i915_gem.c 135.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 1158 1159
{
	int ret;

1160
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 1162

	ret = 0;
1163
	if (req == req->ring->outstanding_lazy_request)
1164
		ret = i915_add_request(req->ring);
1165 1166 1167 1168

	return ret;
}

1169 1170 1171 1172 1173 1174
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1175
		       struct intel_engine_cs *ring)
1176 1177 1178 1179
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1180
static int __i915_spin_request(struct drm_i915_gem_request *req)
1181
{
1182 1183
	unsigned long timeout;

D
Daniel Vetter 已提交
1184
	if (i915_gem_request_get_ring(req)->irq_refcount)
1185 1186 1187 1188
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1189
		if (i915_gem_request_completed(req, true))
1190 1191 1192 1193
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1194

1195 1196
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1197
	if (i915_gem_request_completed(req, false))
1198 1199 1200
		return 0;

	return -EAGAIN;
1201 1202
}

1203
/**
1204 1205 1206
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1207 1208 1209
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1210 1211 1212 1213 1214 1215 1216
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1217
 * Returns 0 if the request was found within the alloted time. Else returns the
1218 1219
 * errno with remaining time filled in timeout argument.
 */
1220
int __i915_wait_request(struct drm_i915_gem_request *req,
1221
			unsigned reset_counter,
1222
			bool interruptible,
1223
			s64 *timeout,
1224
			struct intel_rps_client *rps)
1225
{
1226
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1227
	struct drm_device *dev = ring->dev;
1228
	struct drm_i915_private *dev_priv = dev->dev_private;
1229 1230
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1231
	DEFINE_WAIT(wait);
1232
	unsigned long timeout_expire;
1233
	s64 before, now;
1234 1235
	int ret;

1236
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1237

1238 1239 1240
	if (list_empty(&req->list))
		return 0;

1241
	if (i915_gem_request_completed(req, true))
1242 1243
		return 0;

1244 1245
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1246

1247
	if (INTEL_INFO(dev_priv)->gen >= 6)
1248
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1249

1250
	/* Record current time in case interrupted by signal, or wedged */
1251
	trace_i915_gem_request_wait_begin(req);
1252
	before = ktime_get_raw_ns();
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1264 1265
	for (;;) {
		struct timer_list timer;
1266

1267 1268
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1269

1270 1271
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1272 1273 1274 1275 1276 1277 1278 1279
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1280

1281
		if (i915_gem_request_completed(req, false)) {
1282 1283 1284
			ret = 0;
			break;
		}
1285

1286 1287 1288 1289 1290
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1291
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1292 1293 1294 1295 1296 1297
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1298 1299
			unsigned long expire;

1300
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1301
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1302 1303 1304
			mod_timer(&timer, expire);
		}

1305
		io_schedule();
1306 1307 1308 1309 1310 1311

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1312 1313
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1314 1315

	finish_wait(&ring->irq_queue, &wait);
1316

1317 1318 1319 1320
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1321
	if (timeout) {
1322 1323 1324
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1335 1336
	}

1337
	return ret;
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	put_pid(request->pid);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1397
/**
1398
 * Waits for a request to be signaled, and cleans up the
1399 1400 1401
 * request and object lists appropriately for that event.
 */
int
1402
i915_wait_request(struct drm_i915_gem_request *req)
1403
{
1404 1405 1406
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1407 1408
	int ret;

1409 1410 1411 1412 1413 1414
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1415 1416
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1417
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1418 1419 1420
	if (ret)
		return ret;

1421
	ret = i915_gem_check_olr(req);
1422 1423 1424
	if (ret)
		return ret;

1425 1426
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1427
				  interruptible, NULL, NULL);
1428 1429
	if (ret)
		return ret;
1430

1431
	__i915_gem_request_retire__upto(req);
1432 1433 1434
	return 0;
}

1435 1436 1437 1438
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1439
int
1440 1441 1442
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1443
	int ret, i;
1444

1445
	if (!obj->active)
1446 1447
		return 0;

1448 1449 1450 1451 1452
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1489 1490
}

1491 1492 1493 1494 1495
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1496
					    struct intel_rps_client *rps,
1497 1498 1499 1500
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1501
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1502
	unsigned reset_counter;
1503
	int ret, i, n = 0;
1504 1505 1506 1507

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1508
	if (!obj->active)
1509 1510
		return 0;

1511
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1512 1513 1514
	if (ret)
		return ret;

1515
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1545
	mutex_unlock(&dev->struct_mutex);
1546 1547
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1548
					  NULL, rps);
1549 1550
	mutex_lock(&dev->struct_mutex);

1551 1552 1553 1554 1555 1556 1557 1558
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1559 1560
}

1561 1562 1563 1564 1565 1566
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1567
/**
1568 1569
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1570 1571 1572
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1573
			  struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_set_domain *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1579 1580
	int ret;

