i915_gem.c 132.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static int __i915_spin_request(struct drm_i915_gem_request *rq)
{
	unsigned long timeout;

	if (i915_gem_request_get_ring(rq)->irq_refcount)
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
		if (i915_gem_request_completed(rq, true))
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;

		cpu_relax_lowlatency();
	}
	if (i915_gem_request_completed(rq, false))
		return 0;

	return -EAGAIN;
}

1207
/**
1208 1209 1210
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1211 1212 1213
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1214 1215 1216 1217 1218 1219 1220
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1221
 * Returns 0 if the request was found within the alloted time. Else returns the
1222 1223
 * errno with remaining time filled in timeout argument.
 */
1224
int __i915_wait_request(struct drm_i915_gem_request *req,
1225
			unsigned reset_counter,
1226
			bool interruptible,
1227
			s64 *timeout,
1228
			struct drm_i915_file_private *file_priv)
1229
{
1230
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231
	struct drm_device *dev = ring->dev;
1232
	struct drm_i915_private *dev_priv = dev->dev_private;
1233 1234
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235
	DEFINE_WAIT(wait);
1236
	unsigned long timeout_expire;
1237
	s64 before, now;
1238 1239
	int ret;

1240
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241

1242
	if (i915_gem_request_completed(req, true))
1243 1244
		return 0;

1245 1246
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247

1248
	if (INTEL_INFO(dev)->gen >= 6)
1249
		gen6_rps_boost(dev_priv, file_priv);
1250

1251
	/* Record current time in case interrupted by signal, or wedged */
1252
	trace_i915_gem_request_wait_begin(req);
1253
	before = ktime_get_raw_ns();
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1265 1266
	for (;;) {
		struct timer_list timer;
1267

1268 1269
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270

1271 1272
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1273 1274 1275 1276 1277 1278 1279 1280
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1281

1282
		if (i915_gem_request_completed(req, false)) {
1283 1284 1285
			ret = 0;
			break;
		}
1286

1287 1288 1289 1290 1291
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1292
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293 1294 1295 1296 1297 1298
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1299 1300
			unsigned long expire;

1301
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303 1304 1305
			mod_timer(&timer, expire);
		}

1306
		io_schedule();
1307 1308 1309 1310 1311 1312

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1313 1314
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1315 1316

	finish_wait(&ring->irq_queue, &wait);
1317

1318 1319 1320 1321
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1322
	if (timeout) {
1323 1324 1325
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1336 1337
	}

1338
	return ret;
1339 1340 1341
}

/**
1342
 * Waits for a request to be signaled, and cleans up the
1343 1344 1345
 * request and object lists appropriately for that event.
 */
int
1346
i915_wait_request(struct drm_i915_gem_request *req)
1347
{
1348 1349 1350
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1351
	unsigned reset_counter;
1352 1353
	int ret;

1354 1355 1356 1357 1358 1359
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1360 1361
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1362
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363 1364 1365
	if (ret)
		return ret;

1366
	ret = i915_gem_check_olr(req);
1367 1368 1369
	if (ret)
		return ret;

1370
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371
	i915_gem_request_reference(req);
1372 1373
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1374 1375
	i915_gem_request_unreference(req);
	return ret;
1376 1377
}

1378
static int
1379
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380
{
1381 1382
	if (!obj->active)
		return 0;
1383 1384 1385 1386

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1387 1388
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1389 1390
	 * we know we have passed the last write.
	 */
1391
	i915_gem_request_assign(&obj->last_write_req, NULL);
1392 1393 1394 1395

	return 0;
}

1396 1397 1398 1399 1400 1401 1402 1403
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1404
	struct drm_i915_gem_request *req;
1405 1406
	int ret;

1407 1408
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1409 1410
		return 0;

1411
	ret = i915_wait_request(req);
1412 1413 1414
	if (ret)
		return ret;

1415
	return i915_gem_object_wait_rendering__tail(obj);
1416 1417
}

1418 1419 1420 1421 1422
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423
					    struct drm_i915_file_private *file_priv,
1424 1425
					    bool readonly)
{
1426
	struct drm_i915_gem_request *req;
1427 1428
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1429
	unsigned reset_counter;
1430 1431 1432 1433 1434
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1435 1436
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1437 1438
		return 0;

1439
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440 1441 1442
	if (ret)
		return ret;

1443
	ret = i915_gem_check_olr(req);
1444 1445 1446
	if (ret)
		return ret;

1447
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448
	i915_gem_request_reference(req);
1449
	mutex_unlock(&dev->struct_mutex);
1450
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451
	mutex_lock(&dev->struct_mutex);
1452
	i915_gem_request_unreference(req);
1453 1454
	if (ret)
		return ret;
1455

1456
	return i915_gem_object_wait_rendering__tail(obj);
1457 1458
}

1459
/**
1460 1461
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1462 1463 1464
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465
			  struct drm_file *file)
1466 1467
{
	struct drm_i915_gem_set_domain *args = data;
1468
	struct drm_i915_gem_object *obj;
1469 1470
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1471 1472
	int ret;

1473
	/* Only handle setting domains to types used by the CPU. */
1474
	if (write_domain & I915_GEM_GPU_DOMAINS)
1475 1476
		return -EINVAL;

1477
	if (read_domains & I915_GEM_GPU_DOMAINS)
1478 1479 1480 1481 1482 1483 1484 1485
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1486
	ret = i915_mutex_lock_interruptible(dev);
1487
	if (ret)
1488
		return ret;
1489

1490
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491
	if (&obj->base == NULL) {
1492 1493
		ret = -ENOENT;
		goto unlock;
1494
	}
1495

1496 1497 1498 1499
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1500 1501 1502
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1503 1504 1505
	if (ret)
		goto unref;

1506
	if (read_domains & I915_GEM_DOMAIN_GTT)
1507
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508
	else
1509
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510

1511
unref:
1512
	drm_gem_object_unreference(&obj->base);
1513
unlock:
1514 1515 1516 1517 1518 1519 1520 1521 1522
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523
			 struct drm_file *file)
1524 1525
{
	struct drm_i915_gem_sw_finish *args = data;
1526
	struct drm_i915_gem_object *obj;
1527 1528
	int ret = 0;

1529
	ret = i915_mutex_lock_interruptible(dev);
1530
	if (ret)
1531
		return ret;
1532

1533
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534
	if (&obj->base == NULL) {
1535 1536
		ret = -ENOENT;
		goto unlock;
1537 1538 1539
	}

	/* Pinned buffers may be scanout, so flush the cache */
1540
	if (obj->pin_display)
1541
		i915_gem_object_flush_cpu_write_domain(obj);
1542

1543
	drm_gem_object_unreference(&obj->base);
1544
unlock:
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1565 1566 1567
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568
		    struct drm_file *file)
1569 1570 1571 1572 1573
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1574 1575 1576 1577 1578 1579
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1580
	obj = drm_gem_object_lookup(dev, file, args->handle);
1581
	if (obj == NULL)
1582
		return -ENOENT;
1583

1584 1585 1586 1587 1588 1589 1590 1591
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1592
	addr = vm_mmap(obj->filp, 0, args->size,
1593 1594
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1608
	drm_gem_object_unreference_unlocked(obj);
1609 1610 1611 1612 1613 1614 1615 1616
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1635 1636
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1637
	struct drm_i915_private *dev_priv = dev->dev_private;
1638 1639 1640
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1641
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1642

1643 1644
	intel_runtime_pm_get(dev_priv);

1645 1646 1647 1648
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1649 1650 1651
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1652

C
Chris Wilson 已提交
1653 1654
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1655 1656 1657 1658 1659 1660 1661 1662 1663
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1664 1665
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1666
		ret = -EFAULT;
1667 1668 1669
		goto unlock;
	}

1670
	/* Now bind it into the GTT if needed */
1671
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1672 1673
	if (ret)
		goto unlock;
1674

1675 1676 1677
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1678

1679
	ret = i915_gem_object_get_fence(obj);
1680
	if (ret)
1681
		goto unpin;
1682

