i915_gem.c 134.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156
static inline bool
157
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158
{
159
	return i915_gem_obj_bound_any(obj) && !obj->active;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
174
		if (i915_gem_obj_is_pinned(obj))
175
			pinned += i915_gem_obj_ggtt_size(obj);
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->gtt.base.total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186
{
187 188 189 190 191
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
242

243 244 245 246 247 248 249 250 251 252 253 254 255
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
256
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257
		char *vaddr = obj->phys_handle->vaddr;
258 259 260
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
275
				mark_page_accessed(page);
276
			page_cache_release(page);
277 278
			vaddr += PAGE_SIZE;
		}
279
		obj->dirty = 0;
280 281
	}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
315 316 317 318 319 320 321
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
322
	int ret;
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

337 338 339 340
	ret = drop_pages(obj);
	if (ret)
		return ret;

341 342 343 344 345 346
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
347 348 349
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
350 351 352 353 354 355 356 357 358 359
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
360 361 362 363 364 365 366 367
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

383
	drm_clflush_virt_range(vaddr, args->size);
384 385 386 387
	i915_gem_chipset_flush(dev);
	return 0;
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
404
		bool dumb,
405
		uint32_t *handle_p)
406
{
407
	struct drm_i915_gem_object *obj;
408 409
	int ret;
	u32 handle;
410

411
	size = roundup(size, PAGE_SIZE);
412 413
	if (size == 0)
		return -EINVAL;
414 415

	/* Allocate the new object */
416
	obj = i915_gem_alloc_object(dev, size);
417 418 419
	if (obj == NULL)
		return -ENOMEM;

420
	obj->base.dumb = dumb;
421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423 424 425
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, true, &args->handle);
441 442 443 444 445 446 447 448 449 450
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
451

452
	return i915_gem_create(file, dev,
453
			       args->size, false, &args->handle);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

482
static inline int
483 484
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
533 534

		i915_gem_object_retire(obj);
535 536 537 538 539 540 541 542 543 544 545
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

546 547 548
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
549
static int
550 551 552 553 554 555 556
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

557
	if (unlikely(page_do_bit17_swizzling))
558 559 560 561 562 563 564 565 566 567 568
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

569
	return ret ? -EFAULT : 0;
570 571
}

572 573 574 575
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
576
	if (unlikely(swizzled)) {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

594 595 596 597 598 599 600 601 602 603 604 605
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
606 607 608
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
609 610 611 612 613 614 615 616 617 618 619

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

620
	return ret ? - EFAULT : 0;
621 622
}

623
static int
624 625 626 627
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
628
{
629
	char __user *user_data;
630
	ssize_t remain;
631
	loff_t offset;
632
	int shmem_page_offset, page_length, ret = 0;
633
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634
	int prefaulted = 0;
635
	int needs_clflush = 0;
636
	struct sg_page_iter sg_iter;
637

V
Ville Syrjälä 已提交
638
	user_data = to_user_ptr(args->data_ptr);
639 640
	remain = args->size;

641
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642

643
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644 645 646
	if (ret)
		return ret;

647
	offset = args->offset;
648

649 650
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
651
		struct page *page = sg_page_iter_page(&sg_iter);
652 653 654 655

		if (remain <= 0)
			break;

656 657 658 659 660
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
661
		shmem_page_offset = offset_in_page(offset);
662 663 664 665
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

666 667 668
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

669 670 671 672 673
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
674 675 676

		mutex_unlock(&dev->struct_mutex);

677
		if (likely(!i915.prefault_disable) && !prefaulted) {
678
			ret = fault_in_multipages_writeable(user_data, remain);
679 680 681 682 683 684 685
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
686

687 688 689
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
690

691
		mutex_lock(&dev->struct_mutex);
692 693

		if (ret)
694 695
			goto out;

696
next_page:
697
		remain -= page_length;
698
		user_data += page_length;
699 700 701
		offset += page_length;
	}

702
out:
703 704
	i915_gem_object_unpin_pages(obj);

705 706 707
	return ret;
}

708 709 710 711 712 713 714
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715
		     struct drm_file *file)
716 717
{
	struct drm_i915_gem_pread *args = data;
718
	struct drm_i915_gem_object *obj;
719
	int ret = 0;
720

721 722 723 724
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
725
		       to_user_ptr(args->data_ptr),
726 727 728
		       args->size))
		return -EFAULT;

729
	ret = i915_mutex_lock_interruptible(dev);
730
	if (ret)
731
		return ret;
732

733
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734
	if (&obj->base == NULL) {
735 736
		ret = -ENOENT;
		goto unlock;
737
	}
738

739
	/* Bounds check source.  */
740 741
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
742
		ret = -EINVAL;
743
		goto out;
C
Chris Wilson 已提交
744 745
	}

746 747 748 749 750 751 752 753
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
754 755
	trace_i915_gem_object_pread(obj, args->offset, args->size);

756
	ret = i915_gem_shmem_pread(dev, obj, args, file);
757

758
out:
759
	drm_gem_object_unreference(&obj->base);
760
unlock:
761
	mutex_unlock(&dev->struct_mutex);
762
	return ret;
763 764
}

765 766
/* This is the fast write path which cannot handle
 * page faults in the source data
767
 */
768 769 770 771 772 773

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
774
{
775 776
	void __iomem *vaddr_atomic;
	void *vaddr;
777
	unsigned long unwritten;
778

P
Peter Zijlstra 已提交
779
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780 781 782
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
783
						      user_data, length);
P
Peter Zijlstra 已提交
784
	io_mapping_unmap_atomic(vaddr_atomic);
785
	return unwritten;
786 787
}

788 789 790 791
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
792
static int
793 794
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
795
			 struct drm_i915_gem_pwrite *args,
796
			 struct drm_file *file)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	ssize_t remain;
800
	loff_t offset, page_base;
801
	char __user *user_data;
D
Daniel Vetter 已提交
802 803
	int page_offset, page_length, ret;

804
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
805 806 807 808 809 810 811 812 813 814
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
815

V
Ville Syrjälä 已提交
816
	user_data = to_user_ptr(args->data_ptr);
817 818
	remain = args->size;

819
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820 821 822 823

	while (remain > 0) {
		/* Operation in this page
		 *
824 825 826
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
827
		 */
828 829
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
830 831 832 833 834
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
835 836
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
837
		 */
B
Ben Widawsky 已提交
838
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
839 840 841 842
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
843

844 845 846
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
847 848
	}

D
Daniel Vetter 已提交
849
out_unpin:
B
Ben Widawsky 已提交
850
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
851
out:
852
	return ret;
853 854
}

855 856 857 858
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
859
static int
860 861 862 863 864
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
865
{
866
	char *vaddr;
867
	int ret;
868

869
	if (unlikely(page_do_bit17_swizzling))
870
		return -EINVAL;
871

872 873 874 875
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
876 877
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
878 879 880 881
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
882

883
	return ret ? -EFAULT : 0;
884 885
}

886 887
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
888
static int
889 890 891 892 893
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
894
{
895 896
	char *vaddr;
	int ret;
897

898
	vaddr = kmap(page);
899
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900 901 902
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
903 904
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905 906
						user_data,
						page_length);
907 908 909 910 911
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
912 913 914
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
915
	kunmap(page);
916

917
	return ret ? -EFAULT : 0;
918 919 920
}

static int
921 922 923 924
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
925 926
{
	ssize_t remain;
927 928
	loff_t offset;
	char __user *user_data;
929
	int shmem_page_offset, page_length, ret = 0;
930
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931
	int hit_slowpath = 0;
932 933
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
934
	struct sg_page_iter sg_iter;
935

V
Ville Syrjälä 已提交
936
	user_data = to_user_ptr(args->data_ptr);
937 938
	remain = args->size;

939
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940

941 942 943 944 945
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
946
		needs_clflush_after = cpu_write_needs_clflush(obj);
947 948 949
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
950 951

		i915_gem_object_retire(obj);
952
	}
953 954 955 956 957
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
958

959 960 961 962 963 964
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

965
	offset = args->offset;
966
	obj->dirty = 1;
967

968 969
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
970
		struct page *page = sg_page_iter_page(&sg_iter);
971
		int partial_cacheline_write;
972

973 974 975
		if (remain <= 0)
			break;

976 977 978 979 980
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
981
		shmem_page_offset = offset_in_page(offset);
982 983 984 985 986

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

987 988 989 990 991 992 993
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

994 995 996
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

997 998 999 1000 1001 1002
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1003 1004 1005

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1006 1007 1008 1009
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1010

1011
		mutex_lock(&dev->struct_mutex);
1012 1013

		if (ret)
1014 1015
			goto out;

1016
next_page:
1017
		remain -= page_length;
1018
		user_data += page_length;
1019
		offset += page_length;
1020 1021
	}

1022
out:
1023 1024
	i915_gem_object_unpin_pages(obj);