1581
	/* Only handle setting domains to types used by the CPU. */
1582
	if (write_domain & I915_GEM_GPU_DOMAINS)
1583 1584
		return -EINVAL;

1585
	if (read_domains & I915_GEM_GPU_DOMAINS)
1586 1587 1588 1589 1590 1591 1592 1593
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1594
	ret = i915_mutex_lock_interruptible(dev);
1595
	if (ret)
1596
		return ret;
1597

1598
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1599
	if (&obj->base == NULL) {
1600 1601
		ret = -ENOENT;
		goto unlock;
1602
	}
1603

1604 1605 1606 1607
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1608
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1609
							  to_rps_client(file),
1610
							  !write_domain);
1611 1612 1613
	if (ret)
		goto unref;

1614
	if (read_domains & I915_GEM_DOMAIN_GTT)
1615
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1616
	else
1617
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1618

1619
unref:
1620
	drm_gem_object_unreference(&obj->base);
1621
unlock:
1622 1623 1624 1625 1626 1627 1628 1629 1630
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1631
			 struct drm_file *file)
1632 1633
{
	struct drm_i915_gem_sw_finish *args = data;
1634
	struct drm_i915_gem_object *obj;
1635 1636
	int ret = 0;

1637
	ret = i915_mutex_lock_interruptible(dev);
1638
	if (ret)
1639
		return ret;
1640

1641
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642
	if (&obj->base == NULL) {
1643 1644
		ret = -ENOENT;
		goto unlock;
1645 1646 1647
	}

	/* Pinned buffers may be scanout, so flush the cache */
1648
	if (obj->pin_display)
1649
		i915_gem_object_flush_cpu_write_domain(obj);
1650

1651
	drm_gem_object_unreference(&obj->base);
1652
unlock:
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1673 1674 1675
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676
		    struct drm_file *file)
1677 1678 1679 1680 1681
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1682 1683 1684 1685 1686 1687
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1688
	obj = drm_gem_object_lookup(dev, file, args->handle);
1689
	if (obj == NULL)
1690
		return -ENOENT;
1691

1692 1693 1694 1695 1696 1697 1698 1699
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1700
	addr = vm_mmap(obj->filp, 0, args->size,
1701 1702
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1716
	drm_gem_object_unreference_unlocked(obj);
1717 1718 1719 1720 1721 1722 1723 1724
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1743 1744
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1745
	struct drm_i915_private *dev_priv = dev->dev_private;
1746
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1747 1748 1749
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1750
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1751

1752 1753
	intel_runtime_pm_get(dev_priv);

1754 1755 1756 1757
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1758 1759 1760
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1761

C
Chris Wilson 已提交
1762 1763
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1764 1765 1766 1767 1768 1769 1770 1771 1772
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1773 1774
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1775
		ret = -EFAULT;
1776 1777 1778
		goto unlock;
	}

1779
	/* Use a partial view if the object is bigger than the aperture. */
1780 1781
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1782
		static const unsigned int chunk_size = 256; // 1 MiB
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1796 1797
	if (ret)
		goto unlock;
1798

1799 1800 1801
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1802

1803
	ret = i915_gem_object_get_fence(obj);
1804
	if (ret)
1805
		goto unpin;
1806

1807
	/* Finally, remap it using the new GTT offset */
1808 1809
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1810
	pfn >>= PAGE_SHIFT;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1821

1822 1823
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1824 1825 1826 1827 1828
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1850
unpin:
1851
	i915_gem_object_ggtt_unpin_view(obj, &view);
1852
unlock:
1853
	mutex_unlock(&dev->struct_mutex);
1854
out:
1855
	switch (ret) {
1856
	case -EIO:
1857 1858 1859 1860 1861 1862 1863
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1864 1865 1866
			ret = VM_FAULT_SIGBUS;
			break;
		}
1867
	case -EAGAIN:
D
Daniel Vetter 已提交
1868 1869 1870 1871
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1872
		 */
1873 1874
	case 0:
	case -ERESTARTSYS:
1875
	case -EINTR:
1876 1877 1878 1879 1880
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1881 1882
		ret = VM_FAULT_NOPAGE;
		break;
1883
	case -ENOMEM:
1884 1885
		ret = VM_FAULT_OOM;
		break;
1886
	case -ENOSPC:
1887
	case -EFAULT:
1888 1889
		ret = VM_FAULT_SIGBUS;
		break;
1890
	default:
1891
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1892 1893
		ret = VM_FAULT_SIGBUS;
		break;
1894
	}
1895 1896 1897

	intel_runtime_pm_put(dev_priv);
	return ret;
1898 1899
}

1900 1901 1902 1903
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1904
 * Preserve the reservation of the mmapping with the DRM core code, but
1905 1906 1907 1908 1909 1910 1911 1912 1913
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1914
void
1915
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1916
{
1917 1918
	if (!obj->fault_mappable)
		return;
1919