1683
	/* Finally, remap it using the new GTT offset */
1684 1685
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1686

1687
	if (!obj->fault_mappable) {
1688 1689 1690
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1691 1692
		int i;

1693
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1706
unpin:
B
Ben Widawsky 已提交
1707
	i915_gem_object_ggtt_unpin(obj);
1708
unlock:
1709
	mutex_unlock(&dev->struct_mutex);
1710
out:
1711
	switch (ret) {
1712
	case -EIO:
1713 1714 1715 1716 1717 1718 1719
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1720 1721 1722
			ret = VM_FAULT_SIGBUS;
			break;
		}
1723
	case -EAGAIN:
D
Daniel Vetter 已提交
1724 1725 1726 1727
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1728
		 */
1729 1730
	case 0:
	case -ERESTARTSYS:
1731
	case -EINTR:
1732 1733 1734 1735 1736
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1737 1738
		ret = VM_FAULT_NOPAGE;
		break;
1739
	case -ENOMEM:
1740 1741
		ret = VM_FAULT_OOM;
		break;
1742
	case -ENOSPC:
1743
	case -EFAULT:
1744 1745
		ret = VM_FAULT_SIGBUS;
		break;
1746
	default:
1747
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1748 1749
		ret = VM_FAULT_SIGBUS;
		break;
1750
	}
1751 1752 1753

	intel_runtime_pm_put(dev_priv);
	return ret;
1754 1755
}

1756 1757 1758 1759
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1760
 * Preserve the reservation of the mmapping with the DRM core code, but
1761 1762 1763 1764 1765 1766 1767 1768 1769
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1770
void
1771
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1772
{
1773 1774
	if (!obj->fault_mappable)
		return;
1775

1776 1777
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1778
	obj->fault_mappable = false;
1779 1780
}

1781 1782 1783 1784 1785 1786 1787 1788 1789
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1790
uint32_t
1791
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1792
{
1793
	uint32_t gtt_size;
1794 1795

	if (INTEL_INFO(dev)->gen >= 4 ||
1796 1797
	    tiling_mode == I915_TILING_NONE)
		return size;
1798 1799 1800

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1801
		gtt_size = 1024*1024;
1802
	else
1803
		gtt_size = 512*1024;
1804

1805 1806
	while (gtt_size < size)
		gtt_size <<= 1;
1807

1808
	return gtt_size;
1809 1810
}

1811 1812 1813 1814 1815
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1816
 * potential fence register mapping.
1817
 */
1818 1819 1820
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1821 1822 1823 1824 1825
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1826
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1827
	    tiling_mode == I915_TILING_NONE)
1828 1829
		return 4096;

1830 1831 1832 1833
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1834
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1835 1836
}

1837 1838 1839 1840 1841
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1842
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1843 1844
		return 0;

1845 1846
	dev_priv->mm.shrinker_no_lock_stealing = true;

1847 1848
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1849
		goto out;
1850 1851 1852 1853 1854 1855 1856 1857

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1858 1859 1860 1861 1862
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1863 1864
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1865
		goto out;
1866 1867

	i915_gem_shrink_all(dev_priv);
1868 1869 1870 1871 1872
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1873 1874 1875 1876 1877 1878 1879
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1880
int
1881 1882
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1883
		  uint32_t handle,
1884
		  uint64_t *offset)
1885
{
1886
	struct drm_i915_private *dev_priv = dev->dev_private;
1887
	struct drm_i915_gem_object *obj;
1888 1889
	int ret;

1890
	ret = i915_mutex_lock_interruptible(dev);
1891
	if (ret)
1892
		return ret;
1893

1894
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1895
	if (&obj->base == NULL) {
1896 1897 1898
		ret = -ENOENT;
		goto unlock;
	}
1899

B
Ben Widawsky 已提交
1900
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1901
		ret = -E2BIG;
1902
		goto out;
1903 1904
	}

1905
	if (obj->madv != I915_MADV_WILLNEED) {
1906
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1907
		ret = -EFAULT;
1908
		goto out;
1909 1910
	}

1911 1912 1913
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1914

1915
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1916

1917
out:
1918
	drm_gem_object_unreference(&obj->base);
1919
unlock:
1920
	mutex_unlock(&dev->struct_mutex);
1921
	return ret;
1922 1923
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1945
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1946 1947
}

D
Daniel Vetter 已提交
1948 1949 1950
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1951
{
1952
	i915_gem_object_free_mmap_offset(obj);
1953

1954 1955
	if (obj->base.filp == NULL)
		return;
1956

D
Daniel Vetter 已提交
1957 1958 1959 1960 1961
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1962
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1963 1964
	obj->madv = __I915_MADV_PURGED;
}
1965

1966 1967 1968
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1969
{
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1984 1985
}

1986
static void
1987
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1988
{
1989 1990
	struct sg_page_iter sg_iter;
	int ret;
1991

1992
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1993

C
Chris Wilson 已提交
1994 1995 1996 1997 1998 1999
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2000
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2001 2002 2003
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2004
	if (i915_gem_object_needs_bit17_swizzle(obj))
2005 2006
		i915_gem_object_save_bit_17_swizzle(obj);

2007 2008
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2009

2010
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2011
		struct page *page = sg_page_iter_page(&sg_iter);
2012

2013
		if (obj->dirty)
2014
			set_page_dirty(page);
2015

2016
		if (obj->madv == I915_MADV_WILLNEED)
2017
			mark_page_accessed(page);
2018

2019
		page_cache_release(page);
2020
	}
2021
	obj->dirty = 0;
2022

2023 2024
	sg_free_table(obj->pages);
	kfree(obj->pages);
2025
}
C
Chris Wilson 已提交
2026

2027
int
2028 2029 2030 2031
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2032
	if (obj->pages == NULL)
2033 2034
		return 0;

2035 2036 2037
	if (obj->pages_pin_count)
		return -EBUSY;

2038
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2039

2040 2041 2042
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2043
	list_del(&obj->global_list);
2044

2045
	ops->put_pages(obj);
2046
	obj->pages = NULL;
2047

2048
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2049 2050 2051 2052

	return 0;
}

2053
static int
C
Chris Wilson 已提交
2054
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2055
{
C
Chris Wilson 已提交
2056
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2057 2058
	int page_count, i;
	struct address_space *mapping;
2059 2060
	struct sg_table *st;
	struct scatterlist *sg;
2061
	struct sg_page_iter sg_iter;
2062
	struct page *page;
2063
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2064
	gfp_t gfp;
2065

C
Chris Wilson 已提交
2066 2067 2068 2069 2070 2071 2072
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2073 2074 2075 2076
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2077
	page_count = obj->base.size / PAGE_SIZE;
2078 2079
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2080
		return -ENOMEM;
2081
	}
2082

2083 2084 2085 2086 2087
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2088
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2089
	gfp = mapping_gfp_mask(mapping);
2090
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2091
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2092 2093 2094
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2095 2096
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2097 2098 2099 2100 2101
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2102 2103 2104 2105 2106 2107 2108 2109
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2110
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2111 2112 2113
			if (IS_ERR(page))
				goto err_pages;
		}
2114 2115 2116 2117 2118 2119 2120 2121
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2122 2123 2124 2125 2126 2127 2128 2129 2130
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2131 2132 2133

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2134
	}
2135 2136 2137 2138
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2139 2140
	obj->pages = st;

2141
	if (i915_gem_object_needs_bit17_swizzle(obj))
2142 2143
		i915_gem_object_do_bit_17_swizzle(obj);

2144 2145 2146 2147
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2148 2149 2150
	return 0;

err_pages:
2151 2152
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2153
		page_cache_release(sg_page_iter_page(&sg_iter));
2154 2155
	sg_free_table(st);
	kfree(st);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2185
	if (obj->pages)
2186 2187
		return 0;

2188
	if (obj->madv != I915_MADV_WILLNEED) {
2189
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2190
		return -EFAULT;
2191 2192
	}