1025
	if (hit_slowpath) {
1026 1027 1028 1029 1030 1031 1032
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 1034
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1035
		}
1036
	}
1037

1038
	if (needs_clflush_after)
1039
		i915_gem_chipset_flush(dev);
1040

1041
	return ret;
1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051
		      struct drm_file *file)
1052 1053
{
	struct drm_i915_gem_pwrite *args = data;
1054
	struct drm_i915_gem_object *obj;
1055 1056 1057 1058 1059 1060
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1061
		       to_user_ptr(args->data_ptr),
1062 1063 1064
		       args->size))
		return -EFAULT;

1065
	if (likely(!i915.prefault_disable)) {
1066 1067 1068 1069 1070
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1071

1072
	ret = i915_mutex_lock_interruptible(dev);
1073
	if (ret)
1074
		return ret;
1075

1076
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077
	if (&obj->base == NULL) {
1078 1079
		ret = -ENOENT;
		goto unlock;
1080
	}
1081

1082
	/* Bounds check destination. */
1083 1084
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1085
		ret = -EINVAL;
1086
		goto out;
C
Chris Wilson 已提交
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1097 1098
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1099
	ret = -EFAULT;
1100 1101 1102 1103 1104 1105
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1106 1107 1108
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1109
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1110 1111 1112
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1113
	}
1114

1115 1116 1117 1118 1119 1120
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1121

1122
out:
1123
	drm_gem_object_unreference(&obj->base);
1124
unlock:
1125
	mutex_unlock(&dev->struct_mutex);
1126 1127 1128
	return ret;
}

1129
int
1130
i915_gem_check_wedge(struct i915_gpu_error *error,
1131 1132
		     bool interruptible)
{
1133
	if (i915_reset_in_progress(error)) {
1134 1135 1136 1137 1138
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1139 1140
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1141 1142
			return -EIO;

1143 1144 1145 1146 1147 1148 1149
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1150 1151 1152 1153 1154 1155 1156 1157 1158
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
1159
int
1160
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1161 1162 1163 1164 1165 1166
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1167
	if (seqno == ring->outstanding_lazy_seqno)
1168
		ret = i915_add_request(ring, NULL);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184 1185 1186 1187 1188 1189 1190 1191
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1192
/**
1193
 * __i915_wait_seqno - wait until execution of seqno has finished
1194 1195
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1196
 * @reset_counter: reset sequence associated with the given seqno
1197 1198 1199
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1200 1201 1202 1203 1204 1205 1206
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1207 1208 1209
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1210
int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1211
			unsigned reset_counter,
1212
			bool interruptible,
1213
			s64 *timeout,
1214
			struct drm_i915_file_private *file_priv)
1215
{
1216
	struct drm_device *dev = ring->dev;
1217
	struct drm_i915_private *dev_priv = dev->dev_private;
1218 1219
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220
	DEFINE_WAIT(wait);
1221
	unsigned long timeout_expire;
1222
	s64 before, now;
1223 1224
	int ret;

1225
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226

1227 1228 1229
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1230
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1231

1232
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1233 1234 1235 1236 1237 1238 1239
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1240
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1241 1242
		return -ENODEV;

1243 1244
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1245
	before = ktime_get_raw_ns();
1246 1247
	for (;;) {
		struct timer_list timer;
1248

1249 1250
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1251

1252 1253
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1254 1255 1256 1257 1258 1259 1260 1261
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1262

1263 1264 1265 1266
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1267

1268 1269 1270 1271 1272
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1273
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1274 1275 1276 1277 1278 1279
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1280 1281
			unsigned long expire;

1282
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1283
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1284 1285 1286
			mod_timer(&timer, expire);
		}

1287
		io_schedule();
1288 1289 1290 1291 1292 1293

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1294
	now = ktime_get_raw_ns();
1295
	trace_i915_gem_request_wait_end(ring, seqno);
1296

1297 1298
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1299 1300

	finish_wait(&ring->irq_queue, &wait);
1301 1302

	if (timeout) {
1303 1304 1305
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1306 1307
	}

1308
	return ret;
1309 1310 1311 1312 1313 1314 1315
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1316
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1317 1318 1319 1320
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
1321
	unsigned reset_counter;
1322 1323 1324 1325 1326
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1327
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1328 1329 1330 1331 1332 1333 1334
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1335 1336 1337
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
	return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
				 NULL, NULL);
1338 1339
}

1340
static int
1341
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1342
{
1343 1344
	if (!obj->active)
		return 0;
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1358 1359 1360 1361 1362 1363 1364 1365
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1366
	struct intel_engine_cs *ring = obj->ring;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1378
	return i915_gem_object_wait_rendering__tail(obj);
1379 1380
}

1381 1382 1383 1384 1385
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1386
					    struct drm_i915_file_private *file_priv,
1387 1388 1389 1390
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1391
	struct intel_engine_cs *ring = obj->ring;
1392
	unsigned reset_counter;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1403
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1404 1405 1406 1407 1408 1409 1410
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1411
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1412
	mutex_unlock(&dev->struct_mutex);
1413 1414
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
				file_priv);
1415
	mutex_lock(&dev->struct_mutex);
1416 1417
	if (ret)
		return ret;
1418

1419
	return i915_gem_object_wait_rendering__tail(obj);
1420 1421
}

1422
/**
1423 1424
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1425 1426 1427
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1428
			  struct drm_file *file)
1429 1430
{
	struct drm_i915_gem_set_domain *args = data;
1431
	struct drm_i915_gem_object *obj;
1432 1433
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1434 1435
	int ret;

1436
	/* Only handle setting domains to types used by the CPU. */
1437
	if (write_domain & I915_GEM_GPU_DOMAINS)
1438 1439
		return -EINVAL;

1440
	if (read_domains & I915_GEM_GPU_DOMAINS)
1441 1442 1443 1444 1445 1446 1447 1448
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1449
	ret = i915_mutex_lock_interruptible(dev);
1450
	if (ret)
1451
		return ret;
1452

1453
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1454
	if (&obj->base == NULL) {
1455 1456
		ret = -ENOENT;
		goto unlock;
1457
	}
1458

1459 1460 1461 1462
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1463 1464 1465
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1466 1467 1468
	if (ret)
		goto unref;

1469 1470
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1471 1472 1473 1474 1475 1476 1477

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1478
	} else {
1479
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1480 1481
	}

1482
unref:
1483
	drm_gem_object_unreference(&obj->base);
1484
unlock:
1485 1486 1487 1488 1489 1490 1491 1492 1493
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1494
			 struct drm_file *file)
1495 1496
{
	struct drm_i915_gem_sw_finish *args = data;
1497
	struct drm_i915_gem_object *obj;
1498 1499
	int ret = 0;

1500
	ret = i915_mutex_lock_interruptible(dev);
1501
	if (ret)
1502
		return ret;
1503

1504
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1505
	if (&obj->base == NULL) {
1506 1507
		ret = -ENOENT;
		goto unlock;
1508 1509 1510
	}

	/* Pinned buffers may be scanout, so flush the cache */
1511 1512
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1513

1514
	drm_gem_object_unreference(&obj->base);
1515
unlock:
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1536 1537 1538
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1539
		    struct drm_file *file)
1540 1541 1542 1543 1544
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1545
	obj = drm_gem_object_lookup(dev, file, args->handle);
1546
	if (obj == NULL)
1547
		return -ENOENT;
1548

1549 1550 1551 1552 1553 1554 1555 1556
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1557
	addr = vm_mmap(obj->filp, 0, args->size,
1558 1559
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1560
	drm_gem_object_unreference_unlocked(obj);
1561 1562 1563 1564 1565 1566 1567 1568
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1587 1588
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1589
	struct drm_i915_private *dev_priv = dev->dev_private;
1590 1591 1592
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1593
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1594

1595 1596
	intel_runtime_pm_get(dev_priv);

1597 1598 1599 1600
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1601 1602 1603
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1604

C
Chris Wilson 已提交
1605 1606
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1607 1608 1609 1610 1611 1612 1613 1614 1615
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1616 1617
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1618
		ret = -EFAULT;
1619 1620 1621
		goto unlock;
	}

1622
	/* Now bind it into the GTT if needed */
1623
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1624 1625
	if (ret)
		goto unlock;
1626

1627 1628 1629
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1630

1631
	ret = i915_gem_object_get_fence(obj);
1632
	if (ret)
1633
		goto unpin;
1634

1635
	/* Finally, remap it using the new GTT offset */
1636 1637
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1638

1639
	if (!obj->fault_mappable) {
1640 1641 1642
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1643 1644
		int i;