1920 1921
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1922
	obj->fault_mappable = false;
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1934
uint32_t
1935
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1936
{
1937
	uint32_t gtt_size;
1938 1939

	if (INTEL_INFO(dev)->gen >= 4 ||
1940 1941
	    tiling_mode == I915_TILING_NONE)
		return size;
1942 1943 1944

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1945
		gtt_size = 1024*1024;
1946
	else
1947
		gtt_size = 512*1024;
1948

1949 1950
	while (gtt_size < size)
		gtt_size <<= 1;
1951

1952
	return gtt_size;
1953 1954
}

1955 1956 1957 1958 1959
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1960
 * potential fence register mapping.
1961
 */
1962 1963 1964
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1965 1966 1967 1968 1969
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1970
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1971
	    tiling_mode == I915_TILING_NONE)
1972 1973
		return 4096;

1974 1975 1976 1977
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1978
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1979 1980
}

1981 1982 1983 1984 1985
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1986
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1987 1988
		return 0;

1989 1990
	dev_priv->mm.shrinker_no_lock_stealing = true;

1991 1992
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1993
		goto out;
1994 1995 1996 1997 1998 1999 2000 2001

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2002 2003 2004 2005 2006
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2007 2008
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2009
		goto out;
2010 2011

	i915_gem_shrink_all(dev_priv);
2012 2013 2014 2015 2016
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2017 2018 2019 2020 2021 2022 2023
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2024
int
2025 2026
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2027
		  uint32_t handle,
2028
		  uint64_t *offset)
2029
{
2030
	struct drm_i915_gem_object *obj;
2031 2032
	int ret;

2033
	ret = i915_mutex_lock_interruptible(dev);
2034
	if (ret)
2035
		return ret;
2036

2037
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2038
	if (&obj->base == NULL) {
2039 2040 2041
		ret = -ENOENT;
		goto unlock;
	}
2042

2043
	if (obj->madv != I915_MADV_WILLNEED) {
2044
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2045
		ret = -EFAULT;
2046
		goto out;
2047 2048
	}

2049 2050 2051
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2052

2053
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2054

2055
out:
2056
	drm_gem_object_unreference(&obj->base);
2057
unlock:
2058
	mutex_unlock(&dev->struct_mutex);
2059
	return ret;
2060 2061
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2083
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2084 2085
}

D
Daniel Vetter 已提交
2086 2087 2088
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2089
{
2090
	i915_gem_object_free_mmap_offset(obj);
2091

2092 2093
	if (obj->base.filp == NULL)
		return;
2094

D
Daniel Vetter 已提交
2095 2096 2097 2098 2099
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2100
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2101 2102
	obj->madv = __I915_MADV_PURGED;
}
2103

2104 2105 2106
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2107
{
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2122 2123
}

2124
static void
2125
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2126
{
2127 2128
	struct sg_page_iter sg_iter;
	int ret;
2129

2130
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2131

C
Chris Wilson 已提交
2132 2133 2134 2135 2136 2137
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2138
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2139 2140 2141
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2142
	if (i915_gem_object_needs_bit17_swizzle(obj))
2143 2144
		i915_gem_object_save_bit_17_swizzle(obj);

2145 2146
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2147

2148
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2149
		struct page *page = sg_page_iter_page(&sg_iter);
2150

2151
		if (obj->dirty)
2152
			set_page_dirty(page);
2153

2154
		if (obj->madv == I915_MADV_WILLNEED)
2155
			mark_page_accessed(page);
2156

2157
		page_cache_release(page);
2158
	}
2159
	obj->dirty = 0;
2160

2161 2162
	sg_free_table(obj->pages);
	kfree(obj->pages);
2163
}
C
Chris Wilson 已提交
2164

2165
int
2166 2167 2168 2169
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2170
	if (obj->pages == NULL)
2171 2172
		return 0;

2173 2174 2175
	if (obj->pages_pin_count)
		return -EBUSY;

2176
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2177

2178 2179 2180
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2181
	list_del(&obj->global_list);
2182

2183
	ops->put_pages(obj);
2184
	obj->pages = NULL;
2185

2186
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2187 2188 2189 2190

	return 0;
}

2191
static int
C
Chris Wilson 已提交
2192
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2193
{
C
Chris Wilson 已提交
2194
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 2196
	int page_count, i;
	struct address_space *mapping;
2197 2198
	struct sg_table *st;
	struct scatterlist *sg;
2199
	struct sg_page_iter sg_iter;
2200
	struct page *page;
2201
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2202
	gfp_t gfp;
2203

C
Chris Wilson 已提交
2204 2205 2206 2207 2208 2209 2210
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2211 2212 2213 2214
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2215
	page_count = obj->base.size / PAGE_SIZE;
2216 2217
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2218
		return -ENOMEM;
2219
	}
2220

