_del_init(&obj_priv->gpu_write_list);
1791 1792 1793 1794
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1795
void i915_gem_reset(struct drm_device *dev)
1796 1797 1798
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1799
	int i;
1800

1801
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1802
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1803 1804 1805 1806 1807 1808 1809 1810

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1811
					    mm_list);
1812 1813 1814 1815 1816 1817 1818 1819 1820

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1821 1822
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1823
			    mm_list)
1824 1825 1826
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1838 1839
}

1840 1841 1842
/**
 * This function clears the request list as sequence numbers are passed.
 */
1843 1844 1845
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1846 1847 1848 1849
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1850 1851
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1852 1853
		return;

1854 1855
	WARN_ON(i915_verify_lists(dev));

1856
	seqno = ring->get_seqno(dev, ring);
1857
	while (!list_empty(&ring->request_list)) {
1858 1859
		struct drm_i915_gem_request *request;

1860
		request = list_first_entry(&ring->request_list,
1861 1862 1863
					   struct drm_i915_gem_request,
					   list);

1864
		if (!i915_seqno_passed(seqno, request->seqno))
1865 1866 1867 1868 1869
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1870
		i915_gem_request_remove_from_client(request);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
1883
					    ring_list);
1884

1885
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1886
			break;
1887 1888 1889 1890 1891 1892

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1893
	}
1894 1895 1896

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1897
		ring->user_irq_put(dev, ring);
1898 1899
		dev_priv->trace_irq_seqno = 0;
	}
1900 1901

	WARN_ON(i915_verify_lists(dev));
1902 1903
}

1904 1905 1906 1907 1908
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
1919
				     mm_list)
1920 1921 1922
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1923
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1924
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1925 1926
}

1927
static void
1928 1929 1930 1931 1932 1933 1934 1935 1936
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1937 1938 1939 1940 1941 1942
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1943
	i915_gem_retire_requests(dev);
1944

1945
	if (!dev_priv->mm.suspended &&
1946
		(!list_empty(&dev_priv->render_ring.request_list) ||
1947
		 !list_empty(&dev_priv->bsd_ring.request_list)))
1948
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1949 1950 1951
	mutex_unlock(&dev->struct_mutex);
}

1952
int
1953
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1954
		     bool interruptible, struct intel_ring_buffer *ring)
1955 1956
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1957
	u32 ier;
1958 1959 1960 1961
	int ret = 0;

	BUG_ON(seqno == 0);

1962 1963 1964
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

1965
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
1966
		seqno = i915_add_request(dev, NULL, NULL, ring);
1967 1968 1969
		if (seqno == 0)
			return -ENOMEM;
	}
1970
	BUG_ON(seqno == dev_priv->next_seqno);
1971

1972
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1973
		if (HAS_PCH_SPLIT(dev))
1974 1975 1976
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1977 1978 1979 1980 1981 1982 1983
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1984 1985
		trace_i915_gem_request_wait_begin(dev, seqno);

1986
		ring->waiting_gem_seqno = seqno;
1987
		ring->user_irq_get(dev, ring);
1988
		if (interruptible)
1989 1990
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
1991
					ring->get_seqno(dev, ring), seqno)
1992
				|| atomic_read(&dev_priv->mm.wedged));
1993
		else
1994 1995
			wait_event(ring->irq_queue,
				i915_seqno_passed(
1996
					ring->get_seqno(dev, ring), seqno)
1997
				|| atomic_read(&dev_priv->mm.wedged));
1998

1999
		ring->user_irq_put(dev, ring);
2000
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
2001 2002

		trace_i915_gem_request_wait_end(dev, seqno);
2003
	}
2004
	if (atomic_read(&dev_priv->mm.wedged))
2005
		ret = -EAGAIN;
2006 2007

	if (ret && ret != -ERESTARTSYS)
2008
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2009
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2010
			  dev_priv->next_seqno);
2011 2012 2013 2014 2015 2016 2017

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2018
		i915_gem_retire_requests_ring(dev, ring);
2019 2020 2021 2022

	return ret;
}

2023 2024 2025 2026 2027
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2028
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2029
		  struct intel_ring_buffer *ring)
2030
{
2031
	return i915_do_wait_request(dev, seqno, 1, ring);
2032 2033
}

2034
static void
2035
i915_gem_flush_ring(struct drm_device *dev,
2036
		    struct drm_file *file_priv,
2037 2038 2039 2040 2041 2042 2043 2044
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2045 2046
static void
i915_gem_flush(struct drm_device *dev,
2047
	       struct drm_file *file_priv,
2048
	       uint32_t invalidate_domains,
2049 2050
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2051 2052
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2053

2054 2055
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2056

2057 2058
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2059
			i915_gem_flush_ring(dev, file_priv,
2060 2061 2062
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2063
			i915_gem_flush_ring(dev, file_priv,
2064 2065 2066
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2067 2068
}

2069 2070 2071 2072 2073
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2074 2075
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2076 2077
{
	struct drm_device *dev = obj->dev;
2078
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2079 2080
	int ret;

2081 2082
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2083
	 */
2084
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2085 2086 2087 2088 2089