2193 2194
	BUG_ON(obj->pages_pin_count);

2195 2196 2197 2198
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2199
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2200 2201 2202 2203

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2204
	return 0;
2205 2206
}

B
Ben Widawsky 已提交
2207
static void
2208
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2209
			       struct intel_engine_cs *ring)
2210
{
2211 2212
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2213

2214
	BUG_ON(ring == NULL);
2215 2216 2217 2218 2219

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2220 2221
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2222
	}
2223 2224

	/* Add a reference if we're newly entering the active list. */
2225 2226 2227
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2228
	}
2229

2230
	list_move_tail(&obj->ring_list, &ring->active_list);
2231

2232
	i915_gem_request_assign(&obj->last_read_req, req);
2233 2234
}

B
Ben Widawsky 已提交
2235
void i915_vma_move_to_active(struct i915_vma *vma,
2236
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2237 2238 2239 2240 2241
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2242 2243
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2244
{
2245
	struct i915_vma *vma;
2246

2247
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2248
	BUG_ON(!obj->active);
2249

2250 2251 2252
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2253
	}
2254

2255 2256
	intel_fb_obj_flush(obj, true);

2257
	list_del_init(&obj->ring_list);
2258

2259 2260
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2261 2262
	obj->base.write_domain = 0;

2263
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2264 2265 2266 2267 2268

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2269
}
2270

2271 2272 2273
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2274
	if (obj->last_read_req == NULL)
2275 2276
		return;

2277
	if (i915_gem_request_completed(obj->last_read_req, true))
2278 2279 2280
		i915_gem_object_move_to_inactive(obj);
}

2281
static int
2282
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2283
{
2284
	struct drm_i915_private *dev_priv = dev->dev_private;
2285
	struct intel_engine_cs *ring;
2286
	int ret, i, j;
2287

2288
	/* Carefully retire all requests without writing to the rings */
2289
	for_each_ring(ring, dev_priv, i) {
2290 2291 2292
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2293 2294
	}
	i915_gem_retire_requests(dev);
2295 2296

	/* Finally reset hw state */
2297
	for_each_ring(ring, dev_priv, i) {
2298
		intel_ring_init_seqno(ring, seqno);
2299

2300 2301
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2302
	}
2303

2304
	return 0;
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2333 2334
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2335
{
2336 2337 2338 2339
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2340
		int ret = i915_gem_init_seqno(dev, 0);
2341 2342
		if (ret)
			return ret;
2343

2344 2345
		dev_priv->next_seqno = 1;
	}
2346

2347
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2348
	return 0;
2349 2350
}

2351
int __i915_add_request(struct intel_engine_cs *ring,
2352
		       struct drm_file *file,
2353
		       struct drm_i915_gem_object *obj)
2354
{
2355
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2356
	struct drm_i915_gem_request *request;
2357
	struct intel_ringbuffer *ringbuf;
2358
	u32 request_start;
2359 2360
	int ret;

2361
	request = ring->outstanding_lazy_request;
2362 2363 2364 2365
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2366
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2367 2368 2369 2370
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2371 2372 2373 2374 2375 2376 2377
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2378
	if (i915.enable_execlists) {
2379
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2380 2381 2382 2383 2384 2385 2386
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2387

2388 2389 2390 2391 2392
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2393
	request->postfix = intel_ring_get_tail(ringbuf);
2394

2395
	if (i915.enable_execlists) {
2396
		ret = ring->emit_request(ringbuf, request);
2397 2398 2399 2400 2401 2402 2403
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2404

2405
	request->head = request_start;
2406
	request->tail = intel_ring_get_tail(ringbuf);
2407 2408 2409 2410 2411 2412 2413

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2414
	request->batch_obj = obj;
2415

2416 2417 2418 2419 2420 2421 2422 2423
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2424

2425
	request->emitted_jiffies = jiffies;
2426
	list_add_tail(&request->list, &ring->request_list);
2427
	request->file_priv = NULL;
2428

C
Chris Wilson 已提交
2429 2430 2431
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2432
		spin_lock(&file_priv->mm.lock);
2433
		request->file_priv = file_priv;
2434
		list_add_tail(&request->client_list,
2435
			      &file_priv->mm.request_list);
2436
		spin_unlock(&file_priv->mm.lock);
2437 2438

		request->pid = get_pid(task_pid(current));
2439
	}
2440

2441
	trace_i915_gem_request_add(request);
2442
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2443

2444
	i915_queue_hangcheck(ring->dev);
2445

2446 2447 2448 2449
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2450

2451
	return 0;
2452 2453
}

2454 2455
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2456
{
2457
	struct drm_i915_file_private *file_priv = request->file_priv;
2458

2459 2460
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2461

2462
	spin_lock(&file_priv->mm.lock);
2463 2464
	list_del(&request->client_list);
	request->file_priv = NULL;
2465
	spin_unlock(&file_priv->mm.lock);
2466 2467
}

2468
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2469
				   const struct intel_context *ctx)
2470
{
2471
	unsigned long elapsed;
2472

2473 2474 2475
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2476 2477
		return true;

2478 2479
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2480
		if (!i915_gem_context_is_default(ctx)) {
2481
			DRM_DEBUG("context hanging too fast, banning!\n");
2482
			return true;
2483 2484 2485
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2486
			return true;
2487
		}
2488 2489 2490 2491 2492
	}

	return false;
}

2493
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2494
				  struct intel_context *ctx,
2495
				  const bool guilty)
2496
{
2497 2498 2499 2500
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2501

2502 2503 2504
	hs = &ctx->hang_stats;

	if (guilty) {
2505
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2506 2507 2508 2509
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2510 2511 2512
	}
}

2513 2514 2515 2516 2517
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2518 2519
	put_pid(request->pid);

2520 2521 2522 2523 2524 2525 2526 2527 2528
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2529 2530
	if (ctx) {
		if (i915.enable_execlists) {
2531
			struct intel_engine_cs *ring = req->ring;
2532

2533 2534 2535
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2536

2537 2538
		i915_gem_context_unreference(ctx);
	}
2539

2540
	kmem_cache_free(req->i915->requests, req);
2541 2542
}

2543 2544 2545
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2546 2547
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
	struct drm_i915_gem_request *rq;
2548 2549 2550 2551 2552
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

2553 2554
	rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (rq == NULL)
2555 2556
		return -ENOMEM;

2557 2558 2559 2560
	kref_init(&rq->ref);
	rq->i915 = dev_priv;

	ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2561
	if (ret) {
2562
		kfree(rq);
2563 2564 2565
		return ret;
	}

2566
	rq->ring = ring;
2567 2568

	if (i915.enable_execlists)
2569
		ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2570
	else
2571
		ret = intel_ring_alloc_request_extras(rq);
2572
	if (ret) {
2573
		kfree(rq);
2574 2575 2576
		return ret;
	}

2577
	ring->outstanding_lazy_request = rq;
2578 2579 2580
	return 0;
}

2581
struct drm_i915_gem_request *
2582
i915_gem_find_active_request(struct intel_engine_cs *ring)
2583
{
2584 2585 2586
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2587
		if (i915_gem_request_completed(request, false))
2588
			continue;
2589

2590
		return request;
2591
	}
2592 2593 2594 2595 2596

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2597
				       struct intel_engine_cs *ring)
2598 2599 2600 2601
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2602
	request = i915_gem_find_active_request(ring);
2603 2604 2605 2606 2607 2608

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2609
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2610 2611

	list_for_each_entry_continue(request, &ring->request_list, list)
2612
		i915_set_reset_status(dev_priv, request->ctx, false);
2613
}
2614

2615
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2616
					struct intel_engine_cs *ring)
2617
{
2618
	while (!list_empty(&ring->active_list)) {
2619
		struct drm_i915_gem_object *obj;
2620