2221 2222 2223 2224 2225
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2226
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2227
	gfp = mapping_gfp_mask(mapping);
2228
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2229
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2230 2231 2232
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2233 2234
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2235 2236 2237 2238 2239
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2240 2241 2242 2243 2244 2245 2246 2247
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2248
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2249 2250 2251
			if (IS_ERR(page))
				goto err_pages;
		}
2252 2253 2254 2255 2256 2257 2258 2259
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2260 2261 2262 2263 2264 2265 2266 2267 2268
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2269 2270 2271

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2272
	}
2273 2274 2275 2276
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2277 2278
	obj->pages = st;

2279
	if (i915_gem_object_needs_bit17_swizzle(obj))
2280 2281
		i915_gem_object_do_bit_17_swizzle(obj);

2282 2283 2284 2285
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2286 2287 2288
	return 0;

err_pages:
2289 2290
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2291
		page_cache_release(sg_page_iter_page(&sg_iter));
2292 2293
	sg_free_table(st);
	kfree(st);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2323
	if (obj->pages)
2324 2325
		return 0;

2326
	if (obj->madv != I915_MADV_WILLNEED) {
2327
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2328
		return -EFAULT;
2329 2330
	}

2331 2332
	BUG_ON(obj->pages_pin_count);

2333 2334 2335 2336
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2337
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2338 2339 2340 2341

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2342
	return 0;
2343 2344
}

2345 2346
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct intel_engine_cs *ring)
2347
{
2348
	struct drm_i915_gem_object *obj = vma->obj;
2349 2350

	/* Add a reference if we're newly entering the active list. */
2351
	if (obj->active == 0)
2352
		drm_gem_object_reference(&obj->base);
2353
	obj->active |= intel_ring_flag(ring);
2354

2355 2356 2357
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
	i915_gem_request_assign(&obj->last_read_req[ring->id],
				intel_ring_get_request(ring));
2358

2359
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2360 2361
}

2362 2363
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2364
{
2365 2366 2367 2368 2369
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2370 2371
}

2372
static void
2373
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2374
{
2375
	struct i915_vma *vma;
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2389

2390 2391 2392
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2393
	}
2394

2395
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2396
	drm_gem_object_unreference(&obj->base);
2397 2398
}

2399
static int
2400
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2401
{
2402
	struct drm_i915_private *dev_priv = dev->dev_private;
2403
	struct intel_engine_cs *ring;
2404
	int ret, i, j;
2405

2406
	/* Carefully retire all requests without writing to the rings */
2407
	for_each_ring(ring, dev_priv, i) {
2408 2409 2410
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2411 2412
	}
	i915_gem_retire_requests(dev);
2413 2414

	/* Finally reset hw state */
2415
	for_each_ring(ring, dev_priv, i) {
2416
		intel_ring_init_seqno(ring, seqno);
2417

2418 2419
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2420
	}
2421

2422
	return 0;
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2451 2452
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2453
{
2454 2455 2456 2457
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2458
		int ret = i915_gem_init_seqno(dev, 0);
2459 2460
		if (ret)
			return ret;
2461

2462 2463
		dev_priv->next_seqno = 1;
	}
2464

2465
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2466
	return 0;
2467 2468
}

2469
int __i915_add_request(struct intel_engine_cs *ring,
2470
		       struct drm_file *file,
2471
		       struct drm_i915_gem_object *obj)
2472
{
2473
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2474
	struct drm_i915_gem_request *request;
2475
	struct intel_ringbuffer *ringbuf;
2476
	u32 request_start;
2477 2478
	int ret;

2479
	request = ring->outstanding_lazy_request;
2480 2481 2482 2483
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2484
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2485 2486 2487 2488
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2489 2490 2491 2492 2493 2494 2495
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2496
	if (i915.enable_execlists) {
2497
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2498 2499 2500 2501 2502 2503 2504
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2505

2506 2507 2508 2509 2510
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2511
	request->postfix = intel_ring_get_tail(ringbuf);
2512

2513
	if (i915.enable_execlists) {
2514
		ret = ring->emit_request(ringbuf, request);
2515 2516 2517 2518 2519 2520
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2521 2522

		request->tail = intel_ring_get_tail(ringbuf);
2523
	}
2524

2525 2526 2527 2528 2529 2530 2531 2532
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2533
	request->batch_obj = obj;
2534

2535 2536 2537 2538 2539 2540 2541 2542
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2543

2544
	request->emitted_jiffies = jiffies;
2545
	list_add_tail(&request->list, &ring->request_list);
2546
	request->file_priv = NULL;
2547

C
Chris Wilson 已提交
2548 2549 2550
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2551
		spin_lock(&file_priv->mm.lock);
2552
		request->file_priv = file_priv;
2553
		list_add_tail(&request->client_list,
2554
			      &file_priv->mm.request_list);
2555
		spin_unlock(&file_priv->mm.lock);
2556 2557

		request->pid = get_pid(task_pid(current));
2558
	}
2559

2560
	trace_i915_gem_request_add(request);
2561
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2562