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2090 2091 2092 2093 2094
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2095 2096 2097 2098 2099 2100 2101 2102 2103
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2104
int
2105 2106 2107
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2108
	struct drm_i915_private *dev_priv = dev->dev_private;
2109
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2120 2121 2122
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2123 2124 2125 2126 2127 2128
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2129
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2130
	if (ret == -ERESTARTSYS)
2131
		return ret;
2132 2133 2134 2135
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2136 2137 2138 2139
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2140

2141 2142 2143 2144
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2145 2146
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2147

2148
	i915_gem_object_put_pages(obj);
2149
	BUG_ON(obj_priv->pages_refcount);
2150

2151
	i915_gem_info_remove_gtt(dev_priv, obj->size);
2152
	list_del_init(&obj_priv->mm_list);
2153

2154 2155
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2156
	obj_priv->gtt_offset = 0;
2157

2158 2159 2160
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2161 2162
	trace_i915_gem_object_unbind(obj);

2163
	return ret;
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2176
int
2177 2178 2179 2180
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2181
	int ret;
2182

2183 2184
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
2185
		       list_empty(&dev_priv->bsd_ring.active_list));
2186 2187 2188 2189
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2190
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2191 2192
	if (ret)
		return ret;
2193

2194 2195 2196
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2197

2198
	return 0;
2199 2200
}

2201
static int
2202 2203
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2204
{
2205
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2206 2207 2208 2209 2210
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2211 2212 2213
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2214
	if (obj_priv->pages_refcount++ != 0)
2215 2216 2217 2218 2219 2220
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2221
	BUG_ON(obj_priv->pages != NULL);
2222
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2223 2224
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2225 2226 2227 2228 2229 2230
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2231
		page = read_cache_page_gfp(mapping, i,
2232
					   GFP_HIGHUSER |
2233
					   __GFP_COLD |
2234
					   __GFP_RECLAIMABLE |
2235
					   gfpmask);
2236 2237 2238
		if (IS_ERR(page))
			goto err_pages;

2239
		obj_priv->pages[i] = page;
2240
	}
2241 2242 2243 2244

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2245
	return 0;
2246 2247 2248 2249 2250 2251 2252 2253 2254

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2255 2256
}

2257 2258 2259 2260 2261
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2262
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2279 2280 2281 2282 2283
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2284
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2304
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2305
	int regnum = obj_priv->fence_reg;
2306
	int tile_width;
2307
	uint32_t fence_reg, val;
2308 2309 2310 2311
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2312
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2313
		     __func__, obj_priv->gtt_offset, obj->size);
2314 2315 2316
		return;
	}

2317 2318 2319
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2320
	else
2321 2322 2323 2324 2325
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2326

2327 2328 2329 2330 2331 2332
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2333 2334 2335 2336 2337 2338 2339
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2340 2341 2342 2343 2344
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2345 2346 2347 2348 2349 2350 2351
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2352
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2353 2354 2355
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2356
	uint32_t fence_size_bits;
2357

2358
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2359
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2360
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2361
		     __func__, obj_priv->gtt_offset);
2362 2363 2364
		return;
	}

2365 2366 2367 2368
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2369 2370 2371
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2372 2373 2374
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2375 2376 2377 2378 2379 2380
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2381 2382
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2397
		obj_priv = to_intel_bo(reg->obj);
2398 2399 2400 2401 2402 2403 2404 2405 2406
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2407 2408 2409 2410
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2427
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2428 2429 2430 2431 2432 2433 2434
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2448
int
2449 2450
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2451 2452
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2453
	struct drm_i915_private *dev_priv = dev->dev_private;
2454
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2455
	struct drm_i915_fence_reg *reg = NULL;
2456
	int ret;
2457

2458 2459
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2460 2461
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2462 2463 2464
		return 0;
	}

2465 2466 2467 2468 2469
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2470 2471 2472 2473 2474
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2475 2476
		break;
	case I915_TILING_Y:
2477 2478 2479 2480 2481
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2482 2483 2484
		break;
	}

2485
	ret = i915_find_fence_reg(dev, interruptible);
2486 2487
	if (ret < 0)
		return ret;
2488

2489 2490
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2491
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2492

2493 2494
	reg->obj = obj;

2495 2496
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2497
		sandybridge_write_fence_reg(reg);
2498 2499 2500
		break;
	case 5:
	case 4:
2501
		i965_write_fence_reg(reg);
2502 2503
		break;
	case 3:
2504
		i915_write_fence_reg(reg);
2505 2506
		break;
	case 2:
2507
		i830_write_fence_reg(reg);
2508 2509
		break;
	}
2510

2511 2512
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2513

2514
	return 0;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2528
	drm_i915_private_t *dev_priv = dev->dev_private;
2529
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2530 2531
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2532
	uint32_t fence_reg;
2533

2534 2535
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2536 2537
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2538 2539 2540
		break;
	case 5:
	case 4:
2541
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2542 2543
		break;
	case 3:
2544
		if (obj_priv->fence_reg >= 8)
2545
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2546
		else
2547 2548
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2549 2550

		I915_WRITE(fence_reg, 0);
2551
		break;
2552
	}
2553

2554
	reg->obj = NULL;
2555
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2556
	list_del_init(&reg->lru_list);
2557 2558
}

2559 2560 2561 2562
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2563
 * @bool: whether the wait upon the fence is interruptible
2564 2565 2566 2567 2568
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2569 2570
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2571 2572
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2573
	struct drm_i915_private *dev_priv = dev->dev_private;
2574
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2575
	struct drm_i915_fence_reg *reg;
2576 2577 2578 2579