2621 2622 2623
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2624

2625
		i915_gem_object_move_to_inactive(obj);
2626
	}
2627

2628 2629 2630 2631 2632 2633
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2634
		struct drm_i915_gem_request *submit_req;
2635 2636

		submit_req = list_first_entry(&ring->execlist_queue,
2637
				struct drm_i915_gem_request,
2638 2639
				execlist_link);
		list_del(&submit_req->execlist_link);
2640 2641 2642 2643

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2644
		i915_gem_request_unreference(submit_req);
2645 2646
	}

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2663

2664 2665
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2666 2667
}

2668
void i915_gem_restore_fences(struct drm_device *dev)
2669 2670 2671 2672
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2673
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2674
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2686 2687 2688
	}
}

2689
void i915_gem_reset(struct drm_device *dev)
2690
{
2691
	struct drm_i915_private *dev_priv = dev->dev_private;
2692
	struct intel_engine_cs *ring;
2693
	int i;
2694

2695 2696 2697 2698 2699 2700 2701 2702
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2703
	for_each_ring(ring, dev_priv, i)
2704
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2705

2706 2707
	i915_gem_context_reset(dev);

2708
	i915_gem_restore_fences(dev);
2709 2710 2711 2712 2713
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2714
void
2715
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2716
{
C
Chris Wilson 已提交
2717
	if (list_empty(&ring->request_list))
2718 2719
		return;

C
Chris Wilson 已提交
2720
	WARN_ON(i915_verify_lists(ring->dev));
2721

2722 2723 2724 2725
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2726
	 */
2727
	while (!list_empty(&ring->request_list)) {
2728 2729
		struct drm_i915_gem_request *request;

2730
		request = list_first_entry(&ring->request_list,
2731 2732 2733
					   struct drm_i915_gem_request,
					   list);

2734
		if (!i915_gem_request_completed(request, true))
2735 2736
			break;

2737
		trace_i915_gem_request_retire(request);
2738

2739 2740 2741 2742 2743
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2744
		request->ringbuf->last_retired_head = request->postfix;
2745

2746
		i915_gem_free_request(request);
2747
	}
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2766 2767
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2768
		ring->irq_put(ring);
2769
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2770
	}
2771

C
Chris Wilson 已提交
2772
	WARN_ON(i915_verify_lists(ring->dev));
2773 2774
}

2775
bool
2776 2777
i915_gem_retire_requests(struct drm_device *dev)
{
2778
	struct drm_i915_private *dev_priv = dev->dev_private;
2779
	struct intel_engine_cs *ring;
2780
	bool idle = true;
2781
	int i;
2782

2783
	for_each_ring(ring, dev_priv, i) {
2784
		i915_gem_retire_requests_ring(ring);
2785
		idle &= list_empty(&ring->request_list);
2786 2787 2788 2789 2790 2791 2792 2793 2794
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2795 2796 2797 2798 2799 2800 2801 2802
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2803 2804
}

2805
static void
2806 2807
i915_gem_retire_work_handler(struct work_struct *work)
{
2808 2809 2810
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2811
	bool idle;
2812

2813
	/* Come back later if the device is busy... */
2814 2815 2816 2817
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2818
	}
2819
	if (!idle)
2820 2821
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2822
}
2823

2824 2825 2826 2827 2828
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2829
	struct drm_device *dev = dev_priv->dev;
2830 2831 2832 2833 2834 2835
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2836 2837 2838 2839 2840 2841 2842 2843 2844

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2845

2846 2847
		mutex_unlock(&dev->struct_mutex);
	}
2848 2849
}

2850 2851 2852 2853 2854 2855 2856 2857
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2858
	struct intel_engine_cs *ring;
2859 2860 2861
	int ret;

	if (obj->active) {
2862 2863
		ring = i915_gem_request_get_ring(obj->last_read_req);

2864
		ret = i915_gem_check_olr(obj->last_read_req);
2865 2866 2867
		if (ret)
			return ret;

2868
		i915_gem_retire_requests_ring(ring);
2869 2870 2871 2872 2873
	}

	return 0;
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2899
	struct drm_i915_private *dev_priv = dev->dev_private;
2900 2901
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2902
	struct drm_i915_gem_request *req;
2903
	unsigned reset_counter;
2904 2905
	int ret = 0;

2906 2907 2908
	if (args->flags != 0)
		return -EINVAL;

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2919 2920
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2921 2922 2923
	if (ret)
		goto out;

2924 2925
	if (!obj->active || !obj->last_read_req)
		goto out;
2926

2927
	req = obj->last_read_req;
2928 2929

	/* Do this after OLR check to make sure we make forward progress polling
2930
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2931
	 */
2932
	if (args->timeout_ns == 0) {
2933 2934 2935 2936 2937
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2938
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2939
	i915_gem_request_reference(req);
2940 2941
	mutex_unlock(&dev->struct_mutex);

2942 2943
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2944
				  file->driver_priv);
2945
	i915_gem_request_unreference__unlocked(req);
2946
	return ret;
2947 2948 2949 2950 2951 2952 2953

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2966 2967
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2968
		     struct intel_engine_cs *to)
2969
{
2970
	struct intel_engine_cs *from;
2971 2972 2973
	u32 seqno;
	int ret, idx;

2974 2975
	from = i915_gem_request_get_ring(obj->last_read_req);

2976 2977 2978
	if (from == NULL || to == from)
		return 0;

2979
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2980
		return i915_gem_object_wait_rendering(obj, false);
2981 2982 2983

	idx = intel_ring_sync_index(from, to);

2984
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2985 2986
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2987
	if (seqno <= from->semaphore.sync_seqno[idx])
2988 2989
		return 0;

2990
	ret = i915_gem_check_olr(obj->last_read_req);
2991 2992
	if (ret)
		return ret;
2993

2994
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2995
	ret = to->semaphore.sync_to(to, from, seqno);
2996
	if (!ret)
2997
		/* We use last_read_req because sync_to()
2998 2999 3000
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3001 3002
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3003

3004
	return ret;
3005 3006
}

3007 3008 3009 3010 3011 3012 3013
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3014 3015 3016
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3017 3018 3019
	/* Wait for any direct GTT access to complete */
	mb();

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3031
int i915_vma_unbind(struct i915_vma *vma)
3032
{
3033
	struct drm_i915_gem_object *obj = vma->obj;
3034
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3035
	int ret;
3036

3037
	if (list_empty(&vma->vma_link))
3038 3039
		return 0;

3040 3041 3042 3043
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3044

B
Ben Widawsky 已提交
3045
	if (vma->pin_count)
3046
		return -EBUSY;
3047

3048 3049
	BUG_ON(obj->pages == NULL);

3050
	ret = i915_gem_object_finish_gpu(obj);
3051
	if (ret)
3052 3053 3054 3055 3056 3057
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3058 3059
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3060
		i915_gem_object_finish_gtt(obj);
3061

3062 3063 3064 3065 3066
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3067

3068
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3069

3070 3071
	vma->unbind_vma(vma);

3072
	list_del_init(&vma->mm_list);
3073 3074 3075 3076 3077 3078 3079 3080 3081
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3082

B
Ben Widawsky 已提交
3083 3084 3085 3086
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3087
	 * no more VMAs exist. */
3088
	if (list_empty(&obj->vma_list)) {
3089 3090 3091 3092
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3093
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3094
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3095
	}
3096

3097 3098 3099 3100 3101 3102
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3103
	return 0;
3104 3105
}

3106
int i915_gpu_idle(struct drm_device *dev)
3107
{
3108
	struct drm_i915_private *dev_priv = dev->dev_private;
3109
	struct intel_engine_cs *ring;
3110
	int ret, i;
3111 3112

	/* Flush everything onto the inactive list. */
3113
	for_each_ring(ring, dev_priv, i) {
3114 3115 3116 3117 3118
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3119

3120
		ret = intel_ring_idle(ring);
3121 3122 3123
		if (ret)
			return ret;
	}
3124

3125
	return 0;
3126 3127
}

3128 3129
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3130
{
3131
	struct drm_i915_private *dev_priv = dev->dev_private;
3132 3133
	int fence_reg;
	int fence_pitch_shift;
3134