2563
	i915_queue_hangcheck(ring->dev);
2564

2565 2566 2567 2568
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2569

2570
	return 0;
2571 2572
}

2573
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574
				   const struct intel_context *ctx)
2575
{
2576
	unsigned long elapsed;
2577

2578 2579 2580
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2581 2582
		return true;

2583 2584
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2585
		if (!i915_gem_context_is_default(ctx)) {
2586
			DRM_DEBUG("context hanging too fast, banning!\n");
2587
			return true;
2588 2589 2590
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2591
			return true;
2592
		}
2593 2594 2595 2596 2597
	}

	return false;
}

2598
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599
				  struct intel_context *ctx,
2600
				  const bool guilty)
2601
{
2602 2603 2604 2605
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2606

2607 2608 2609
	hs = &ctx->hang_stats;

	if (guilty) {
2610
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2611 2612 2613 2614
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2615 2616 2617
	}
}

2618 2619 2620 2621 2622 2623
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2624 2625
	if (ctx) {
		if (i915.enable_execlists) {
2626
			struct intel_engine_cs *ring = req->ring;
2627

2628 2629 2630
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2631

2632 2633
		i915_gem_context_unreference(ctx);
	}
2634

2635
	kmem_cache_free(req->i915->requests, req);
2636 2637
}

2638 2639 2640
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2641
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2642
	struct drm_i915_gem_request *req;
2643 2644 2645 2646 2647
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

D
Daniel Vetter 已提交
2648 2649
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2650 2651
		return -ENOMEM;

D
Daniel Vetter 已提交
2652 2653
	kref_init(&req->ref);
	req->i915 = dev_priv;
2654

D
Daniel Vetter 已提交
2655
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2656 2657
	if (ret)
		goto err;
2658

D
Daniel Vetter 已提交
2659
	req->ring = ring;
2660 2661

	if (i915.enable_execlists)
D
Daniel Vetter 已提交
2662
		ret = intel_logical_ring_alloc_request_extras(req, ctx);
2663
	else
D
Daniel Vetter 已提交
2664
		ret = intel_ring_alloc_request_extras(req);
2665 2666
	if (ret)
		goto err;
2667

D
Daniel Vetter 已提交
2668
	ring->outstanding_lazy_request = req;
2669
	return 0;
2670 2671 2672 2673

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2674 2675
}

2676
struct drm_i915_gem_request *
2677
i915_gem_find_active_request(struct intel_engine_cs *ring)
2678
{
2679 2680 2681
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2682
		if (i915_gem_request_completed(request, false))
2683
			continue;
2684

2685
		return request;
2686
	}
2687 2688 2689 2690 2691

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2692
				       struct intel_engine_cs *ring)
2693 2694 2695 2696
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2697
	request = i915_gem_find_active_request(ring);
2698 2699 2700 2701 2702 2703

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2704
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2705 2706

	list_for_each_entry_continue(request, &ring->request_list, list)
2707
		i915_set_reset_status(dev_priv, request->ctx, false);
2708
}
2709

2710
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2711
					struct intel_engine_cs *ring)
2712
{
2713
	while (!list_empty(&ring->active_list)) {
2714
		struct drm_i915_gem_object *obj;
2715

2716 2717
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2718
				       ring_list[ring->id]);
2719

2720
		i915_gem_object_retire__read(obj, ring->id);
2721
	}
2722

2723 2724 2725 2726 2727 2728
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2729
		struct drm_i915_gem_request *submit_req;
2730 2731

		submit_req = list_first_entry(&ring->execlist_queue,
2732
				struct drm_i915_gem_request,
2733 2734
				execlist_link);
		list_del(&submit_req->execlist_link);
2735 2736 2737 2738

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2739
		i915_gem_request_unreference(submit_req);
2740 2741
	}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2756
		i915_gem_request_retire(request);
2757
	}
2758

2759 2760
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2761 2762
}

2763
void i915_gem_restore_fences(struct drm_device *dev)
2764 2765 2766 2767
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2768
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2769
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2781 2782 2783
	}
}

2784
void i915_gem_reset(struct drm_device *dev)
2785
{
2786
	struct drm_i915_private *dev_priv = dev->dev_private;
2787
	struct intel_engine_cs *ring;
2788
	int i;
2789

2790 2791 2792 2793 2794 2795 2796 2797
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2798
	for_each_ring(ring, dev_priv, i)
2799
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2800

2801 2802
	i915_gem_context_reset(dev);

2803
	i915_gem_restore_fences(dev);
2804 2805

	WARN_ON(i915_verify_lists(dev));
2806 2807 2808 2809 2810
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2811
void
2812
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2813
{
C
Chris Wilson 已提交
2814
	WARN_ON(i915_verify_lists(ring->dev));
2815