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2580 2581 2582 2583 2584 2585
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2586 2587 2588 2589
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2590 2591
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2592 2593
		int ret;

2594
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2595 2596 2597
		if (ret)
			return ret;

2598
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2599
		if (ret)
2600
			return ret;
C
Chris Wilson 已提交
2601 2602

		reg->gpu = false;
2603 2604
	}

2605
	i915_gem_object_flush_gtt_write_domain(obj);
2606
	i915_gem_clear_fence_reg(obj);
2607 2608 2609 2610

	return 0;
}

2611 2612 2613 2614 2615 2616 2617 2618
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2619
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2620
	struct drm_mm_node *free_space;
2621
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2622
	int ret;
2623

C
Chris Wilson 已提交
2624
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2625 2626 2627 2628
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2629
	if (alignment == 0)
2630
		alignment = i915_gem_get_gtt_alignment(obj);
2631
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2632 2633 2634 2635
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2636 2637 2638
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2639
	if (obj->size > dev_priv->mm.gtt_total) {
2640 2641 2642 2643
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2644 2645 2646
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
2647
	if (free_space != NULL)
2648 2649 2650 2651 2652 2653
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2654
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2655
		if (ret)
2656
			return ret;
2657

2658 2659 2660
		goto search_free;
	}

2661
	ret = i915_gem_object_get_pages(obj, gfpmask);
2662 2663 2664
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2665 2666 2667

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2668 2669
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2670 2671
			if (ret) {
				/* now try to shrink everyone else */
2672 2673 2674
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2675 2676 2677 2678 2679 2680 2681 2682
				}

				return ret;
			}

			goto search_free;
		}

2683 2684 2685 2686 2687 2688 2689
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2690
					       obj_priv->pages,
2691
					       obj->size >> PAGE_SHIFT,
2692
					       obj_priv->gtt_space->start,
2693
					       obj_priv->agp_type);
2694
	if (obj_priv->agp_mem == NULL) {
2695
		i915_gem_object_put_pages(obj);
2696 2697
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2698

2699
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2700
		if (ret)
2701 2702 2703
			return ret;

		goto search_free;
2704 2705
	}

2706
	/* keep track of bounds object by adding it to the inactive list */
2707
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2708
	i915_gem_info_add_gtt(dev_priv, obj->size);
2709

2710 2711 2712 2713
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2714 2715
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2716

2717
	obj_priv->gtt_offset = obj_priv->gtt_space->start;
C
Chris Wilson 已提交
2718 2719
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2720 2721 2722 2723 2724 2725
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2726
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2727 2728 2729 2730 2731

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2732
	if (obj_priv->pages == NULL)
2733 2734
		return;

C
Chris Wilson 已提交
2735
	trace_i915_gem_object_clflush(obj);
2736

2737
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2738 2739
}

2740
/** Flushes any GPU write domain for the object if it's dirty. */
2741
static int
2742 2743
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2744 2745
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2746
	uint32_t old_write_domain;
2747 2748

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2749
		return 0;
2750 2751

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2752
	old_write_domain = obj->write_domain;
2753
	i915_gem_flush_ring(dev, NULL,
2754 2755
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2756
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2757 2758 2759 2760

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2761 2762 2763 2764

	if (pipelined)
		return 0;

2765
	return i915_gem_object_wait_rendering(obj, true);
2766 2767 2768 2769 2770 2771
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2772 2773
	uint32_t old_write_domain;

2774 2775 2776 2777 2778 2779 2780
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2781
	old_write_domain = obj->write_domain;
2782
	obj->write_domain = 0;
C
Chris Wilson 已提交
2783 2784 2785 2786

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2787 2788 2789 2790 2791 2792 2793
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2794
	uint32_t old_write_domain;
2795 2796 2797 2798 2799 2800

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2801
	old_write_domain = obj->write_domain;
2802
	obj->write_domain = 0;
C
Chris Wilson 已提交
2803 2804 2805 2806

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2807 2808
}

2809 2810 2811 2812 2813 2814
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2815
int
2816 2817
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2818
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2819
	uint32_t old_write_domain, old_read_domains;
2820
	int ret;
2821

2822 2823 2824 2825
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2826
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2827 2828 2829
	if (ret != 0)
		return ret;

2830
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2831

2832
	if (write) {
2833
		ret = i915_gem_object_wait_rendering(obj, true);
2834 2835 2836
		if (ret)
			return ret;
	}
2837

2838 2839
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2840

2841 2842 2843 2844 2845 2846
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2847
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2848 2849
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2850 2851
	}

C
Chris Wilson 已提交
2852 2853 2854 2855
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2856 2857 2858
	return 0;
}

2859 2860 2861 2862 2863
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2864 2865
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2866
{
2867
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2868
	uint32_t old_read_domains;
2869 2870 2871 2872 2873 2874
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2875
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2876
	if (ret)
2877
		return ret;
2878

2879 2880 2881 2882 2883 2884 2885
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2886 2887
	i915_gem_object_flush_cpu_write_domain(obj);

2888
	old_read_domains = obj->read_domains;
2889
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2890 2891 2892