1645
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1658
unpin:
B
Ben Widawsky 已提交
1659
	i915_gem_object_ggtt_unpin(obj);
1660
unlock:
1661
	mutex_unlock(&dev->struct_mutex);
1662
out:
1663
	switch (ret) {
1664
	case -EIO:
1665 1666 1667 1668 1669 1670 1671
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1672 1673 1674
			ret = VM_FAULT_SIGBUS;
			break;
		}
1675
	case -EAGAIN:
D
Daniel Vetter 已提交
1676 1677 1678 1679
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1680
		 */
1681 1682
	case 0:
	case -ERESTARTSYS:
1683
	case -EINTR:
1684 1685 1686 1687 1688
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1689 1690
		ret = VM_FAULT_NOPAGE;
		break;
1691
	case -ENOMEM:
1692 1693
		ret = VM_FAULT_OOM;
		break;
1694
	case -ENOSPC:
1695
	case -EFAULT:
1696 1697
		ret = VM_FAULT_SIGBUS;
		break;
1698
	default:
1699
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1700 1701
		ret = VM_FAULT_SIGBUS;
		break;
1702
	}
1703 1704 1705

	intel_runtime_pm_put(dev_priv);
	return ret;
1706 1707
}

1708 1709 1710 1711
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1712
 * Preserve the reservation of the mmapping with the DRM core code, but
1713 1714 1715 1716 1717 1718 1719 1720 1721
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1722
void
1723
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1724
{
1725 1726
	if (!obj->fault_mappable)
		return;
1727

1728 1729
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1730
	obj->fault_mappable = false;
1731 1732
}

1733 1734 1735 1736 1737 1738 1739 1740 1741
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1742
uint32_t
1743
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1744
{
1745
	uint32_t gtt_size;
1746 1747

	if (INTEL_INFO(dev)->gen >= 4 ||
1748 1749
	    tiling_mode == I915_TILING_NONE)
		return size;
1750 1751 1752

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1753
		gtt_size = 1024*1024;
1754
	else
1755
		gtt_size = 512*1024;
1756

1757 1758
	while (gtt_size < size)
		gtt_size <<= 1;
1759

1760
	return gtt_size;
1761 1762
}

1763 1764 1765 1766 1767
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1768
 * potential fence register mapping.
1769
 */
1770 1771 1772
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1773 1774 1775 1776 1777
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1778
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1779
	    tiling_mode == I915_TILING_NONE)
1780 1781
		return 4096;

1782 1783 1784 1785
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1786
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1787 1788
}

1789 1790 1791 1792 1793
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1794
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1795 1796
		return 0;

1797 1798
	dev_priv->mm.shrinker_no_lock_stealing = true;

1799 1800
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1801
		goto out;
1802 1803 1804 1805 1806 1807 1808 1809

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1810 1811 1812 1813 1814
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1815 1816
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1817
		goto out;
1818 1819

	i915_gem_shrink_all(dev_priv);
1820 1821 1822 1823 1824
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1825 1826 1827 1828 1829 1830 1831
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1832
static int
1833 1834
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1835
		  uint32_t handle, bool dumb,
1836
		  uint64_t *offset)
1837
{
1838
	struct drm_i915_private *dev_priv = dev->dev_private;
1839
	struct drm_i915_gem_object *obj;
1840 1841
	int ret;

1842
	ret = i915_mutex_lock_interruptible(dev);
1843
	if (ret)
1844
		return ret;
1845

1846
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1847
	if (&obj->base == NULL) {
1848 1849 1850
		ret = -ENOENT;
		goto unlock;
	}
1851

1852 1853 1854 1855 1856 1857 1858
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1859
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1860
		ret = -E2BIG;
1861
		goto out;
1862 1863
	}

1864
	if (obj->madv != I915_MADV_WILLNEED) {
1865
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1866
		ret = -EFAULT;
1867
		goto out;
1868 1869
	}

1870 1871 1872
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1873

1874
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1875

1876
out:
1877
	drm_gem_object_unreference(&obj->base);
1878
unlock:
1879
	mutex_unlock(&dev->struct_mutex);
1880
	return ret;
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1913
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1914 1915
}

1916 1917 1918 1919 1920 1921
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1922 1923 1924
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1925
{
1926
	i915_gem_object_free_mmap_offset(obj);
1927

1928 1929
	if (obj->base.filp == NULL)
		return;
1930

D
Daniel Vetter 已提交
1931 1932 1933 1934 1935
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1936
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1937 1938
	obj->madv = __I915_MADV_PURGED;
}
1939

1940 1941 1942
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1943
{
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1958 1959
}

1960
static void
1961
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1962
{
1963 1964
	struct sg_page_iter sg_iter;
	int ret;
1965

1966
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1967

C
Chris Wilson 已提交
1968 1969 1970 1971 1972 1973
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1974
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1975 1976 1977
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1978
	if (i915_gem_object_needs_bit17_swizzle(obj))
1979 1980
		i915_gem_object_save_bit_17_swizzle(obj);

1981 1982
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1983

1984
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1985
		struct page *page = sg_page_iter_page(&sg_iter);
1986

1987
		if (obj->dirty)
1988
			set_page_dirty(page);
1989

1990
		if (obj->madv == I915_MADV_WILLNEED)
1991
			mark_page_accessed(page);
1992

1993
		page_cache_release(page);
1994
	}
1995
	obj->dirty = 0;
1996

1997 1998
	sg_free_table(obj->pages);
	kfree(obj->pages);
1999
}
C
Chris Wilson 已提交
2000

2001
int
2002 2003 2004 2005
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2006
	if (obj->pages == NULL)
2007 2008
		return 0;

2009 2010 2011
	if (obj->pages_pin_count)
		return -EBUSY;

2012
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2013

2014 2015 2016
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2017
	list_del(&obj->global_list);
2018

2019
	ops->put_pages(obj);
2020
	obj->pages = NULL;
2021

2022
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2023 2024 2025 2026

	return 0;
}

2027 2028 2029
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2030
{
2031 2032 2033 2034 2035 2036 2037 2038
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2039
	unsigned long count = 0;
C
Chris Wilson 已提交
2040

2041
	/*
2042
	 * As we may completely rewrite the (un)bound list whilst unbinding
2043 2044 2045
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2059
	 */
2060
	for (phase = phases; phase->list; phase++) {
2061
		struct list_head still_in_list;
2062

2063 2064
		if ((flags & phase->bit) == 0)
			continue;
2065

2066
		INIT_LIST_HEAD(&still_in_list);
2067
		while (count < target && !list_empty(phase->list)) {
2068 2069
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2070

2071
			obj = list_first_entry(phase->list,
2072 2073
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2074

2075 2076
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2077
				continue;
2078

2079
			drm_gem_object_reference(&obj->base);
2080

2081 2082 2083
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2084 2085
				if (i915_vma_unbind(vma))
					break;
2086

2087 2088 2089 2090 2091
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2092
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2093 2094 2095 2096 2097
	}

	return count;
}

2098
static unsigned long
C
Chris Wilson 已提交
2099 2100 2101
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2102 2103
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2104 2105
}

2106
static int
C
Chris Wilson 已提交
2107
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2108
{
C
Chris Wilson 已提交
2109
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2110 2111
	int page_count, i;
	struct address_space *mapping;
2112 2113
	struct sg_table *st;
	struct scatterlist *sg;
2114
	struct sg_page_iter sg_iter;
2115
	struct page *page;
2116
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2117
	gfp_t gfp;
2118

C
Chris Wilson 已提交
2119 2120 2121 2122 2123 2124 2125
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2126 2127 2128 2129
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2130
	page_count = obj->base.size / PAGE_SIZE;
2131 2132
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2133
		return -ENOMEM;
2134
	}
2135

2136 2137 2138 2139 2140
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2141
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2142
	gfp = mapping_gfp_mask(mapping);
2143
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2144
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2145 2146 2147
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2148 2149
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2150 2151 2152 2153 2154
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2155 2156 2157 2158 2159 2160 2161 2162
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2163
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2164 2165 2166
			if (IS_ERR(page))
				goto err_pages;
		}
2167 2168 2169 2170 2171 2172 2173 2174
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2175 2176 2177 2178 2179 2180 2181 2182 2183
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2184 2185 2186

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2187
	}
2188 2189 2190 2191
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2192 2193
	obj->pages = st;

2194
	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 2196
		i915_gem_object_do_bit_17_swizzle(obj);

2197 2198 2199 2200
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2201 2202 2203
	return 0;

err_pages:
2204 2205
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2206
		page_cache_release(sg_page_iter_page(&sg_iter));
2207 2208
	sg_free_table(st);
	kfree(st);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2238
	if (obj->pages)
2239 2240
		return 0;

2241
	if (obj->madv != I915_MADV_WILLNEED) {
2242
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2243
		return -EFAULT;
2244 2245
	}

2246 2247
	BUG_ON(obj->pages_pin_count);

2248 2249 2250 2251
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2252
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2253
	return 0;
2254 2255
}

B
Ben Widawsky 已提交
2256
static void
2257
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2258
			       struct intel_engine_cs *ring)
2259
{
2260
	u32 seqno = intel_ring_get_seqno(ring);
2261

2262
	BUG_ON(ring == NULL);
2263 2264 2265 2266
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2267
	obj->ring = ring;
2268 2269