2816 2817 2818 2819
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2820
	 */
2821
	while (!list_empty(&ring->request_list)) {
2822 2823
		struct drm_i915_gem_request *request;

2824
		request = list_first_entry(&ring->request_list,
2825 2826 2827
					   struct drm_i915_gem_request,
					   list);

2828
		if (!i915_gem_request_completed(request, true))
2829 2830
			break;

2831
		i915_gem_request_retire(request);
2832
	}
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2843
				      ring_list[ring->id]);
2844

2845
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2846 2847
			break;

2848
		i915_gem_object_retire__read(obj, ring->id);
2849 2850
	}

2851 2852
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2853
		ring->irq_put(ring);
2854
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2855
	}
2856

C
Chris Wilson 已提交
2857
	WARN_ON(i915_verify_lists(ring->dev));
2858 2859
}

2860
bool
2861 2862
i915_gem_retire_requests(struct drm_device *dev)
{
2863
	struct drm_i915_private *dev_priv = dev->dev_private;
2864
	struct intel_engine_cs *ring;
2865
	bool idle = true;
2866
	int i;
2867

2868
	for_each_ring(ring, dev_priv, i) {
2869
		i915_gem_retire_requests_ring(ring);
2870
		idle &= list_empty(&ring->request_list);
2871 2872 2873 2874 2875 2876 2877 2878 2879
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2880 2881 2882 2883 2884 2885 2886 2887
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2888 2889
}

2890
static void
2891 2892
i915_gem_retire_work_handler(struct work_struct *work)
{
2893 2894 2895
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2896
	bool idle;
2897

2898
	/* Come back later if the device is busy... */
2899 2900 2901 2902
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2903
	}
2904
	if (!idle)
2905 2906
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2907
}
2908

2909 2910 2911 2912 2913
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2914
	struct drm_device *dev = dev_priv->dev;
2915 2916
	struct intel_engine_cs *ring;
	int i;
2917

2918 2919 2920
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2921 2922 2923 2924 2925 2926 2927 2928 2929

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2930

2931 2932
		mutex_unlock(&dev->struct_mutex);
	}
2933 2934
}

2935 2936 2937 2938 2939 2940 2941 2942
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2943 2944 2945 2946
	int ret, i;

	if (!obj->active)
		return 0;
2947

2948 2949
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2950

2951 2952 2953 2954 2955 2956 2957 2958
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		ret = i915_gem_check_olr(req);
2959 2960 2961
		if (ret)
			return ret;

2962 2963 2964 2965 2966
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
2967 2968 2969 2970 2971
	}

	return 0;
}

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2997
	struct drm_i915_private *dev_priv = dev->dev_private;
2998 2999
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3000
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3001
	unsigned reset_counter;
3002 3003
	int i, n = 0;
	int ret;
3004

3005 3006 3007
	if (args->flags != 0)
		return -EINVAL;

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3018 3019
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3020 3021 3022
	if (ret)
		goto out;

3023
	if (!obj->active)
3024
		goto out;
3025 3026

	/* Do this after OLR check to make sure we make forward progress polling
3027
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3028
	 */
3029
	if (args->timeout_ns == 0) {
3030 3031 3032 3033 3034
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3035
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3036 3037 3038 3039 3040 3041 3042 3043

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3044 3045
	mutex_unlock(&dev->struct_mutex);

3046 3047 3048 3049 3050 3051 3052
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3053
	return ret;
3054 3055 3056 3057 3058 3059 3060

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
		       struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *from;
	int ret;

	from = i915_gem_request_get_ring(req);
	if (to == from)
		return 0;

	if (i915_gem_request_completed(req, true))
		return 0;

	ret = i915_gem_check_olr(req);
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3081
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3082
		ret = __i915_wait_request(req,
3083 3084 3085 3086
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		if (ret)
			return ret;

		i915_gem_object_retire_request(obj, req);
	} else {
		int idx = intel_ring_sync_index(from, to);
		u32 seqno = i915_gem_request_get_seqno(req);

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

		trace_i915_gem_ring_sync_to(from, to, req);
		ret = to->semaphore.sync_to(to, from, seqno);
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3114 3115 3116 3117 3118 3119 3120 3121
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
 * rather than a particular GPU ring. Conceptually we serialise writes
 * between engines inside the GPU. We only allow on engine to write
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3133 3134 3135
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3136 3137
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138
		     struct intel_engine_cs *to)
3139
{
3140 3141 3142
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3143

3144
	if (!obj->active)
3145 3146
		return 0;

3147 3148
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
		ret = __i915_gem_object_sync(obj, to, req[i]);
		if (ret)
			return ret;
	}
3164

3165
	return 0;
3166 3167
}

3168 3169 3170 3171 3172 3173 3174
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3175 3176 3177
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3178 3179 3180
	/* Wait for any direct GTT access to complete */
	mb();