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2893
					    obj->write_domain);
2894 2895 2896 2897

	return 0;
}

2898 2899 2900 2901 2902 2903 2904 2905 2906
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2907
	uint32_t old_write_domain, old_read_domains;
2908 2909
	int ret;

2910
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2911 2912
	if (ret != 0)
		return ret;
2913

2914
	i915_gem_object_flush_gtt_write_domain(obj);
2915

2916 2917
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2918
	 */
2919
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2920

2921
	if (write) {
2922
		ret = i915_gem_object_wait_rendering(obj, true);
2923 2924 2925 2926
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2927 2928 2929
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2930 2931
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2932 2933
		i915_gem_clflush_object(obj);

2934
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2935 2936 2937 2938 2939
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2940 2941 2942 2943 2944 2945
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2946
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2947 2948
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2949

C
Chris Wilson 已提交
2950 2951 2952 2953
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2954 2955 2956
	return 0;
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3068
static void
3069
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3070 3071
{
	struct drm_device		*dev = obj->dev;
3072
	struct drm_i915_private		*dev_priv = dev->dev_private;
3073
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3074 3075
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3076
	uint32_t			old_read_domains;
3077

3078 3079
	intel_mark_busy(dev, obj);

3080 3081 3082 3083
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3084 3085
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3086 3087 3088 3089 3090 3091 3092 3093 3094
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3095 3096
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3097
		flush_domains |= obj->write_domain;
3098 3099
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3100 3101 3102 3103 3104
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3105
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3106
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3107 3108
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3109 3110
	old_read_domains = obj->read_domains;

3111 3112 3113 3114 3115 3116 3117 3118
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3119
	obj->read_domains = obj->pending_read_domains;
3120 3121 3122

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3123 3124
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3125 3126 3127 3128

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3129 3130 3131
}

/**
3132
 * Moves the object from a partially CPU read to a full one.
3133
 *
3134 3135
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3136
 */
3137 3138
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3139
{
3140
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3153
			drm_clflush_pages(obj_priv->pages + i, 1);
3154 3155 3156 3157 3158 3159
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3160
	kfree(obj_priv->page_cpu_valid);
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3180
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3181
	uint32_t old_read_domains;
3182
	int i, ret;
3183

3184 3185
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3186

3187
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3188
	if (ret != 0)
3189
		return ret;
3190 3191 3192 3193 3194 3195
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3196

3197 3198 3199
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3200
	if (obj_priv->page_cpu_valid == NULL) {
3201 3202
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3203 3204 3205 3206
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3207 3208 3209 3210

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3211 3212
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3213 3214 3215
		if (obj_priv->page_cpu_valid[i])
			continue;

3216
		drm_clflush_pages(obj_priv->pages + i, 1);
3217 3218 3219 3220

		obj_priv->page_cpu_valid[i] = 1;
	}

3221 3222 3223 3224 3225
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3226
	old_read_domains = obj->read_domains;
3227 3228
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3229 3230 3231 3232
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3233 3234 3235 3236 3237 3238 3239
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
3240 3241 3242
i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
			     struct drm_file *file_priv,
			     struct drm_i915_gem_exec_object2 *entry)
3243
{
3244
	struct drm_device *dev = obj->base.dev;
3245
	drm_i915_private_t *dev_priv = dev->dev_private;
3246
	struct drm_i915_gem_relocation_entry __user *user_relocs;
3247 3248 3249
	struct drm_gem_object *target_obj = NULL;
	uint32_t target_handle = 0;
	int i, ret = 0;
C
Chris Wilson 已提交
3250

3251
	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3252
	for (i = 0; i < entry->relocation_count; i++) {
3253
		struct drm_i915_gem_relocation_entry reloc;
3254 3255 3256 3257 3258 3259 3260
		uint32_t target_offset;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc))) {
			ret = -EFAULT;
			break;
3261 3262
		}

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		if (reloc.target_handle != target_handle) {
			drm_gem_object_unreference(target_obj);

			target_obj = drm_gem_object_lookup(dev, file_priv,
							   reloc.target_handle);
			if (target_obj == NULL) {
				ret = -ENOENT;
				break;
			}

			target_handle = reloc.target_handle;
3274
		}
3275
		target_offset = to_intel_bo(target_obj)->gtt_offset;
3276

3277 3278 3279 3280 3281 3282
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
3283 3284 3285 3286
			 (int) reloc.offset,
			 (int) reloc.target_handle,
			 (int) reloc.read_domains,
			 (int) reloc.write_domain,
3287
			 (int) target_offset,
3288 3289
			 (int) reloc.presumed_offset,
			 reloc.delta);
3290 3291
#endif

3292 3293 3294
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
3295
		if (target_offset == 0) {
3296
			DRM_ERROR("No GTT space found for object %d\n",
3297
				  reloc.target_handle);
3298 3299
			ret = -EINVAL;
			break;
3300 3301
		}