	/* Add a reference if we're newly entering the active list. */
2270 2271 2272
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2273
	}
2274

2275
	list_move_tail(&obj->ring_list, &ring->active_list);
2276

2277
	obj->last_read_seqno = seqno;
2278 2279
}

B
Ben Widawsky 已提交
2280
void i915_vma_move_to_active(struct i915_vma *vma,
2281
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2282 2283 2284 2285 2286
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2287 2288
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2289
{
B
Ben Widawsky 已提交
2290
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2291 2292
	struct i915_address_space *vm;
	struct i915_vma *vma;
2293

2294
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2295
	BUG_ON(!obj->active);
2296

2297 2298 2299 2300 2301
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2302

2303 2304
	intel_fb_obj_flush(obj, true);

2305
	list_del_init(&obj->ring_list);
2306 2307
	obj->ring = NULL;

2308 2309 2310 2311 2312
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2313 2314 2315 2316 2317

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2318
}
2319

2320 2321 2322
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2323
	struct intel_engine_cs *ring = obj->ring;
2324 2325 2326 2327 2328 2329 2330 2331 2332

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2333
static int
2334
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2335
{
2336
	struct drm_i915_private *dev_priv = dev->dev_private;
2337
	struct intel_engine_cs *ring;
2338
	int ret, i, j;
2339

2340
	/* Carefully retire all requests without writing to the rings */
2341
	for_each_ring(ring, dev_priv, i) {
2342 2343 2344
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2345 2346
	}
	i915_gem_retire_requests(dev);
2347 2348

	/* Finally reset hw state */
2349
	for_each_ring(ring, dev_priv, i) {
2350
		intel_ring_init_seqno(ring, seqno);
2351

2352 2353
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2354
	}
2355

2356
	return 0;
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2385 2386
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2387
{
2388 2389 2390 2391
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2392
		int ret = i915_gem_init_seqno(dev, 0);
2393 2394
		if (ret)
			return ret;
2395

2396 2397
		dev_priv->next_seqno = 1;
	}
2398

2399
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2400
	return 0;
2401 2402
}

2403
int __i915_add_request(struct intel_engine_cs *ring,
2404
		       struct drm_file *file,
2405
		       struct drm_i915_gem_object *obj,
2406
		       u32 *out_seqno)
2407
{
2408
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2409
	struct drm_i915_gem_request *request;
2410
	struct intel_ringbuffer *ringbuf;
2411
	u32 request_ring_position, request_start;
2412 2413
	int ret;

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2425 2426 2427 2428 2429 2430 2431
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2432 2433 2434 2435 2436 2437 2438 2439 2440
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2441

2442 2443 2444 2445 2446
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2447
	request_ring_position = intel_ring_get_tail(ringbuf);
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2458

2459
	request->seqno = intel_ring_get_seqno(ring);
2460
	request->ring = ring;
2461
	request->head = request_start;
2462
	request->tail = request_ring_position;
2463 2464 2465 2466 2467 2468 2469

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2470
	request->batch_obj = obj;
2471

2472 2473 2474 2475 2476 2477 2478 2479
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2480

2481
	request->emitted_jiffies = jiffies;
2482
	list_add_tail(&request->list, &ring->request_list);
2483
	request->file_priv = NULL;
2484

C
Chris Wilson 已提交
2485 2486 2487
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2488
		spin_lock(&file_priv->mm.lock);
2489
		request->file_priv = file_priv;
2490
		list_add_tail(&request->client_list,
2491
			      &file_priv->mm.request_list);
2492
		spin_unlock(&file_priv->mm.lock);
2493
	}
2494

2495
	trace_i915_gem_request_add(ring, request->seqno);
2496
	ring->outstanding_lazy_seqno = 0;
2497
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2498

2499
	i915_queue_hangcheck(ring->dev);
2500

2501 2502 2503 2504 2505
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2506

2507
	if (out_seqno)
2508
		*out_seqno = request->seqno;
2509
	return 0;
2510 2511
}

2512 2513
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2514
{
2515
	struct drm_i915_file_private *file_priv = request->file_priv;
2516

2517 2518
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2519

2520
	spin_lock(&file_priv->mm.lock);
2521 2522
	list_del(&request->client_list);
	request->file_priv = NULL;
2523
	spin_unlock(&file_priv->mm.lock);
2524 2525
}

2526
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2527
				   const struct intel_context *ctx)
2528
{
2529
	unsigned long elapsed;
2530

2531 2532 2533
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2534 2535 2536
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2537
		if (!i915_gem_context_is_default(ctx)) {
2538
			DRM_DEBUG("context hanging too fast, banning!\n");
2539
			return true;
2540 2541 2542
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2543
			return true;
2544
		}
2545 2546 2547 2548 2549
	}

	return false;
}

2550
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551
				  struct intel_context *ctx,
2552
				  const bool guilty)
2553
{
2554 2555 2556 2557
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2558

2559 2560 2561
	hs = &ctx->hang_stats;

	if (guilty) {
2562
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2563 2564 2565 2566
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2567 2568 2569
	}
}

2570 2571
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
2572 2573
	struct intel_context *ctx = request->ctx;

2574 2575 2576
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2577 2578 2579
	if (ctx) {
		if (i915.enable_execlists) {
			struct intel_engine_cs *ring = request->ring;
2580

2581 2582 2583
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2584 2585
		i915_gem_context_unreference(ctx);
	}
2586 2587 2588
	kfree(request);
}

2589
struct drm_i915_gem_request *
2590
i915_gem_find_active_request(struct intel_engine_cs *ring)
2591
{
2592
	struct drm_i915_gem_request *request;
2593 2594 2595
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2596 2597 2598 2599

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2600

2601
		return request;
2602
	}
2603 2604 2605 2606 2607

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2608
				       struct intel_engine_cs *ring)
2609 2610 2611 2612
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2613
	request = i915_gem_find_active_request(ring);
2614 2615 2616 2617 2618 2619

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2620
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2621 2622

	list_for_each_entry_continue(request, &ring->request_list, list)
2623
		i915_set_reset_status(dev_priv, request->ctx, false);
2624
}
2625

2626
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2627
					struct intel_engine_cs *ring)
2628
{
2629
	while (!list_empty(&ring->active_list)) {
2630
		struct drm_i915_gem_object *obj;
2631

2632 2633 2634
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2635

2636
		i915_gem_object_move_to_inactive(obj);
2637
	}
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2672 2673 2674 2675 2676

	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2677 2678
}

2679
void i915_gem_restore_fences(struct drm_device *dev)
2680 2681 2682 2683
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2684
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2685
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2686

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2697 2698 2699
	}
}

2700
void i915_gem_reset(struct drm_device *dev)
2701
{
2702
	struct drm_i915_private *dev_priv = dev->dev_private;
2703
	struct intel_engine_cs *ring;
2704
	int i;
2705

2706 2707 2708 2709 2710 2711 2712 2713
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2714
	for_each_ring(ring, dev_priv, i)
2715
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2716

2717 2718
	i915_gem_context_reset(dev);

2719
	i915_gem_restore_fences(dev);
2720 2721 2722 2723 2724
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2725
void
2726
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2727 2728 2729
{
	uint32_t seqno;

C
Chris Wilson 已提交
2730
	if (list_empty(&ring->request_list))
2731 2732
		return;

C
Chris Wilson 已提交
2733
	WARN_ON(i915_verify_lists(ring->dev));
2734

2735
	seqno = ring->get_seqno(ring, true);
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2755
	while (!list_empty(&ring->request_list)) {
2756
		struct drm_i915_gem_request *request;
2757
		struct intel_ringbuffer *ringbuf;
2758

2759
		request = list_first_entry(&ring->request_list,
2760 2761 2762
					   struct drm_i915_gem_request,
					   list);

2763
		if (!i915_seqno_passed(seqno, request->seqno))
2764 2765
			break;

C
Chris Wilson 已提交
2766
		trace_i915_gem_request_retire(ring, request->seqno);
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2779 2780 2781 2782 2783
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2784
		ringbuf->last_retired_head = request->tail;
2785

2786
		i915_gem_free_request(request);
2787
	}
2788

C
Chris Wilson 已提交
2789 2790
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2791
		ring->irq_put(ring);
C
Chris Wilson 已提交
2792
		ring->trace_irq_seqno = 0;
2793
	}
2794

C
Chris Wilson 已提交
2795
	WARN_ON(i915_verify_lists(ring->dev));
2796 2797
}

2798
bool
2799 2800
i915_gem_retire_requests(struct drm_device *dev)
{
2801
	struct drm_i915_private *dev_priv = dev->dev_private;
2802
	struct intel_engine_cs *ring;
2803
	bool idle = true;
2804
	int i;
2805