3135 3136 3137 3138 3139 3140 3141 3142
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3157
	if (obj) {
3158
		u32 size = i915_gem_obj_ggtt_size(obj);
3159
		uint64_t val;
3160

3161 3162 3163 3164 3165 3166 3167
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3168
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3169
				 0xfffff000) << 32;
3170
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3171
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3172 3173 3174
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3185 3186
}

3187 3188
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3189
{
3190
	struct drm_i915_private *dev_priv = dev->dev_private;
3191
	u32 val;
3192

3193
	if (obj) {
3194
		u32 size = i915_gem_obj_ggtt_size(obj);
3195 3196
		int pitch_val;
		int tile_width;
3197

3198
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3199
		     (size & -size) != size ||
3200 3201 3202
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3213
		val = i915_gem_obj_ggtt_offset(obj);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3229 3230
}

3231 3232
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3233
{
3234
	struct drm_i915_private *dev_priv = dev->dev_private;
3235 3236
	uint32_t val;

3237
	if (obj) {
3238
		u32 size = i915_gem_obj_ggtt_size(obj);
3239
		uint32_t pitch_val;
3240

3241
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3242
		     (size & -size) != size ||
3243 3244 3245
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3246

3247 3248
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3249

3250
		val = i915_gem_obj_ggtt_offset(obj);
3251 3252 3253 3254 3255 3256 3257
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3258

3259 3260 3261 3262
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3263 3264 3265 3266 3267
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3268 3269 3270
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3271 3272 3273 3274 3275 3276 3277 3278
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3279 3280 3281 3282
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3283 3284 3285 3286 3287 3288
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3289 3290 3291 3292 3293 3294

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3295 3296
}

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3307
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3308 3309 3310
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3311 3312

	if (enable) {
3313
		obj->fence_reg = reg;
3314 3315 3316 3317 3318 3319 3320
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3321
	obj->fence_dirty = false;
3322 3323
}

3324
static int
3325
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3326
{
3327
	if (obj->last_fenced_req) {
3328
		int ret = i915_wait_request(obj->last_fenced_req);
3329 3330
		if (ret)
			return ret;
3331

3332
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3333 3334 3335 3336 3337 3338 3339 3340
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3341
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3342
	struct drm_i915_fence_reg *fence;
3343 3344
	int ret;

3345
	ret = i915_gem_object_wait_fence(obj);
3346 3347 3348
	if (ret)
		return ret;

3349 3350
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3351

3352 3353
	fence = &dev_priv->fence_regs[obj->fence_reg];

3354 3355 3356
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3357
	i915_gem_object_fence_lost(obj);
3358
	i915_gem_object_update_fence(obj, fence, false);
3359 3360 3361 3362 3363

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3364
i915_find_fence_reg(struct drm_device *dev)
3365 3366
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3367
	struct drm_i915_fence_reg *reg, *avail;
3368
	int i;
3369 3370

	/* First try to find a free reg */
3371
	avail = NULL;
3372 3373 3374
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3375
			return reg;
3376

3377
		if (!reg->pin_count)
3378
			avail = reg;
3379 3380
	}

3381
	if (avail == NULL)
3382
		goto deadlock;
3383 3384

	/* None available, try to steal one or wait for a user to finish */
3385
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3386
		if (reg->pin_count)
3387 3388
			continue;

C
Chris Wilson 已提交
3389
		return reg;
3390 3391
	}

3392 3393 3394 3395 3396 3397
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3398 3399
}

3400
/**
3401
 * i915_gem_object_get_fence - set up fencing for an object
3402 3403 3404 3405 3406 3407 3408 3409 3410
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3411 3412
 *
 * For an untiled surface, this removes any existing fence.
3413
 */
3414
int
3415
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3416
{
3417
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3418
	struct drm_i915_private *dev_priv = dev->dev_private;
3419
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3420
	struct drm_i915_fence_reg *reg;
3421
	int ret;
3422

3423 3424 3425
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3426
	if (obj->fence_dirty) {
3427
		ret = i915_gem_object_wait_fence(obj);
3428 3429 3430
		if (ret)
			return ret;
	}
3431

3432
	/* Just update our place in the LRU if our fence is getting reused. */
3433 3434
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3435
		if (!obj->fence_dirty) {
3436 3437 3438 3439 3440
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3441 3442 3443
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3444
		reg = i915_find_fence_reg(dev);
3445 3446
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3447

3448 3449 3450
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3451
			ret = i915_gem_object_wait_fence(old);
3452 3453 3454
			if (ret)
				return ret;

3455
			i915_gem_object_fence_lost(old);
3456
		}
3457
	} else
3458 3459
		return 0;

3460 3461
	i915_gem_object_update_fence(obj, reg, enable);

3462
	return 0;
3463 3464
}

3465
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3466 3467
				     unsigned long cache_level)
{
3468
	struct drm_mm_node *gtt_space = &vma->node;
3469 3470
	struct drm_mm_node *other;

3471 3472 3473 3474 3475 3476
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3477
	 */
3478
	if (vma->vm->mm.color_adjust == NULL)
3479 3480
		return true;

3481
	if (!drm_mm_node_allocated(gtt_space))
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3498 3499 3500
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3501
static struct i915_vma *
3502 3503
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3504
			   const struct i915_ggtt_view *ggtt_view,
3505
			   unsigned alignment,
3506
			   uint64_t flags)
3507
{
3508
	struct drm_device *dev = obj->base.dev;
3509
	struct drm_i915_private *dev_priv = dev->dev_private;
3510
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3511 3512 3513
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3514
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3515
	struct i915_vma *vma;
3516
	int ret;
3517

3518 3519 3520
	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return ERR_PTR(-EINVAL);

3521 3522 3523 3524 3525
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3526
						     obj->tiling_mode, true);
3527
	unfenced_alignment =
3528
		i915_gem_get_gtt_alignment(dev,
3529 3530
					   obj->base.size,
					   obj->tiling_mode, false);
3531

3532
	if (alignment == 0)
3533
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3534
						unfenced_alignment;
3535
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3536
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3537
		return ERR_PTR(-EINVAL);
3538 3539
	}

3540
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3541

3542 3543 3544
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3545 3546
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3547
			  obj->base.size,
3548
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3549
			  end);
3550
		return ERR_PTR(-E2BIG);
3551 3552
	}

3553
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3554
	if (ret)
3555
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3556

3557 3558
	i915_gem_object_pin_pages(obj);

3559 3560 3561
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3562
	if (IS_ERR(vma))
3563
		goto err_unpin;
B
Ben Widawsky 已提交
3564

3565
search_free:
3566
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3567
						  size, alignment,
3568 3569
						  obj->cache_level,
						  start, end,
3570 3571
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3572
	if (ret) {
3573
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3574 3575 3576
					       obj->cache_level,
					       start, end,
					       flags);
3577 3578
		if (ret == 0)
			goto search_free;
3579

3580
		goto err_free_vma;
3581
	}
3582
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3583
		ret = -EINVAL;
3584
		goto err_remove_node;
3585 3586
	}

3587
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3588
	if (ret)
3589
		goto err_remove_node;
3590

3591 3592 3593 3594 3595 3596
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3597
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3598
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3599

3600
	return vma;
B
Ben Widawsky 已提交
3601

3602 3603
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3604
err_remove_node:
3605
	drm_mm_remove_node(&vma->node);
3606
err_free_vma:
B
Ben Widawsky 已提交
3607
	i915_gem_vma_destroy(vma);
3608
	vma = ERR_PTR(ret);
3609
err_unpin:
B
Ben Widawsky 已提交
3610
	i915_gem_object_unpin_pages(obj);
3611
	return vma;
3612 3613
}

3614
bool
3615 3616
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3617 3618 3619 3620 3621
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3622
	if (obj->pages == NULL)
3623
		return false;
3624

3625 3626 3627 3628
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3629
	if (obj->stolen || obj->phys_handle)
3630
		return false;
3631

3632 3633 3634 3635 3636 3637 3638 3639
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3640 3641
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3642
		return false;
3643
	}
3644