3302
		/* Validate that the target is in a valid r/w GPU domain */
3303
		if (reloc.write_domain & (reloc.write_domain - 1)) {
3304 3305 3306
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3307 3308 3309 3310
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3311 3312
			ret = -EINVAL;
			break;
3313
		}
3314 3315
		if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3316 3317 3318
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3319 3320 3321 3322
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.read_domains,
				  reloc.write_domain);
3323 3324
			ret = -EINVAL;
			break;
3325
		}
3326 3327
		if (reloc.write_domain && target_obj->pending_write_domain &&
		    reloc.write_domain != target_obj->pending_write_domain) {
3328 3329 3330
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3331 3332 3333
				  obj, reloc.target_handle,
				  (int) reloc.offset,
				  reloc.write_domain,
3334
				  target_obj->pending_write_domain);
3335 3336
			ret = -EINVAL;
			break;
3337 3338
		}

3339
		target_obj->pending_read_domains |= reloc.read_domains;
3340
		target_obj->pending_write_domain = reloc.write_domain;
3341 3342 3343 3344

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3345
		if (target_offset == reloc.presumed_offset)
3346 3347
			continue;

3348
		/* Check that the relocation address is valid... */
3349
		if (reloc.offset > obj->base.size - 4) {
3350 3351
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
3352
				  obj, reloc.target_handle,
3353 3354 3355
				  (int) reloc.offset, (int) obj->base.size);
			ret = -EINVAL;
			break;
3356
		}
3357
		if (reloc.offset & 3) {
3358 3359
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
3360 3361
				  obj, reloc.target_handle,
				  (int) reloc.offset);
3362 3363
			ret = -EINVAL;
			break;
3364 3365 3366
		}

		/* and points to somewhere within the target object. */
3367
		if (reloc.delta >= target_obj->size) {
3368 3369
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
3370 3371
				  obj, reloc.target_handle,
				  (int) reloc.delta, (int) target_obj->size);
3372 3373
			ret = -EINVAL;
			break;
3374 3375
		}

3376 3377
		reloc.delta += target_offset;
		if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3378 3379
			uint32_t page_offset = reloc.offset & ~PAGE_MASK;
			char *vaddr;
3380

3381
			vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3382 3383 3384 3385 3386 3387
			*(uint32_t *)(vaddr + page_offset) = reloc.delta;
			kunmap_atomic(vaddr, KM_USER0);
		} else {
			uint32_t __iomem *reloc_entry;
			void __iomem *reloc_page;

3388 3389 3390
			ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
			if (ret)
				break;
3391 3392

			/* Map the page containing the relocation we're going to perform.  */
3393
			reloc.offset += obj->gtt_offset;
3394 3395 3396 3397 3398 3399 3400 3401
			reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
							      reloc.offset & PAGE_MASK,
							      KM_USER0);
			reloc_entry = (uint32_t __iomem *)
				(reloc_page + (reloc.offset & ~PAGE_MASK));
			iowrite32(reloc.delta, reloc_entry);
			io_mapping_unmap_atomic(reloc_page, KM_USER0);
		}
3402 3403 3404 3405 3406 3407 3408 3409 3410

		/* and update the user's relocation entry */
		reloc.presumed_offset = target_offset;
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					      &reloc.presumed_offset,
					      sizeof(reloc.presumed_offset))) {
		    ret = -EFAULT;
		    break;
		}
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	}

	drm_gem_object_unreference(target_obj);
	return ret;
}

static int
i915_gem_execbuffer_pin(struct drm_device *dev,
			struct drm_file *file,
			struct drm_gem_object **object_list,
			struct drm_i915_gem_exec_object2 *exec_list,
			int count)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;

	/* attempt to pin all of the buffers into the GTT */
	for (retry = 0; retry < 2; retry++) {
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
			struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			/* Check fence reg constraints and rebind if necessary */
			if (need_fence &&
			    !i915_gem_object_fence_offset_ok(&obj->base,
							     obj->tiling_mode)) {
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}

			ret = i915_gem_object_pin(&obj->base, entry->alignment);
			if (ret)
				break;

			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}

				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}

			entry->offset = obj->gtt_offset;
		}

		while (i--)
			i915_gem_object_unpin(object_list[i]);

		if (ret == 0)
			break;
3472

3473 3474 3475 3476 3477 3478
		if (ret != -ENOSPC || retry)
			return ret;

		ret = i915_gem_evict_everything(dev);
		if (ret)
			return ret;
3479 3480 3481 3482 3483 3484 3485 3486
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3487 3488 3489 3490
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3491 3492 3493 3494
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3495
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3496
{
3497 3498
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3499
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3500 3501 3502 3503
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3504

3505
	spin_lock(&file_priv->mm.lock);
3506
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3507 3508 3509
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3510 3511
		ring = request->ring;
		seqno = request->seqno;
3512
	}
3513
	spin_unlock(&file_priv->mm.lock);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3537

3538 3539 3540
	return ret;
}

3541
static int
3542 3543
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3544
{
3545
	uint32_t exec_start, exec_len;
3546

3547 3548
	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;
3549

3550 3551
	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;
3552

3553 3554
	if (!exec_start)
		return -EINVAL;
3555

3556
	return 0;
3557 3558 3559
}

static int
3560 3561
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3562
{
3563
	int i;
3564

3565 3566 3567
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3568

3569 3570
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3571

3572 3573 3574 3575
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3576 3577
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3578 3579
	}

3580 3581 3582
	return 0;
}

C
Chris Wilson 已提交
3583
static int
J
Jesse Barnes 已提交
3584
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3585
		       struct drm_file *file,
J
Jesse Barnes 已提交
3586 3587
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3588 3589 3590 3591
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3592
	struct drm_i915_gem_object *obj_priv;
3593
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3594
	struct drm_i915_gem_request *request = NULL;
3595
	int ret, i, flips;
3596 3597
	uint64_t exec_offset;