2806
	for_each_ring(ring, dev_priv, i) {
2807
		i915_gem_retire_requests_ring(ring);
2808
		idle &= list_empty(&ring->request_list);
2809 2810 2811 2812 2813 2814 2815 2816 2817
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2818 2819 2820 2821 2822 2823 2824 2825
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2826 2827
}

2828
static void
2829 2830
i915_gem_retire_work_handler(struct work_struct *work)
{
2831 2832 2833
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2834
	bool idle;
2835

2836
	/* Come back later if the device is busy... */
2837 2838 2839 2840
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2841
	}
2842
	if (!idle)
2843 2844
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2845
}
2846

2847 2848 2849 2850 2851 2852 2853
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2854 2855
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2867
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2868 2869 2870 2871 2872 2873 2874 2875 2876
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2902
	struct drm_i915_private *dev_priv = dev->dev_private;
2903 2904
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2905
	struct intel_engine_cs *ring = NULL;
2906
	unsigned reset_counter;
2907 2908 2909
	u32 seqno = 0;
	int ret = 0;

2910 2911 2912
	if (args->flags != 0)
		return -EINVAL;

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2923 2924
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2925 2926 2927 2928
	if (ret)
		goto out;

	if (obj->active) {
2929
		seqno = obj->last_read_seqno;
2930 2931 2932 2933 2934 2935 2936
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
2937
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2938
	 */
2939
	if (args->timeout_ns <= 0) {
2940 2941 2942 2943 2944
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2945
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2946 2947
	mutex_unlock(&dev->struct_mutex);

2948 2949
	return __i915_wait_seqno(ring, seqno, reset_counter, true,
				 &args->timeout_ns, file->driver_priv);
2950 2951 2952 2953 2954 2955 2956

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2969 2970
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2971
		     struct intel_engine_cs *to)
2972
{
2973
	struct intel_engine_cs *from = obj->ring;
2974 2975 2976 2977 2978 2979
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2980
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2981
		return i915_gem_object_wait_rendering(obj, false);
2982 2983 2984

	idx = intel_ring_sync_index(from, to);

2985
	seqno = obj->last_read_seqno;
R
Rodrigo Vivi 已提交
2986 2987
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2988
	if (seqno <= from->semaphore.sync_seqno[idx])
2989 2990
		return 0;

2991 2992 2993
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2994

2995
	trace_i915_gem_ring_sync_to(from, to, seqno);
2996
	ret = to->semaphore.sync_to(to, from, seqno);
2997
	if (!ret)
2998 2999 3000 3001
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3002
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3003

3004
	return ret;
3005 3006
}

3007 3008 3009 3010 3011 3012 3013
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3014 3015 3016
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3017 3018 3019
	/* Wait for any direct GTT access to complete */
	mb();

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3031
int i915_vma_unbind(struct i915_vma *vma)
3032
{
3033
	struct drm_i915_gem_object *obj = vma->obj;
3034
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3035
	int ret;
3036

3037
	if (list_empty(&vma->vma_link))
3038 3039
		return 0;

3040 3041 3042 3043
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3044

B
Ben Widawsky 已提交
3045
	if (vma->pin_count)
3046
		return -EBUSY;
3047

3048 3049
	BUG_ON(obj->pages == NULL);

3050
	ret = i915_gem_object_finish_gpu(obj);
3051
	if (ret)
3052 3053 3054 3055 3056 3057
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3058 3059 3060
	/* Throw away the active reference before moving to the unbound list */
	i915_gem_object_retire(obj);

3061 3062
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
3063

3064 3065 3066 3067 3068
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3069

3070
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3071

3072 3073
	vma->unbind_vma(vma);

3074
	list_del_init(&vma->mm_list);
3075
	if (i915_is_ggtt(vma->vm))
3076
		obj->map_and_fenceable = false;
3077

B
Ben Widawsky 已提交
3078 3079 3080 3081
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3082
	 * no more VMAs exist. */
3083 3084
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3085
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3086
	}
3087

3088 3089 3090 3091 3092 3093
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3094
	return 0;
3095 3096
}

3097
int i915_gpu_idle(struct drm_device *dev)
3098
{
3099
	struct drm_i915_private *dev_priv = dev->dev_private;
3100
	struct intel_engine_cs *ring;
3101
	int ret, i;
3102 3103

	/* Flush everything onto the inactive list. */
3104
	for_each_ring(ring, dev_priv, i) {
3105 3106 3107 3108 3109
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3110

3111
		ret = intel_ring_idle(ring);
3112 3113 3114
		if (ret)
			return ret;
	}
3115

3116
	return 0;
3117 3118
}

3119 3120
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3121
{
3122
	struct drm_i915_private *dev_priv = dev->dev_private;
3123 3124
	int fence_reg;
	int fence_pitch_shift;
3125

3126 3127 3128 3129 3130 3131 3132 3133
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3148
	if (obj) {
3149
		u32 size = i915_gem_obj_ggtt_size(obj);
3150
		uint64_t val;
3151

3152
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3153
				 0xfffff000) << 32;
3154
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3155
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3156 3157 3158
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3169 3170
}

3171 3172
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3173
{
3174
	struct drm_i915_private *dev_priv = dev->dev_private;
3175
	u32 val;
3176

3177
	if (obj) {
3178
		u32 size = i915_gem_obj_ggtt_size(obj);
3179 3180
		int pitch_val;
		int tile_width;
3181

3182
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3183
		     (size & -size) != size ||
3184 3185 3186
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3187

3188 3189 3190 3191 3192 3193 3194 3195 3196
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3197
		val = i915_gem_obj_ggtt_offset(obj);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3213 3214
}

3215 3216
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3217
{
3218
	struct drm_i915_private *dev_priv = dev->dev_private;
3219 3220
	uint32_t val;

3221
	if (obj) {
3222
		u32 size = i915_gem_obj_ggtt_size(obj);
3223
		uint32_t pitch_val;
3224

3225
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3226
		     (size & -size) != size ||
3227 3228 3229
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3230

3231 3232
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3233

3234
		val = i915_gem_obj_ggtt_offset(obj);
3235 3236 3237 3238 3239 3240 3241
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3242

3243 3244 3245 3246
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3247 3248 3249 3250 3251
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3252 3253 3254
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3255 3256 3257 3258 3259 3260 3261 3262
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3263 3264 3265 3266
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3267
	switch (INTEL_INFO(dev)->gen) {
3268
	case 9:
3269
	case 8:
3270
	case 7:
3271
	case 6:
3272 3273 3274 3275
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3276
	default: BUG();
3277
	}
3278 3279 3280 3281 3282 3283

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3284 3285
}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3296
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3297 3298 3299
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3300 3301

	if (enable) {
3302
		obj->fence_reg = reg;
3303 3304 3305 3306 3307 3308 3309
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3310
	obj->fence_dirty = false;
3311 3312
}

3313
static int
3314
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3315
{
3316
	if (obj->last_fenced_seqno) {
3317
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3318 3319
		if (ret)
			return ret;
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

		obj->last_fenced_seqno = 0;
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3330
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3331
	struct drm_i915_fence_reg *fence;
3332 3333
	int ret;

3334
	ret = i915_gem_object_wait_fence(obj);
3335 3336 3337
	if (ret)
		return ret;

3338 3339
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3340

3341 3342
	fence = &dev_priv->fence_regs[obj->fence_reg];

3343 3344 3345
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3346
	i915_gem_object_fence_lost(obj);
3347
	i915_gem_object_update_fence(obj, fence, false);
3348 3349 3350 3351 3352

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3353
i915_find_fence_reg(struct drm_device *dev)
3354 3355
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3356
	struct drm_i915_fence_reg *reg, *avail;
3357
	int i;
3358 3359

	/* First try to find a free reg */
3360
	avail = NULL;
3361 3362 3363
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3364
			return reg;
3365

3366
		if (!reg->pin_count)
3367
			avail = reg;
3368 3369
	}

3370
	if (avail == NULL)
3371
		goto deadlock;
3372 3373

	/* None available, try to steal one or wait for a user to finish */
3374
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3375
		if (reg->pin_count)
3376 3377
			continue;

C
Chris Wilson 已提交
3378
		return reg;
3379 3380
	}

3381 3382 3383 3384 3385 3386
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3387 3388
}

3389
/**
3390
 * i915_gem_object_get_fence - set up fencing for an object
3391 3392 3393 3394 3395 3396 3397 3398 3399
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3400 3401
 *
 * For an untiled surface, this removes any existing fence.
3402
 */
3403
int
3404
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3405
{
3406
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3407
	struct drm_i915_private *dev_priv = dev->dev_private;
3408
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3409
	struct drm_i915_fence_reg *reg;
3410
	int ret;
3411

3412 3413 3414
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3415
	if (obj->fence_dirty) {
3416
		ret = i915_gem_object_wait_fence(obj);
3417 3418 3419
		if (ret)
			return ret;
	}
3420

3421
	/* Just update our place in the LRU if our fence is getting reused. */
3422 3423
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3424
		if (!obj->fence_dirty) {
3425 3426 3427 3428 3429
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3430 3431 3432
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3433
		reg = i915_find_fence_reg(dev);
3434 3435
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3436