C
Chris Wilson 已提交
3645
	trace_i915_gem_object_clflush(obj);
3646
	drm_clflush_sg(obj->pages);
3647
	obj->cache_dirty = false;
3648 3649

	return true;
3650 3651 3652 3653
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3654
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3655
{
C
Chris Wilson 已提交
3656 3657
	uint32_t old_write_domain;

3658
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3659 3660
		return;

3661
	/* No actual flushing is required for the GTT write domain.  Writes
3662 3663
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3664 3665 3666 3667
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3668
	 */
3669 3670
	wmb();

3671 3672
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3673

3674 3675
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3676
	trace_i915_gem_object_change_domain(obj,
3677
					    obj->base.read_domains,
C
Chris Wilson 已提交
3678
					    old_write_domain);
3679 3680 3681 3682
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3683
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3684
{
C
Chris Wilson 已提交
3685
	uint32_t old_write_domain;
3686

3687
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3688 3689
		return;

3690
	if (i915_gem_clflush_object(obj, obj->pin_display))
3691 3692
		i915_gem_chipset_flush(obj->base.dev);

3693 3694
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3695

3696 3697
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3698
	trace_i915_gem_object_change_domain(obj,
3699
					    obj->base.read_domains,
C
Chris Wilson 已提交
3700
					    old_write_domain);
3701 3702
}

3703 3704 3705 3706 3707 3708
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3709
int
3710
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3711
{
C
Chris Wilson 已提交
3712
	uint32_t old_write_domain, old_read_domains;
3713
	struct i915_vma *vma;
3714
	int ret;
3715

3716 3717 3718
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3719
	ret = i915_gem_object_wait_rendering(obj, !write);
3720 3721 3722
	if (ret)
		return ret;

3723
	i915_gem_object_retire(obj);
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3737
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3738

3739 3740 3741 3742 3743 3744 3745
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3746 3747
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3748

3749 3750 3751
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3752 3753
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3754
	if (write) {
3755 3756 3757
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3758 3759
	}

3760
	if (write)
3761
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3762

C
Chris Wilson 已提交
3763 3764 3765 3766
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3767
	/* And bump the LRU for this access */
3768 3769
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3770
		list_move_tail(&vma->mm_list,
3771
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3772

3773 3774 3775
	return 0;
}

3776 3777 3778
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3779
	struct drm_device *dev = obj->base.dev;
3780
	struct i915_vma *vma, *next;
3781 3782 3783 3784 3785
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3786
	if (i915_gem_obj_is_pinned(obj)) {
3787 3788 3789 3790
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3791
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3792
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3793
			ret = i915_vma_unbind(vma);
3794 3795 3796
			if (ret)
				return ret;
		}
3797 3798
	}

3799
	if (i915_gem_obj_bound_any(obj)) {
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3810
		if (INTEL_INFO(dev)->gen < 6) {
3811 3812 3813 3814 3815
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3816
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3817 3818 3819 3820 3821 3822
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3823 3824
	}

3825 3826 3827 3828
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3829 3830 3831 3832 3833
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3834 3835 3836 3837 3838
	}

	return 0;
}

B
Ben Widawsky 已提交
3839 3840
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3841
{
B
Ben Widawsky 已提交
3842
	struct drm_i915_gem_caching *args = data;
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3856 3857 3858 3859 3860 3861
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3862 3863 3864 3865
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3866 3867 3868 3869
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3870 3871 3872 3873 3874 3875 3876

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3877 3878
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3879
{
B
Ben Widawsky 已提交
3880
	struct drm_i915_gem_caching *args = data;
3881 3882 3883 3884
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3885 3886
	switch (args->caching) {
	case I915_CACHING_NONE:
3887 3888
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3889
	case I915_CACHING_CACHED:
3890 3891
		level = I915_CACHE_LLC;
		break;
3892 3893 3894
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3895 3896 3897 3898
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3899 3900 3901 3902
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3917 3918
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3919 3920 3921 3922 3923 3924
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3925
	/* There are 2 sources that pin objects:
3926 3927 3928 3929
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3930
	 * are only called outside of the reservation path.
3931
	 */
D
Daniel Vetter 已提交
3932
	return vma->pin_count;
3933 3934
}

3935
/*
3936 3937 3938
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3939 3940
 */
int
3941 3942
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3943 3944
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3945
{
3946
	u32 old_read_domains, old_write_domain;
3947
	bool was_pin_display;
3948 3949
	int ret;

3950
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3951 3952
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3953 3954 3955
			return ret;
	}

3956 3957 3958
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3959
	was_pin_display = obj->pin_display;
3960 3961
	obj->pin_display = true;

3962 3963 3964 3965 3966 3967 3968 3969 3970
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3971 3972
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3973
	if (ret)
3974
		goto err_unpin_display;
3975

3976 3977 3978 3979
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3980 3981 3982
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3983
	if (ret)
3984
		goto err_unpin_display;
3985

3986
	i915_gem_object_flush_cpu_write_domain(obj);
3987

3988
	old_write_domain = obj->base.write_domain;
3989
	old_read_domains = obj->base.read_domains;
3990 3991 3992 3993

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3994
	obj->base.write_domain = 0;
3995
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3996 3997 3998

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3999
					    old_write_domain);
4000 4001

	return 0;
4002 4003

err_unpin_display:
4004 4005
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
4006 4007 4008 4009
	return ret;
}

void
4010 4011
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4012
{
4013 4014
	i915_gem_object_ggtt_unpin_view(obj, view);

4015
	obj->pin_display = is_pin_display(obj);
4016 4017
}

4018
int
4019
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4020
{
4021 4022
	int ret;

4023
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4024 4025
		return 0;

4026
	ret = i915_gem_object_wait_rendering(obj, false);
4027 4028 4029
	if (ret)
		return ret;

4030 4031
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4032
	return 0;
4033 4034
}

4035 4036 4037 4038 4039 4040
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4041
int
4042
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4043
{
C
Chris Wilson 已提交
4044
	uint32_t old_write_domain, old_read_domains;
4045 4046
	int ret;

4047 4048 4049
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4050
	ret = i915_gem_object_wait_rendering(obj, !write);
4051 4052 4053
	if (ret)
		return ret;

4054
	i915_gem_object_retire(obj);
4055
	i915_gem_object_flush_gtt_write_domain(obj);
4056

4057 4058
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4059

4060
	/* Flush the CPU cache if it's still invalid. */
4061
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4062
		i915_gem_clflush_object(obj, false);
4063

4064
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4065 4066 4067 4068 4069
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4070
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4071 4072 4073 4074 4075

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4076 4077
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4078
	}
4079

4080
	if (write)
4081
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4082

C
Chris Wilson 已提交
4083 4084 4085 4086
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4087 4088 4089
	return 0;
}

4090 4091 4092
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4093 4094 4095 4096
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4097 4098 4099
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4100
static int
4101
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4102
{
4103 4104
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4105
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4106
	struct drm_i915_gem_request *request, *target = NULL;
4107
	unsigned reset_counter;
4108
	int ret;
4109

4110 4111 4112 4113 4114 4115 4116
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4117

4118
	spin_lock(&file_priv->mm.lock);
4119
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4120 4121
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4122

4123
		target = request;
4124
	}
4125
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4126 4127
	if (target)
		i915_gem_request_reference(target);
4128
	spin_unlock(&file_priv->mm.lock);
4129

4130
	if (target == NULL)
4131
		return 0;
4132

4133
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4134 4135
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4136

4137
	i915_gem_request_unreference__unlocked(target);
4138

4139 4140 4141
	return ret;
}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4161 4162 4163 4164 4165 4166
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4167
{
4168
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4169
	struct i915_vma *vma;
4170
	unsigned bound;
4171 4172
	int ret;

4173 4174 4175
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4176
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4177
		return -EINVAL;
4178