3598 3599
	struct intel_ring_buffer *ring = NULL;

3600 3601 3602 3603
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3604 3605 3606 3607
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3608 3609 3610 3611
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3622 3623 3624 3625
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3626
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3627 3628
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3629 3630 3631 3632 3633
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3634
	if (args->num_cliprects != 0) {
3635 3636
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3637 3638
		if (cliprects == NULL) {
			ret = -ENOMEM;
3639
			goto pre_mutex_err;
3640
		}
3641 3642 3643 3644 3645 3646 3647 3648

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3649
			ret = -EFAULT;
3650 3651 3652 3653
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3654 3655 3656 3657 3658 3659
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3660 3661 3662
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3663 3664 3665

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3666 3667
		ret = -EBUSY;
		goto pre_mutex_err;
3668 3669
	}

3670
	/* Look up object handles */
3671
	for (i = 0; i < args->buffer_count; i++) {
3672
		object_list[i] = drm_gem_object_lookup(dev, file,
3673 3674 3675 3676
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3677 3678
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3679
			ret = -ENOENT;
3680 3681
			goto err;
		}
3682

3683
		obj_priv = to_intel_bo(object_list[i]);
3684 3685 3686
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3687 3688
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3689
			ret = -EINVAL;
3690 3691 3692
			goto err;
		}
		obj_priv->in_execbuffer = true;
3693
	}
3694

3695 3696 3697 3698 3699 3700
	/* Move the objects en-masse into the GTT, evicting if necessary. */
	ret = i915_gem_execbuffer_pin(dev, file,
				      object_list, exec_list,
				      args->buffer_count);
	if (ret)
		goto err;
3701

3702 3703 3704 3705 3706 3707 3708
	/* The objects are in their final locations, apply the relocations. */
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
		if (ret)
3709
			goto err;
3710 3711 3712 3713
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3714 3715 3716 3717 3718 3719
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3720

3721 3722 3723
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
3724 3725 3726 3727 3728
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3729 3730 3731 3732 3733 3734
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3735
	dev_priv->mm.flush_rings = 0;
3736

3737 3738 3739
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3740
		/* Compute new gpu domains and update invalidate/flush */
3741
		i915_gem_object_set_to_gpu_domain(obj);
3742 3743
	}

3744 3745 3746 3747 3748 3749 3750
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3751
		i915_gem_flush(dev, file,
3752
			       dev->invalidate_domains,
3753 3754
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3755 3756
	}

3757 3758
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3759
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3760
		uint32_t old_write_domain = obj->write_domain;
3761 3762

		obj->write_domain = obj->pending_write_domain;
3763 3764 3765 3766
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3767 3768 3769
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3770 3771
	}

3772 3773 3774 3775 3776 3777 3778 3779
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3780
	i915_gem_dump_object(batch_obj,
3781 3782 3783 3784 3785
			      args->batch_len,
			      __func__,
			      ~0);
#endif

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			intel_ring_begin(dev, ring, 2);
			intel_ring_emit(dev, ring,
					MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(dev, ring, MI_NOOP);
			intel_ring_advance(dev, ring);
		}
	}

3815
	/* Exec the batchbuffer */
3816
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3817
					    cliprects, exec_offset);
3818 3819 3820 3821 3822 3823 3824 3825 3826
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3827
	i915_retire_commands(dev, ring);
3828

3829 3830 3831 3832 3833 3834
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3835

3836
	i915_add_request(dev, file, request, ring);
C
Chris Wilson 已提交
3837
	request = NULL;
3838 3839

err:
3840 3841
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3842
			obj_priv = to_intel_bo(object_list[i]);
3843 3844
			obj_priv->in_execbuffer = false;
		}
3845
		drm_gem_object_unreference(object_list[i]);
3846
	}
3847 3848 3849

	mutex_unlock(&dev->struct_mutex);

3850
pre_mutex_err:
3851
	drm_free_large(object_list);
3852
	kfree(cliprects);
C
Chris Wilson 已提交
3853
	kfree(request);
3854 3855 3856 3857

	return ret;
}

J
Jesse Barnes 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3910
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3924
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4003 4004 4005 4006
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4007
	struct drm_i915_private *dev_priv = dev->dev_private;
4008
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4009 4010
	int ret;

4011
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4012
	WARN_ON(i915_verify_lists(dev));
4013 4014 4015 4016 4017

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4018 4019 4020 4021
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4022 4023 4024 4025 4026 4027
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4028 4029
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4030
		if (ret)
4031
			return ret;
4032
	}
J
Jesse Barnes 已提交
4033

4034 4035 4036 4037 4038 4039
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4040
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4041
		if (!obj_priv->active)
4042
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4043
				       &dev_priv->mm.pinned_list);
4044 4045
	}

4046
	WARN_ON(i915_verify_lists(dev));
4047 4048 4049 4050 4051 4052 4053 4054
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4055
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4056