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3192
int i915_vma_unbind(struct i915_vma *vma)
3193
{
3194
	struct drm_i915_gem_object *obj = vma->obj;
3195
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3196
	int ret;
3197

3198
	if (list_empty(&vma->vma_link))
3199 3200
		return 0;

3201 3202 3203 3204
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3205

B
Ben Widawsky 已提交
3206
	if (vma->pin_count)
3207
		return -EBUSY;
3208

3209 3210
	BUG_ON(obj->pages == NULL);

3211
	ret = i915_gem_object_wait_rendering(obj, false);
3212
	if (ret)
3213 3214 3215 3216 3217 3218
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3219 3220
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3221
		i915_gem_object_finish_gtt(obj);
3222

3223 3224 3225 3226 3227
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3228

3229
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3230

3231
	vma->vm->unbind_vma(vma);
3232
	vma->bound = 0;
3233

3234
	list_del_init(&vma->mm_list);
3235 3236 3237 3238 3239 3240 3241 3242 3243
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3244

B
Ben Widawsky 已提交
3245 3246 3247 3248
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3249
	 * no more VMAs exist. */
3250 3251
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3252
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3253
	}
3254

3255 3256 3257 3258 3259 3260
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3261
	return 0;
3262 3263
}

3264
int i915_gpu_idle(struct drm_device *dev)
3265
{
3266
	struct drm_i915_private *dev_priv = dev->dev_private;
3267
	struct intel_engine_cs *ring;
3268
	int ret, i;
3269 3270

	/* Flush everything onto the inactive list. */
3271
	for_each_ring(ring, dev_priv, i) {
3272 3273 3274 3275 3276
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3277

3278
		ret = intel_ring_idle(ring);
3279 3280 3281
		if (ret)
			return ret;
	}
3282

3283
	WARN_ON(i915_verify_lists(dev));
3284
	return 0;
3285 3286
}

3287 3288
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3289
{
3290
	struct drm_i915_private *dev_priv = dev->dev_private;
3291 3292
	int fence_reg;
	int fence_pitch_shift;
3293

3294 3295 3296 3297 3298 3299 3300 3301
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3316
	if (obj) {
3317
		u32 size = i915_gem_obj_ggtt_size(obj);
3318
		uint64_t val;
3319

3320 3321 3322 3323 3324 3325 3326
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3327
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3328
				 0xfffff000) << 32;
3329
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3330
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3331 3332 3333
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3334

3335 3336 3337 3338 3339 3340 3341 3342 3343
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3344 3345
}

3346 3347
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3348
{
3349
	struct drm_i915_private *dev_priv = dev->dev_private;
3350
	u32 val;
3351

3352
	if (obj) {
3353
		u32 size = i915_gem_obj_ggtt_size(obj);
3354 3355
		int pitch_val;
		int tile_width;
3356

3357
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3358
		     (size & -size) != size ||
3359 3360 3361
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3362

3363 3364 3365 3366 3367 3368 3369 3370 3371
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3372
		val = i915_gem_obj_ggtt_offset(obj);
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3388 3389
}

3390 3391
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3392
{
3393
	struct drm_i915_private *dev_priv = dev->dev_private;
3394 3395
	uint32_t val;

3396
	if (obj) {
3397
		u32 size = i915_gem_obj_ggtt_size(obj);
3398
		uint32_t pitch_val;
3399

3400
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3401
		     (size & -size) != size ||
3402 3403 3404
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3405

3406 3407
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3408

3409
		val = i915_gem_obj_ggtt_offset(obj);
3410 3411 3412 3413 3414 3415 3416
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3417

3418 3419 3420 3421
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3422 3423 3424 3425 3426
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3427 3428 3429
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3430 3431 3432 3433 3434 3435 3436 3437
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3438 3439 3440 3441
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3442 3443 3444 3445 3446 3447
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3448 3449 3450 3451 3452 3453

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3454 3455
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3466
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3467 3468 3469
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3470 3471

	if (enable) {
3472
		obj->fence_reg = reg;
3473 3474 3475 3476 3477 3478 3479
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3480
	obj->fence_dirty = false;
3481 3482
}

3483
static int
3484
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3485
{
3486
	if (obj->last_fenced_req) {
3487
		int ret = i915_wait_request(obj->last_fenced_req);
3488 3489
		if (ret)
			return ret;
3490

3491
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3492 3493 3494 3495 3496 3497 3498 3499
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3500
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3501
	struct drm_i915_fence_reg *fence;
3502 3503
	int ret;

3504
	ret = i915_gem_object_wait_fence(obj);
3505 3506 3507
	if (ret)
		return ret;

3508 3509
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3510

3511 3512
	fence = &dev_priv->fence_regs[obj->fence_reg];

3513 3514 3515
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3516
	i915_gem_object_fence_lost(obj);
3517
	i915_gem_object_update_fence(obj, fence, false);
3518 3519 3520 3521 3522