3437 3438 3439
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3440
			ret = i915_gem_object_wait_fence(old);
3441 3442 3443
			if (ret)
				return ret;

3444
			i915_gem_object_fence_lost(old);
3445
		}
3446
	} else
3447 3448
		return 0;

3449 3450
	i915_gem_object_update_fence(obj, reg, enable);

3451
	return 0;
3452 3453
}

3454
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3455 3456
				     unsigned long cache_level)
{
3457
	struct drm_mm_node *gtt_space = &vma->node;
3458 3459
	struct drm_mm_node *other;

3460 3461 3462 3463 3464 3465
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3466
	 */
3467
	if (vma->vm->mm.color_adjust == NULL)
3468 3469
		return true;

3470
	if (!drm_mm_node_allocated(gtt_space))
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3487 3488 3489
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3490
static struct i915_vma *
3491 3492 3493
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3494
			   uint64_t flags)
3495
{
3496
	struct drm_device *dev = obj->base.dev;
3497
	struct drm_i915_private *dev_priv = dev->dev_private;
3498
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3499 3500 3501
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3502
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3503
	struct i915_vma *vma;
3504
	int ret;
3505

3506 3507 3508 3509 3510
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3511
						     obj->tiling_mode, true);
3512
	unfenced_alignment =
3513
		i915_gem_get_gtt_alignment(dev,
3514 3515
					   obj->base.size,
					   obj->tiling_mode, false);
3516

3517
	if (alignment == 0)
3518
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3519
						unfenced_alignment;
3520
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3521
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3522
		return ERR_PTR(-EINVAL);
3523 3524
	}

3525
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3526

3527 3528 3529
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3530 3531
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3532
			  obj->base.size,
3533
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3534
			  end);
3535
		return ERR_PTR(-E2BIG);
3536 3537
	}

3538
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3539
	if (ret)
3540
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3541

3542 3543
	i915_gem_object_pin_pages(obj);

3544
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3545
	if (IS_ERR(vma))
3546
		goto err_unpin;
B
Ben Widawsky 已提交
3547

3548
search_free:
3549
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3550
						  size, alignment,
3551 3552
						  obj->cache_level,
						  start, end,
3553 3554
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3555
	if (ret) {
3556
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3557 3558 3559
					       obj->cache_level,
					       start, end,
					       flags);
3560 3561
		if (ret == 0)
			goto search_free;
3562

3563
		goto err_free_vma;
3564
	}
3565
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3566
		ret = -EINVAL;
3567
		goto err_remove_node;
3568 3569
	}

3570
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3571
	if (ret)
3572
		goto err_remove_node;
3573

3574
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3575
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3576

3577
	trace_i915_vma_bind(vma, flags);
3578
	vma->bind_vma(vma, obj->cache_level,
3579
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3580

3581
	return vma;
B
Ben Widawsky 已提交
3582

3583
err_remove_node:
3584
	drm_mm_remove_node(&vma->node);
3585
err_free_vma:
B
Ben Widawsky 已提交
3586
	i915_gem_vma_destroy(vma);
3587
	vma = ERR_PTR(ret);
3588
err_unpin:
B
Ben Widawsky 已提交
3589
	i915_gem_object_unpin_pages(obj);
3590
	return vma;
3591 3592
}

3593
bool
3594 3595
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3596 3597 3598 3599 3600
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3601
	if (obj->pages == NULL)
3602
		return false;
3603

3604 3605 3606 3607
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3608
	if (obj->stolen || obj->phys_handle)
3609
		return false;
3610

3611 3612 3613 3614 3615 3616 3617 3618
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3619
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3620
		return false;
3621

C
Chris Wilson 已提交
3622
	trace_i915_gem_object_clflush(obj);
3623
	drm_clflush_sg(obj->pages);
3624 3625

	return true;
3626 3627 3628 3629
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3630
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3631
{
C
Chris Wilson 已提交
3632 3633
	uint32_t old_write_domain;

3634
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3635 3636
		return;

3637
	/* No actual flushing is required for the GTT write domain.  Writes
3638 3639
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3640 3641 3642 3643
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3644
	 */
3645 3646
	wmb();

3647 3648
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3649

3650 3651
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3652
	trace_i915_gem_object_change_domain(obj,
3653
					    obj->base.read_domains,
C
Chris Wilson 已提交
3654
					    old_write_domain);
3655 3656 3657 3658
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3659 3660
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3661
{
C
Chris Wilson 已提交
3662
	uint32_t old_write_domain;
3663

3664
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3665 3666
		return;

3667 3668 3669
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3670 3671
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3672

3673 3674
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3675
	trace_i915_gem_object_change_domain(obj,
3676
					    obj->base.read_domains,
C
Chris Wilson 已提交
3677
					    old_write_domain);
3678 3679
}

3680 3681 3682 3683 3684 3685
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3686
int
3687
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3688
{
3689
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3690
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3691
	uint32_t old_write_domain, old_read_domains;
3692
	int ret;
3693

3694
	/* Not valid to be called on unbound objects. */
3695
	if (vma == NULL)
3696 3697
		return -EINVAL;

3698 3699 3700
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3701
	ret = i915_gem_object_wait_rendering(obj, !write);
3702 3703 3704
	if (ret)
		return ret;

3705
	i915_gem_object_retire(obj);
3706
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3707

3708 3709 3710 3711 3712 3713 3714
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3715 3716
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3717

3718 3719 3720
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3721 3722
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3723
	if (write) {
3724 3725 3726
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3727 3728
	}

3729 3730 3731
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3732 3733 3734 3735
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3736
	/* And bump the LRU for this access */
3737 3738 3739
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3740

3741 3742 3743
	return 0;
}

3744 3745 3746
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3747
	struct drm_device *dev = obj->base.dev;
3748
	struct i915_vma *vma, *next;
3749 3750 3751 3752 3753
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3754
	if (i915_gem_obj_is_pinned(obj)) {
3755 3756 3757 3758
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3759
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3760
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3761
			ret = i915_vma_unbind(vma);
3762 3763 3764
			if (ret)
				return ret;
		}
3765 3766
	}

3767
	if (i915_gem_obj_bound_any(obj)) {
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3778
		if (INTEL_INFO(dev)->gen < 6) {
3779 3780 3781 3782 3783
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3784
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3785 3786
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
3787
						vma->bound & GLOBAL_BIND);
3788 3789
	}

3790 3791 3792 3793 3794
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3795 3796 3797 3798 3799 3800 3801 3802
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3803
		i915_gem_object_retire(obj);
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3820 3821
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3822
{
B
Ben Widawsky 已提交
3823
	struct drm_i915_gem_caching *args = data;
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3837 3838 3839 3840 3841 3842
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3843 3844 3845 3846
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3847 3848 3849 3850
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3851 3852 3853 3854 3855 3856 3857

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3858 3859
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3860
{
B
Ben Widawsky 已提交
3861
	struct drm_i915_gem_caching *args = data;
3862 3863 3864 3865
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3866 3867
	switch (args->caching) {
	case I915_CACHING_NONE:
3868 3869
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3870
	case I915_CACHING_CACHED:
3871 3872
		level = I915_CACHE_LLC;
		break;
3873 3874 3875
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3876 3877 3878 3879
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3880 3881 3882 3883
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3898 3899
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3900 3901 3902 3903 3904 3905
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3906
	/* There are 2 sources that pin objects:
3907 3908 3909 3910
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3911
	 * are only called outside of the reservation path.
3912
	 */
D
Daniel Vetter 已提交
3913
	return vma->pin_count;
3914 3915
}

3916
/*
3917 3918 3919
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3920 3921
 */
int
3922 3923
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3924
				     struct intel_engine_cs *pipelined)
3925
{
3926
	u32 old_read_domains, old_write_domain;
3927
	bool was_pin_display;
3928 3929
	int ret;

3930
	if (pipelined != obj->ring) {
3931 3932
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3933 3934 3935
			return ret;
	}

3936 3937 3938
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3939
	was_pin_display = obj->pin_display;
3940 3941
	obj->pin_display = true;

3942 3943 3944 3945 3946 3947 3948 3949 3950
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3951 3952
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3953
	if (ret)
3954
		goto err_unpin_display;
3955

3956 3957 3958 3959
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3960
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3961
	if (ret)
3962
		goto err_unpin_display;
3963

3964
	i915_gem_object_flush_cpu_write_domain(obj, true);
3965

3966
	old_write_domain = obj->base.write_domain;
3967
	old_read_domains = obj->base.read_domains;
3968 3969 3970 3971

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3972
	obj->base.write_domain = 0;
3973
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3974 3975 3976

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3977
					    old_write_domain);
3978 3979

	return 0;
3980 3981

err_unpin_display:
3982 3983
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3984 3985 3986 3987 3988 3989
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3990
	i915_gem_object_ggtt_unpin(obj);
3991
	obj->pin_display = is_pin_display(obj);
3992 3993
}