4057
	WARN_ON(i915_verify_lists(dev));
4058 4059 4060 4061 4062 4063 4064 4065 4066
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4067
		if (!obj_priv->active)
4068
			list_move_tail(&obj_priv->mm_list,
4069
				       &dev_priv->mm.inactive_list);
4070
		i915_gem_info_remove_pin(dev_priv, obj->size);
4071
	}
4072
	WARN_ON(i915_verify_lists(dev));
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4084 4085 4086 4087
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4088 4089
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4090 4091
		ret = -ENOENT;
		goto unlock;
4092
	}
4093
	obj_priv = to_intel_bo(obj);
4094

C
Chris Wilson 已提交
4095 4096
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4097 4098
		ret = -EINVAL;
		goto out;
4099 4100
	}

J
Jesse Barnes 已提交
4101 4102 4103
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4104 4105
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4106 4107 4108 4109 4110 4111
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
4112 4113
		if (ret)
			goto out;
4114 4115 4116 4117 4118
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4119
	i915_gem_object_flush_cpu_write_domain(obj);
4120
	args->offset = obj_priv->gtt_offset;
4121
out:
4122
	drm_gem_object_unreference(obj);
4123
unlock:
4124
	mutex_unlock(&dev->struct_mutex);
4125
	return ret;
4126 4127 4128 4129 4130 4131 4132 4133
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4134
	struct drm_i915_gem_object *obj_priv;
4135
	int ret;
4136

4137 4138 4139 4140
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4141 4142
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4143 4144
		ret = -ENOENT;
		goto unlock;
4145
	}
4146
	obj_priv = to_intel_bo(obj);
4147

J
Jesse Barnes 已提交
4148 4149 4150
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4151 4152
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4153 4154 4155 4156 4157 4158
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4159

4160
out:
4161
	drm_gem_object_unreference(obj);
4162
unlock:
4163
	mutex_unlock(&dev->struct_mutex);
4164
	return ret;
4165 4166 4167 4168 4169 4170 4171 4172 4173
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4174 4175
	int ret;

4176
	ret = i915_mutex_lock_interruptible(dev);
4177
	if (ret)
4178
		return ret;
4179 4180 4181 4182 4183

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
4184
	}
4185
	obj_priv = to_intel_bo(obj);
4186

4187 4188 4189 4190
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4191
	 */
4192 4193 4194 4195 4196 4197 4198
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4199 4200
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4201 4202
					    obj_priv->ring,
					    0, obj->write_domain);
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4213 4214

	drm_gem_object_unreference(obj);
4215
unlock:
4216
	mutex_unlock(&dev->struct_mutex);
4217
	return ret;
4218 4219 4220 4221 4222 4223 4224 4225 4226
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4227 4228 4229 4230 4231 4232 4233
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4234
	int ret;
4235 4236 4237 4238 4239 4240 4241 4242 4243

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4244 4245 4246 4247
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4248 4249
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4250 4251
		ret = -ENOENT;
		goto unlock;
4252
	}
4253
	obj_priv = to_intel_bo(obj);
4254 4255

	if (obj_priv->pin_count) {
4256 4257
		ret = -EINVAL;
		goto out;
4258 4259
	}

C
Chris Wilson 已提交
4260 4261
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4262

4263 4264 4265 4266 4267
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4268 4269
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4270
out:
4271
	drm_gem_object_unreference(obj);
4272
unlock:
4273
	mutex_unlock(&dev->struct_mutex);
4274
	return ret;
4275 4276
}

4277 4278 4279
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4280
	struct drm_i915_private *dev_priv = dev->dev_private;
4281
	struct drm_i915_gem_object *obj;
4282

4283 4284 4285
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4286

4287 4288 4289 4290
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4291

4292 4293
	i915_gem_info_add_obj(dev_priv, size);

4294 4295
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4296

4297
	obj->agp_type = AGP_USER_MEMORY;
4298
	obj->base.driver_private = NULL;
4299
	obj->fence_reg = I915_FENCE_REG_NONE;
4300 4301
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->ring_list);
4302 4303
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4304

4305 4306 4307 4308 4309 4310
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4311

4312 4313 4314
	return 0;
}

4315
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4316
{
4317
	struct drm_device *dev = obj->dev;
4318
	drm_i915_private_t *dev_priv = dev->dev_private;
4319
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4320
	int ret;
4321

4322 4323
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4324
		list_move(&obj_priv->mm_list,
4325 4326 4327
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4328

4329 4330
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4331

4332
	drm_gem_object_release(obj);
4333
	i915_gem_info_remove_obj(dev_priv, obj->size);
4334

4335
	kfree(obj_priv->page_cpu_valid);
4336
	kfree(obj_priv->bit_17);
4337
	kfree(obj_priv);
4338 4339
}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4356 4357 4358 4359 4360
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4361

4362
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4363

4364
	if (dev_priv->mm.suspended) {
4365 4366
		mutex_unlock(&dev->struct_mutex);
		return 0;
4367 4368
	}

4369
	ret = i915_gpu_idle(dev);
4370 4371
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4372
		return ret;
4373
	}
4374

4375 4376
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4377
		ret = i915_gem_evict_inactive(dev);
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4389
	del_timer_sync(&dev_priv->hangcheck_timer);
4390 4391

	i915_kernel_lost_context(dev);
4392
	i915_gem_cleanup_ringbuffer(dev);
4393

4394 4395
	mutex_unlock(&dev->struct_mutex);