4179 4180 4181
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4182 4183 4184 4185 4186 4187 4188 4189 4190
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4191
	if (vma) {
B
Ben Widawsky 已提交
4192 4193 4194
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4195
		if (i915_vma_misplaced(vma, alignment, flags)) {
4196
			unsigned long offset;
4197
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4198
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4199
			WARN(vma->pin_count,
4200
			     "bo is already pinned in %s with incorrect alignment:"
4201
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4202
			     " obj->map_and_fenceable=%d\n",
4203 4204
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4205
			     alignment,
4206
			     !!(flags & PIN_MAPPABLE),
4207
			     obj->map_and_fenceable);
4208
			ret = i915_vma_unbind(vma);
4209 4210
			if (ret)
				return ret;
4211 4212

			vma = NULL;
4213 4214 4215
		}
	}

4216
	bound = vma ? vma->bound : 0;
4217
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4218 4219 4220 4221
		/* In true PPGTT, bind has possibly changed PDEs, which
		 * means we must do a context switch before the GPU can
		 * accurately read some of the VMAs.
		 */
4222 4223
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4224 4225
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4226
	}
J
Jesse Barnes 已提交
4227

4228 4229 4230 4231 4232
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4233

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4249
		mappable = (vma->node.start + fence_size <=
4250 4251 4252 4253 4254 4255 4256
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4257
	vma->pin_count++;
4258 4259 4260
	return 0;
}

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4282
				      alignment, flags | PIN_GLOBAL);
4283 4284
}

4285
void
4286 4287
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4288
{
4289
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4290

B
Ben Widawsky 已提交
4291
	BUG_ON(!vma);
4292
	WARN_ON(vma->pin_count == 0);
4293
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4294

4295
	--vma->pin_count;
4296 4297
}

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4324 4325
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4326
		    struct drm_file *file)
4327 4328
{
	struct drm_i915_gem_busy *args = data;
4329
	struct drm_i915_gem_object *obj;
4330 4331
	int ret;

4332
	ret = i915_mutex_lock_interruptible(dev);
4333
	if (ret)
4334
		return ret;
4335

4336
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4337
	if (&obj->base == NULL) {
4338 4339
		ret = -ENOENT;
		goto unlock;
4340
	}
4341

4342 4343 4344 4345
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4346
	 */
4347
	ret = i915_gem_object_flush_active(obj);
4348

4349
	args->busy = obj->active;
4350 4351
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4352
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4353 4354
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4355
	}
4356

4357
	drm_gem_object_unreference(&obj->base);
4358
unlock:
4359
	mutex_unlock(&dev->struct_mutex);
4360
	return ret;
4361 4362 4363 4364 4365 4366
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4367
	return i915_gem_ring_throttle(dev, file_priv);
4368 4369
}

4370 4371 4372 4373
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4374
	struct drm_i915_private *dev_priv = dev->dev_private;
4375
	struct drm_i915_gem_madvise *args = data;
4376
	struct drm_i915_gem_object *obj;
4377
	int ret;
4378 4379 4380 4381 4382 4383 4384 4385 4386

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4387 4388 4389 4390
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4391
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4392
	if (&obj->base == NULL) {
4393 4394
		ret = -ENOENT;
		goto unlock;
4395 4396
	}

B
Ben Widawsky 已提交
4397
	if (i915_gem_obj_is_pinned(obj)) {
4398 4399
		ret = -EINVAL;
		goto out;
4400 4401
	}

4402 4403 4404 4405 4406 4407 4408 4409 4410
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4411 4412
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4413

C
Chris Wilson 已提交
4414
	/* if the object is no longer attached, discard its backing storage */
4415
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4416 4417
		i915_gem_object_truncate(obj);

4418
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4419

4420
out:
4421
	drm_gem_object_unreference(&obj->base);
4422
unlock:
4423
	mutex_unlock(&dev->struct_mutex);
4424
	return ret;
4425 4426
}

4427 4428
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4429
{
4430
	INIT_LIST_HEAD(&obj->global_list);
4431
	INIT_LIST_HEAD(&obj->ring_list);
4432
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4433
	INIT_LIST_HEAD(&obj->vma_list);
4434
	INIT_LIST_HEAD(&obj->batch_pool_link);
4435

4436 4437
	obj->ops = ops;

4438 4439 4440 4441 4442 4443
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4444 4445 4446 4447 4448
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4449 4450
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4451
{
4452
	struct drm_i915_gem_object *obj;
4453
	struct address_space *mapping;
D
Daniel Vetter 已提交
4454
	gfp_t mask;
4455

4456
	obj = i915_gem_object_alloc(dev);
4457 4458
	if (obj == NULL)
		return NULL;
4459

4460
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4461
		i915_gem_object_free(obj);
4462 4463
		return NULL;
	}
4464

4465 4466 4467 4468 4469 4470 4471
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4472
	mapping = file_inode(obj->base.filp)->i_mapping;
4473
	mapping_set_gfp_mask(mapping, mask);
4474

4475
	i915_gem_object_init(obj, &i915_gem_object_ops);
4476

4477 4478
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4479

4480 4481
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4497 4498
	trace_i915_gem_object_create(obj);

4499
	return obj;
4500 4501
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4526
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4527
{
4528
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4529
	struct drm_device *dev = obj->base.dev;
4530
	struct drm_i915_private *dev_priv = dev->dev_private;
4531
	struct i915_vma *vma, *next;
4532

4533 4534
	intel_runtime_pm_get(dev_priv);

4535 4536
	trace_i915_gem_object_destroy(obj);

4537
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4538 4539 4540 4541
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4542 4543
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4544

4545 4546
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4547

4548
			WARN_ON(i915_vma_unbind(vma));
4549

4550 4551
			dev_priv->mm.interruptible = was_interruptible;
		}
4552 4553
	}

B
Ben Widawsky 已提交
4554 4555 4556 4557 4558
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4559 4560
	WARN_ON(obj->frontbuffer_bits);

4561 4562 4563 4564 4565
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4566 4567
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4568
	if (discard_backing_storage(obj))
4569
		obj->madv = I915_MADV_DONTNEED;
4570
	i915_gem_object_put_pages(obj);
4571
	i915_gem_object_free_mmap_offset(obj);
4572

4573 4574
	BUG_ON(obj->pages);

4575 4576
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4577

4578 4579 4580
	if (obj->ops->release)
		obj->ops->release(obj);

4581 4582
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4583

4584
	kfree(obj->bit_17);
4585
	i915_gem_object_free(obj);
4586 4587

	intel_runtime_pm_put(dev_priv);
4588 4589
}

4590 4591
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4592 4593
{
	struct i915_vma *vma;
4594 4595 4596 4597 4598
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4599
			return vma;
4600 4601 4602 4603 4604 4605 4606 4607 4608
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4609

4610 4611 4612 4613
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4614 4615
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4616
			return vma;
4617 4618 4619
	return NULL;
}

B
Ben Widawsky 已提交
4620 4621
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4622
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4623
	WARN_ON(vma->node.allocated);
4624 4625 4626 4627 4628

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4629 4630
	vm = vma->vm;

4631 4632
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4633

4634
	list_del(&vma->vma_link);
4635

4636
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4637 4638
}

4639 4640 4641 4642
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4643
	struct intel_engine_cs *ring;
4644 4645 4646
	int i;

	for_each_ring(ring, dev_priv, i)
4647
		dev_priv->gt.stop_ring(ring);
4648 4649
}

4650
int
4651
i915_gem_suspend(struct drm_device *dev)
4652
{
4653
	struct drm_i915_private *dev_priv = dev->dev_private;
4654
	int ret = 0;
4655

4656
	mutex_lock(&dev->struct_mutex);
4657
	ret = i915_gpu_idle(dev);
4658
	if (ret)
4659
		goto err;
4660

4661
	i915_gem_retire_requests(dev);
4662

4663
	i915_gem_stop_ringbuffers(dev);
4664 4665
	mutex_unlock(&dev->struct_mutex);

4666
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4667
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4668
	flush_delayed_work(&dev_priv->mm.idle_work);
4669