3994
int
3995
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3996
{
3997 3998
	int ret;

3999
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4000 4001
		return 0;

4002
	ret = i915_gem_object_wait_rendering(obj, false);
4003 4004 4005
	if (ret)
		return ret;

4006 4007
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4008
	return 0;
4009 4010
}

4011 4012 4013 4014 4015 4016
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4017
int
4018
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4019
{
C
Chris Wilson 已提交
4020
	uint32_t old_write_domain, old_read_domains;
4021 4022
	int ret;

4023 4024 4025
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4026
	ret = i915_gem_object_wait_rendering(obj, !write);
4027 4028 4029
	if (ret)
		return ret;

4030
	i915_gem_object_retire(obj);
4031
	i915_gem_object_flush_gtt_write_domain(obj);
4032

4033 4034
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4035

4036
	/* Flush the CPU cache if it's still invalid. */
4037
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4038
		i915_gem_clflush_object(obj, false);
4039

4040
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4041 4042 4043 4044 4045
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4046
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4047 4048 4049 4050 4051

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4052 4053
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4054
	}
4055

4056 4057 4058
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4059 4060 4061 4062
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4063 4064 4065
	return 0;
}

4066 4067 4068
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4069 4070 4071 4072
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4073 4074 4075
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4076
static int
4077
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4078
{
4079 4080
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4081
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4082
	struct drm_i915_gem_request *request;
4083
	struct intel_engine_cs *ring = NULL;
4084
	unsigned reset_counter;
4085 4086
	u32 seqno = 0;
	int ret;
4087

4088 4089 4090 4091 4092 4093 4094
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4095

4096
	spin_lock(&file_priv->mm.lock);
4097
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4098 4099
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4100

4101 4102
		ring = request->ring;
		seqno = request->seqno;
4103
	}
4104
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4105
	spin_unlock(&file_priv->mm.lock);
4106

4107 4108
	if (seqno == 0)
		return 0;
4109

4110
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4111 4112
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4113 4114 4115 4116

	return ret;
}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4136
int
4137
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4138
		    struct i915_address_space *vm,
4139
		    uint32_t alignment,
4140
		    uint64_t flags)
4141
{
4142
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4143
	struct i915_vma *vma;
4144
	unsigned bound;
4145 4146
	int ret;

4147 4148 4149
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4150
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4151
		return -EINVAL;
4152

4153 4154 4155
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4156 4157
	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4158 4159 4160
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4161
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4162
			WARN(vma->pin_count,
4163
			     "bo is already pinned with incorrect alignment:"
4164
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4165
			     " obj->map_and_fenceable=%d\n",
4166
			     i915_gem_obj_offset(obj, vm), alignment,
4167
			     !!(flags & PIN_MAPPABLE),
4168
			     obj->map_and_fenceable);
4169
			ret = i915_vma_unbind(vma);
4170 4171
			if (ret)
				return ret;
4172 4173

			vma = NULL;
4174 4175 4176
		}
	}

4177
	bound = vma ? vma->bound : 0;
4178
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4179 4180 4181
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4182
	}
J
Jesse Barnes 已提交
4183

4184
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4185
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4210
	vma->pin_count++;
4211 4212
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4213 4214 4215 4216 4217

	return 0;
}

void
B
Ben Widawsky 已提交
4218
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4219
{
B
Ben Widawsky 已提交
4220
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4221

B
Ben Widawsky 已提交
4222 4223 4224 4225 4226
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4227
		obj->pin_mappable = false;
4228 4229
}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4256 4257
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4258
		    struct drm_file *file)
4259 4260
{
	struct drm_i915_gem_busy *args = data;
4261
	struct drm_i915_gem_object *obj;
4262 4263
	int ret;

4264
	ret = i915_mutex_lock_interruptible(dev);
4265
	if (ret)
4266
		return ret;
4267

4268
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4269
	if (&obj->base == NULL) {
4270 4271
		ret = -ENOENT;
		goto unlock;
4272
	}
4273

4274 4275 4276 4277
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4278
	 */
4279
	ret = i915_gem_object_flush_active(obj);
4280

4281
	args->busy = obj->active;
4282 4283 4284 4285
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4286

4287
	drm_gem_object_unreference(&obj->base);
4288
unlock:
4289
	mutex_unlock(&dev->struct_mutex);
4290
	return ret;
4291 4292 4293 4294 4295 4296
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4297
	return i915_gem_ring_throttle(dev, file_priv);
4298 4299
}

4300 4301 4302 4303
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4304
	struct drm_i915_private *dev_priv = dev->dev_private;
4305
	struct drm_i915_gem_madvise *args = data;
4306
	struct drm_i915_gem_object *obj;
4307
	int ret;
4308 4309 4310 4311 4312 4313 4314 4315 4316

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4317 4318 4319 4320
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4321
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4322
	if (&obj->base == NULL) {
4323 4324
		ret = -ENOENT;
		goto unlock;
4325 4326
	}

B
Ben Widawsky 已提交
4327
	if (i915_gem_obj_is_pinned(obj)) {
4328 4329
		ret = -EINVAL;
		goto out;
4330 4331
	}

4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4341 4342
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4343

C
Chris Wilson 已提交
4344 4345
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4346 4347
		i915_gem_object_truncate(obj);

4348
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4349

4350
out:
4351
	drm_gem_object_unreference(&obj->base);
4352
unlock:
4353
	mutex_unlock(&dev->struct_mutex);
4354
	return ret;
4355 4356
}

4357 4358
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4359
{
4360
	INIT_LIST_HEAD(&obj->global_list);
4361
	INIT_LIST_HEAD(&obj->ring_list);
4362
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4363
	INIT_LIST_HEAD(&obj->vma_list);
4364

4365 4366
	obj->ops = ops;

4367 4368 4369 4370 4371 4372
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4373 4374 4375 4376 4377
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4378 4379
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4380
{
4381
	struct drm_i915_gem_object *obj;
4382
	struct address_space *mapping;
D
Daniel Vetter 已提交
4383
	gfp_t mask;
4384

4385
	obj = i915_gem_object_alloc(dev);
4386 4387
	if (obj == NULL)
		return NULL;
4388

4389
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4390
		i915_gem_object_free(obj);
4391 4392
		return NULL;
	}
4393

4394 4395 4396 4397 4398 4399 4400
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4401
	mapping = file_inode(obj->base.filp)->i_mapping;
4402
	mapping_set_gfp_mask(mapping, mask);
4403

4404
	i915_gem_object_init(obj, &i915_gem_object_ops);
4405

4406 4407
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4408

4409 4410
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4426 4427
	trace_i915_gem_object_create(obj);

4428
	return obj;
4429 4430
}

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4455
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4456
{
4457
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4458
	struct drm_device *dev = obj->base.dev;
4459
	struct drm_i915_private *dev_priv = dev->dev_private;
4460
	struct i915_vma *vma, *next;
4461

4462 4463
	intel_runtime_pm_get(dev_priv);

4464 4465
	trace_i915_gem_object_destroy(obj);

4466
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4467 4468 4469 4470
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4471 4472
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4473

4474 4475
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4476

4477
			WARN_ON(i915_vma_unbind(vma));
4478

4479 4480
			dev_priv->mm.interruptible = was_interruptible;
		}
4481 4482
	}

B
Ben Widawsky 已提交
4483 4484 4485 4486 4487
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4488 4489
	WARN_ON(obj->frontbuffer_bits);

4490 4491 4492 4493 4494
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4495 4496
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4497
	if (discard_backing_storage(obj))
4498
		obj->madv = I915_MADV_DONTNEED;
4499
	i915_gem_object_put_pages(obj);
4500
	i915_gem_object_free_mmap_offset(obj);
4501

4502 4503
	BUG_ON(obj->pages);

4504 4505
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4506

4507 4508 4509
	if (obj->ops->release)
		obj->ops->release(obj);

4510 4511
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4512

4513
	kfree(obj->bit_17);
4514
	i915_gem_object_free(obj);
4515 4516

	intel_runtime_pm_put(dev_priv);
4517 4518
}

4519
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4520
				     struct i915_address_space *vm)
4521 4522 4523 4524 4525 4526 4527 4528 4529
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4530 4531
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4532
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4533
	WARN_ON(vma->node.allocated);
4534 4535 4536 4537 4538

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4539 4540
	vm = vma->vm;

4541 4542
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4543

4544
	list_del(&vma->vma_link);
4545

B
Ben Widawsky 已提交
4546 4547 4548
	kfree(vma);
}

4549 4550 4551 4552
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4553
	struct intel_engine_cs *ring;
4554 4555 4556
	int i;

	for_each_ring(ring, dev_priv, i)
4557
		dev_priv->gt.stop_ring(ring);
4558 4559
}