4396 4397 4398
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4399 4400 4401
	return 0;
}

4402 4403 4404 4405
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4406
static int
4407 4408 4409 4410 4411 4412 4413
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4414
	obj = i915_gem_alloc_object(dev, 4096);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4445 4446

static void
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4461 4462
}

4463 4464 4465 4466 4467
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4468

4469 4470 4471 4472 4473
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4474

4475
	ret = intel_init_render_ring_buffer(dev);
4476 4477 4478 4479
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4480
		ret = intel_init_bsd_ring_buffer(dev);
4481 4482
		if (ret)
			goto cleanup_render_ring;
4483
	}
4484

4485 4486
	dev_priv->next_seqno = 1;

4487 4488 4489 4490 4491 4492 4493
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4494 4495 4496 4497 4498 4499 4500 4501 4502
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4503
	intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4504 4505 4506 4507
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4508 4509 4510 4511 4512 4513 4514
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4515 4516 4517
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4518
	if (atomic_read(&dev_priv->mm.wedged)) {
4519
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4520
		atomic_set(&dev_priv->mm.wedged, 0);
4521 4522 4523
	}

	mutex_lock(&dev->struct_mutex);
4524 4525 4526
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4527 4528
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4529
		return ret;
4530
	}
4531

4532
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4533
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4534
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4535 4536
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4537
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4538
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4539
	mutex_unlock(&dev->struct_mutex);
4540

4541 4542 4543
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4544

4545
	return 0;
4546 4547 4548 4549 4550 4551 4552 4553

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4554 4555 4556 4557 4558 4559
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4560 4561 4562
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4563
	drm_irq_uninstall(dev);
4564
	return i915_gem_idle(dev);
4565 4566 4567 4568 4569 4570 4571
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4572 4573 4574
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4575 4576 4577
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4578 4579 4580 4581 4582
}

void
i915_gem_load(struct drm_device *dev)
{
4583
	int i;
4584 4585
	drm_i915_private_t *dev_priv = dev->dev_private;

4586
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4587
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4588
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4589
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4590
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4591
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4592
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4593 4594
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4595 4596
	INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4597 4598
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4599 4600
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4601
	init_completion(&dev_priv->error_completion);
4602 4603 4604 4605
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4616
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4617 4618
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4619

4620
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4621 4622 4623 4624
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4625
	/* Initialize fence registers to zero */
4626 4627 4628 4629 4630 4631 4632
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4633 4634
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4635 4636
		break;
	case 3:
4637 4638 4639
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4640 4641 4642 4643
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4644
	}
4645
	i915_gem_detect_bit_6_swizzle(dev);
4646
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4647
}
4648 4649 4650 4651 4652

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4653 4654
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4655 4656 4657 4658 4659 4660 4661 4662
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4663
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4664 4665 4666 4667 4668
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4669
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4682
	kfree(phys_obj);
4683 4684 4685
	return ret;
}

4686
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4711
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4723
	obj_priv = to_intel_bo(obj);
4724 4725 4726
	if (!obj_priv->phys_obj)
		return;

4727
	ret = i915_gem_object_get_pages(obj, 0);
4728 4729 4730 4731 4732 4733
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4734
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4735 4736 4737 4738 4739
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4740
	drm_clflush_pages(obj_priv->pages, page_count);
4741
	drm_agp_chipset_flush(dev);
4742 4743

	i915_gem_object_put_pages(obj);
4744 4745 4746 4747 4748 4749 4750
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4751 4752 4753
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4764
	obj_priv = to_intel_bo(obj);
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4775
						obj->size, align);
4776
		if (ret) {
4777
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4778 4779 4780 4781 4782 4783 4784 4785
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4786
	ret = i915_gem_object_get_pages(obj, 0);
4787 4788 4789 4790 4791 4792 4793 4794
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4795
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4796 4797 4798 4799 4800 4801
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4802 4803
	i915_gem_object_put_pages(obj);

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4814
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4815 4816 4817 4818 4819 4820 4821
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4822
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4823 4824 4825 4826 4827 4828 4829
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4830

4831
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4832
{
4833
	struct drm_i915_file_private *file_priv = file->driver_priv;
4834 4835 4836 4837 4838

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4839
	spin_lock(&file_priv->mm.lock);
4840 4841 4842 4843 4844 4845 4846 4847 4848
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4849
	spin_unlock(&file_priv->mm.lock);
4850
}
4851

4852 4853 4854 4855 4856 4857 4858
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4859 4860
		      list_empty(&dev_priv->render_ring.active_list) &&
		      list_empty(&dev_priv->bsd_ring.active_list);
4861 4862 4863 4864

	return !lists_empty;
}

4865
static int
4866
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
4882
						    mm_list)
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4894
rescan:
4895 4896 4897 4898 4899 4900 4901 4902 4903
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4904
		i915_gem_retire_requests(dev);
4905 4906 4907

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
4908
					 mm_list) {
4909
			if (i915_gem_object_is_purgeable(obj_priv)) {
4910
				i915_gem_object_unbind(&obj_priv->base);
4911 4912 4913 4914 4915 4916 4917 4918
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4919 4920
		would_deadlock = 0;

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
4937
					 mm_list) {
4938
			if (nr_to_scan > 0) {
4939
				i915_gem_object_unbind(&obj_priv->base);
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}