4670 4671 4672 4673 4674
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4675
	return 0;
4676 4677 4678 4679

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4680 4681
}

4682
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4683
{
4684
	struct drm_device *dev = ring->dev;
4685
	struct drm_i915_private *dev_priv = dev->dev_private;
4686 4687
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4688
	int i, ret;
B
Ben Widawsky 已提交
4689

4690
	if (!HAS_L3_DPF(dev) || !remap_info)
4691
		return 0;
B
Ben Widawsky 已提交
4692

4693 4694 4695
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4696

4697 4698 4699 4700 4701
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4702
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4703 4704 4705
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4706 4707
	}

4708
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4709

4710
	return ret;
B
Ben Widawsky 已提交
4711 4712
}

4713 4714
void i915_gem_init_swizzling(struct drm_device *dev)
{
4715
	struct drm_i915_private *dev_priv = dev->dev_private;
4716

4717
	if (INTEL_INFO(dev)->gen < 5 ||
4718 4719 4720 4721 4722 4723
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4724 4725 4726
	if (IS_GEN5(dev))
		return;

4727 4728
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4729
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4730
	else if (IS_GEN7(dev))
4731
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4732 4733
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4734 4735
	else
		BUG();
4736
}
D
Daniel Vetter 已提交
4737

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4781
int i915_gem_init_rings(struct drm_device *dev)
4782
{
4783
	struct drm_i915_private *dev_priv = dev->dev_private;
4784
	int ret;
4785

4786
	ret = intel_init_render_ring_buffer(dev);
4787
	if (ret)
4788
		return ret;
4789 4790

	if (HAS_BSD(dev)) {
4791
		ret = intel_init_bsd_ring_buffer(dev);
4792 4793
		if (ret)
			goto cleanup_render_ring;
4794
	}
4795

4796
	if (intel_enable_blt(dev)) {
4797 4798 4799 4800 4801
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4802 4803 4804 4805 4806 4807
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4808 4809 4810 4811 4812
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4813

4814
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4815
	if (ret)
4816
		goto cleanup_bsd2_ring;
4817 4818 4819

	return 0;

4820 4821
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4822 4823
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4837
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4838
	struct intel_engine_cs *ring;
4839
	int ret, i;
4840 4841 4842 4843

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4844 4845 4846
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4847
	if (dev_priv->ellc_size)
4848
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4849

4850 4851 4852
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4853

4854
	if (HAS_PCH_NOP(dev)) {
4855 4856 4857 4858 4859 4860 4861 4862 4863
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4864 4865
	}

4866 4867
	i915_gem_init_swizzling(dev);

4868 4869 4870 4871 4872 4873 4874 4875
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4876 4877 4878
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4879
			goto out;
D
Daniel Vetter 已提交
4880
	}
4881

4882 4883 4884
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4885
	ret = i915_ppgtt_init_hw(dev);
4886
	if (ret && ret != -EIO) {
4887
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4888
		i915_gem_cleanup_ringbuffer(dev);
4889 4890
	}

4891
	ret = i915_gem_context_enable(dev_priv);
4892
	if (ret && ret != -EIO) {
4893
		DRM_ERROR("Context enable failed %d\n", ret);
4894
		i915_gem_cleanup_ringbuffer(dev);
4895

4896
		goto out;
4897
	}
D
Daniel Vetter 已提交
4898

4899 4900
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4901
	return ret;
4902 4903
}

4904 4905 4906 4907 4908
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4909 4910 4911
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4912
	mutex_lock(&dev->struct_mutex);
4913 4914 4915

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4916 4917 4918
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4919 4920 4921
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4922
	if (!i915.enable_execlists) {
4923
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4924 4925 4926
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4927
	} else {
4928
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4929 4930 4931
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4932 4933
	}

4934 4935 4936 4937 4938 4939 4940 4941
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4942
	ret = i915_gem_init_userptr(dev);
4943 4944
	if (ret)
		goto out_unlock;
4945

4946
	i915_gem_init_global_gtt(dev);
4947

4948
	ret = i915_gem_context_init(dev);
4949 4950
	if (ret)
		goto out_unlock;
4951

D
Daniel Vetter 已提交
4952 4953
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4954
		goto out_unlock;
4955

4956
	ret = i915_gem_init_hw(dev);
4957 4958 4959 4960 4961 4962 4963 4964
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4965
	}
4966 4967

out_unlock:
4968
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4969
	mutex_unlock(&dev->struct_mutex);
4970

4971
	return ret;
4972 4973
}

4974 4975 4976
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4977
	struct drm_i915_private *dev_priv = dev->dev_private;
4978
	struct intel_engine_cs *ring;
4979
	int i;
4980

4981
	for_each_ring(ring, dev_priv, i)
4982
		dev_priv->gt.cleanup_ring(ring);
4983 4984
}

4985
static void
4986
init_ring_lists(struct intel_engine_cs *ring)
4987 4988 4989 4990 4991
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4992 4993
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4994
{
4995 4996
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4997 4998 4999 5000
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5001
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5002 5003
}

5004 5005 5006
void
i915_gem_load(struct drm_device *dev)
{
5007
	struct drm_i915_private *dev_priv = dev->dev_private;
5008 5009
	int i;

5010
	dev_priv->objects =
5011 5012 5013 5014
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5015 5016 5017 5018 5019
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5020 5021 5022 5023 5024
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5025

B
Ben Widawsky 已提交
5026 5027 5028
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5029
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5030 5031
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5032
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5033 5034
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5035
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5036
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5037 5038
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5039 5040
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5041
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5042

5043 5044
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5045 5046 5047
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5048 5049 5050 5051
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5052 5053 5054 5055
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5056
	/* Initialize fence registers to zero */
5057 5058
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5059

5060
	i915_gem_detect_bit_6_swizzle(dev);
5061
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5062

5063 5064
	dev_priv->mm.interruptible = true;

5065
	i915_gem_shrinker_init(dev_priv);
5066 5067

	mutex_init(&dev_priv->fb_tracking.lock);
5068
}
5069

5070
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5071
{
5072
	struct drm_i915_file_private *file_priv = file->driver_priv;
5073 5074 5075 5076 5077

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5078
	spin_lock(&file_priv->mm.lock);
5079 5080 5081 5082 5083 5084 5085 5086 5087
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5088
	spin_unlock(&file_priv->mm.lock);
5089

5090 5091 5092 5093 5094
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5095 5096 5097 5098 5099
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5100
	int ret;
5101 5102 5103 5104 5105 5106 5107 5108 5109

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5110
	file_priv->file = file;
5111
	INIT_LIST_HEAD(&file_priv->rps_boost);
5112 5113 5114 5115

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5116 5117 5118
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5119

5120
	return ret;
5121 5122
}

5123 5124 5125 5126 5127 5128 5129 5130 5131
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5149
/* All the new VM stuff */
5150 5151 5152
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5153 5154 5155 5156
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5157
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5158 5159

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5160 5161 5162 5163
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5164 5165
			return vma->node.start;
	}
5166

5167 5168
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5169 5170 5171
	return -1;
}

5172 5173
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5174
			      const struct i915_ggtt_view *view)
5175
{
5176
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5177 5178 5179
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5180 5181
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
			return vma->node.start;

	WARN(1, "global vma for this object not found.\n");
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5205
				  const struct i915_ggtt_view *view)
5206 5207 5208 5209 5210 5211
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5212
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5213
		    drm_mm_node_allocated(&vma->node))
5214 5215 5216 5217 5218 5219 5220
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5221
	struct i915_vma *vma;
5222

5223 5224
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5236
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5237 5238 5239

	BUG_ON(list_empty(&o->vma_list));

5240 5241 5242 5243
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5244 5245
		if (vma->vm == vm)
			return vma->node.size;
5246
	}
5247 5248 5249
	return 0;
}

5250
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5251 5252
{
	struct i915_vma *vma;
5253 5254 5255 5256 5257 5258 5259 5260
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->pin_count > 0)
			return true;
	}
	return false;
5261
}
5262