4560
int
4561
i915_gem_suspend(struct drm_device *dev)
4562
{
4563
	struct drm_i915_private *dev_priv = dev->dev_private;
4564
	int ret = 0;
4565

4566
	mutex_lock(&dev->struct_mutex);
4567
	ret = i915_gpu_idle(dev);
4568
	if (ret)
4569
		goto err;
4570

4571
	i915_gem_retire_requests(dev);
4572

4573
	/* Under UMS, be paranoid and evict. */
4574
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4575
		i915_gem_evict_everything(dev);
4576

4577
	i915_gem_stop_ringbuffers(dev);
4578 4579 4580
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4581
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4582
	flush_delayed_work(&dev_priv->mm.idle_work);
4583

4584 4585 4586 4587 4588
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4589
	return 0;
4590 4591 4592 4593

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4594 4595
}

4596
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4597
{
4598
	struct drm_device *dev = ring->dev;
4599
	struct drm_i915_private *dev_priv = dev->dev_private;
4600 4601
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4602
	int i, ret;
B
Ben Widawsky 已提交
4603

4604
	if (!HAS_L3_DPF(dev) || !remap_info)
4605
		return 0;
B
Ben Widawsky 已提交
4606

4607 4608 4609
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4610

4611 4612 4613 4614 4615
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4616
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4617 4618 4619
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4620 4621
	}

4622
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4623

4624
	return ret;
B
Ben Widawsky 已提交
4625 4626
}

4627 4628
void i915_gem_init_swizzling(struct drm_device *dev)
{
4629
	struct drm_i915_private *dev_priv = dev->dev_private;
4630

4631
	if (INTEL_INFO(dev)->gen < 5 ||
4632 4633 4634 4635 4636 4637
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4638 4639 4640
	if (IS_GEN5(dev))
		return;

4641 4642
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4643
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4644
	else if (IS_GEN7(dev))
4645
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4646 4647
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4648 4649
	else
		BUG();
4650
}
D
Daniel Vetter 已提交
4651

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4695
int i915_gem_init_rings(struct drm_device *dev)
4696
{
4697
	struct drm_i915_private *dev_priv = dev->dev_private;
4698
	int ret;
4699

4700 4701 4702 4703 4704 4705 4706 4707
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4708
	ret = intel_init_render_ring_buffer(dev);
4709
	if (ret)
4710
		return ret;
4711 4712

	if (HAS_BSD(dev)) {
4713
		ret = intel_init_bsd_ring_buffer(dev);
4714 4715
		if (ret)
			goto cleanup_render_ring;
4716
	}
4717

4718
	if (intel_enable_blt(dev)) {
4719 4720 4721 4722 4723
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4724 4725 4726 4727 4728 4729
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4730 4731 4732 4733 4734
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4735

4736
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4737
	if (ret)
4738
		goto cleanup_bsd2_ring;
4739 4740 4741

	return 0;

4742 4743
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4744 4745
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4759
	struct drm_i915_private *dev_priv = dev->dev_private;
4760
	int ret, i;
4761 4762 4763 4764

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4765
	if (dev_priv->ellc_size)
4766
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4767

4768 4769 4770
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4771

4772
	if (HAS_PCH_NOP(dev)) {
4773 4774 4775 4776 4777 4778 4779 4780 4781
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4782 4783
	}

4784 4785
	i915_gem_init_swizzling(dev);

4786
	ret = dev_priv->gt.init_rings(dev);
4787 4788 4789
	if (ret)
		return ret;

4790 4791 4792
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4793
	/*
4794 4795 4796 4797 4798
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4799
	 */
4800
	ret = i915_gem_context_enable(dev_priv);
4801
	if (ret && ret != -EIO) {
4802
		DRM_ERROR("Context enable failed %d\n", ret);
4803
		i915_gem_cleanup_ringbuffer(dev);
4804 4805 4806 4807 4808 4809 4810 4811

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4812
	}
D
Daniel Vetter 已提交
4813

4814
	return ret;
4815 4816
}

4817 4818 4819 4820 4821
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4822 4823 4824
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4825
	mutex_lock(&dev->struct_mutex);
4826 4827 4828

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4829 4830 4831
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4832 4833 4834
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4835 4836 4837 4838 4839
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4840 4841 4842 4843 4844
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4845 4846
	}

4847 4848 4849 4850 4851 4852
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4853
	i915_gem_init_global_gtt(dev);
4854

4855
	ret = i915_gem_context_init(dev);
4856 4857
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4858
		return ret;
4859
	}
4860

4861
	ret = i915_gem_init_hw(dev);
4862 4863 4864 4865 4866 4867 4868 4869
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4870
	}
4871
	mutex_unlock(&dev->struct_mutex);
4872

4873
	return ret;
4874 4875
}

4876 4877 4878
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4879
	struct drm_i915_private *dev_priv = dev->dev_private;
4880
	struct intel_engine_cs *ring;
4881
	int i;
4882

4883
	for_each_ring(ring, dev_priv, i)
4884
		dev_priv->gt.cleanup_ring(ring);
4885 4886
}

4887
static void
4888
init_ring_lists(struct intel_engine_cs *ring)
4889 4890 4891 4892 4893
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4894 4895
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4896
{
4897 4898
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4899 4900 4901 4902
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4903
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4904 4905
}

4906 4907 4908
void
i915_gem_load(struct drm_device *dev)
{
4909
	struct drm_i915_private *dev_priv = dev->dev_private;
4910 4911 4912 4913 4914 4915 4916
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4917

B
Ben Widawsky 已提交
4918 4919 4920
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4921
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4922 4923
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4924
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4925 4926
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4927
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4928
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4929 4930
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4931 4932
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4933
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4934

4935
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4936
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4937 4938
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4939 4940
	}

4941 4942
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4943
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4944 4945
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4946

4947 4948 4949
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4950 4951 4952 4953
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4954
	/* Initialize fence registers to zero */
4955 4956
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4957

4958
	i915_gem_detect_bit_6_swizzle(dev);
4959
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4960

4961 4962
	dev_priv->mm.interruptible = true;

4963 4964 4965 4966
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4967 4968 4969

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4970 4971

	mutex_init(&dev_priv->fb_tracking.lock);
4972
}
4973

4974
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4975
{
4976
	struct drm_i915_file_private *file_priv = file->driver_priv;
4977

4978 4979
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4980 4981 4982 4983
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4984
	spin_lock(&file_priv->mm.lock);
4985 4986 4987 4988 4989 4990 4991 4992 4993
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4994
	spin_unlock(&file_priv->mm.lock);
4995
}
4996

4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5009
	int ret;
5010 5011 5012 5013 5014 5015 5016 5017 5018

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5019
	file_priv->file = file;
5020 5021 5022 5023 5024 5025

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5026 5027 5028
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5029

5030
	return ret;
5031 5032
}

5033 5034 5035 5036 5037 5038 5039 5040 5041
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5100
static unsigned long
5101
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5102
{
5103
	struct drm_i915_private *dev_priv =
5104
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5105
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5106
	struct drm_i915_gem_object *obj;
5107
	unsigned long count;
5108
	bool unlock;
5109

5110 5111
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5112

5113
	count = 0;
5114
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5115
		if (obj->pages_pin_count == 0)
5116
			count += obj->base.size >> PAGE_SHIFT;
5117 5118

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5119 5120
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5121
			count += obj->base.size >> PAGE_SHIFT;
5122
	}
5123

5124 5125
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5126

5127
	return count;
5128
}
5129 5130 5131 5132 5133 5134 5135 5136

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5137
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5138 5139 5140 5141 5142 5143

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5144 5145
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5146 5147 5148 5149 5150 5151 5152 5153 5154
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5155
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5156 5157 5158 5159 5160 5161 5162
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5163
	struct i915_vma *vma;
5164

5165 5166
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5178
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5189
static unsigned long
5190
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5191 5192
{
	struct drm_i915_private *dev_priv =
5193
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5194 5195
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5196
	bool unlock;
5197

5198 5199
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5200

5201 5202 5203 5204 5205
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5206
	if (freed < sc->nr_to_scan)
5207 5208 5209 5210
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5211 5212
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5213

5214 5215
	return freed;
}
5216

5217 5218 5219 5220 5221 5222 5223 5224
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5225
	unsigned long pinned, bound, unbound, freed_pages;
5226 5227 5228
	bool was_interruptible;
	bool unlock;

5229
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5230
		schedule_timeout_killable(1);
5231 5232 5233
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5234 5235 5236 5237 5238 5239 5240 5241
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5242
	freed_pages = i915_gem_shrink_all(dev_priv);
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5273 5274 5275
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5276 5277 5278 5279 5280
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5281
	*(unsigned long *)ptr += freed_pages;
5282 5283 5284
	return NOTIFY_DONE;
}

5285 5286 5287 5288 5289
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5290
	if (vma->vm != i915_obj_to_ggtt(obj))
5291 5292 5293 5294
		return NULL;

	return vma;
}