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3523
i915_find_fence_reg(struct drm_device *dev)
3524 3525
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3526
	struct drm_i915_fence_reg *reg, *avail;
3527
	int i;
3528 3529

	/* First try to find a free reg */
3530
	avail = NULL;
3531 3532 3533
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3534
			return reg;
3535

3536
		if (!reg->pin_count)
3537
			avail = reg;
3538 3539
	}

3540
	if (avail == NULL)
3541
		goto deadlock;
3542 3543

	/* None available, try to steal one or wait for a user to finish */
3544
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3545
		if (reg->pin_count)
3546 3547
			continue;

C
Chris Wilson 已提交
3548
		return reg;
3549 3550
	}

3551 3552 3553 3554 3555 3556
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3557 3558
}

3559
/**
3560
 * i915_gem_object_get_fence - set up fencing for an object
3561 3562 3563 3564 3565 3566 3567 3568 3569
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3570 3571
 *
 * For an untiled surface, this removes any existing fence.
3572
 */
3573
int
3574
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3575
{
3576
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3577
	struct drm_i915_private *dev_priv = dev->dev_private;
3578
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3579
	struct drm_i915_fence_reg *reg;
3580
	int ret;
3581

3582 3583 3584
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3585
	if (obj->fence_dirty) {
3586
		ret = i915_gem_object_wait_fence(obj);
3587 3588 3589
		if (ret)
			return ret;
	}
3590

3591
	/* Just update our place in the LRU if our fence is getting reused. */
3592 3593
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3594
		if (!obj->fence_dirty) {
3595 3596 3597 3598 3599
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3600 3601 3602
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3603
		reg = i915_find_fence_reg(dev);
3604 3605
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3606

3607 3608 3609
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3610
			ret = i915_gem_object_wait_fence(old);
3611 3612 3613
			if (ret)
				return ret;

3614
			i915_gem_object_fence_lost(old);
3615
		}
3616
	} else
3617 3618
		return 0;

3619 3620
	i915_gem_object_update_fence(obj, reg, enable);

3621
	return 0;
3622 3623
}

3624
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3625 3626
				     unsigned long cache_level)
{
3627
	struct drm_mm_node *gtt_space = &vma->node;
3628 3629
	struct drm_mm_node *other;

3630 3631 3632 3633 3634 3635
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3636
	 */
3637
	if (vma->vm->mm.color_adjust == NULL)
3638 3639
		return true;

3640
	if (!drm_mm_node_allocated(gtt_space))
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3657
/**
3658 3659
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3660
 */
3661
static struct i915_vma *
3662 3663
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3664
			   const struct i915_ggtt_view *ggtt_view,
3665
			   unsigned alignment,
3666
			   uint64_t flags)
3667
{
3668
	struct drm_device *dev = obj->base.dev;
3669
	struct drm_i915_private *dev_priv = dev->dev_private;
3670
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3671 3672 3673
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3674
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3675
	struct i915_vma *vma;
3676
	int ret;
3677

3678 3679 3680 3681 3682
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3683

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3713

3714
	if (alignment == 0)
3715
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3716
						unfenced_alignment;
3717
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3718 3719 3720
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3721
		return ERR_PTR(-EINVAL);
3722 3723
	}

3724 3725 3726
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3727
	 */
3728 3729 3730 3731
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3732
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3733
			  end);
3734
		return ERR_PTR(-E2BIG);
3735 3736
	}

3737
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3738
	if (ret)
3739
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3740

3741 3742
	i915_gem_object_pin_pages(obj);

3743 3744 3745
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3746
	if (IS_ERR(vma))
3747
		goto err_unpin;
B
Ben Widawsky 已提交
3748

3749
search_free:
3750
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3751
						  size, alignment,
3752 3753
						  obj->cache_level,
						  start, end,
3754 3755
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3756
	if (ret) {
3757
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3758 3759 3760
					       obj->cache_level,
					       start, end,
					       flags);
3761 3762
		if (ret == 0)
			goto search_free;
3763

3764
		goto err_free_vma;
3765
	}
3766
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3767
		ret = -EINVAL;
3768
		goto err_remove_node;
3769 3770
	}

3771
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3772
	if (ret)
3773
		goto err_remove_node;
3774

3775
	trace_i915_vma_bind(vma, flags);
3776
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3777 3778 3779
	if (ret)
		goto err_finish_gtt;

3780
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3781
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3782

3783
	return vma;
B
Ben Widawsky 已提交
3784

3785 3786
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3787
err_remove_node:
3788
	drm_mm_remove_node(&vma->node);
3789
err_free_vma:
B
Ben Widawsky 已提交
3790
	i915_gem_vma_destroy(vma);
3791
	vma = ERR_PTR(ret);
3792
err_unpin:
B
Ben Widawsky 已提交
3793
	i915_gem_object_unpin_pages(obj);
3794
	return vma;
3795 3796
}

3797
bool
3798 3799
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3800 3801 3802 3803 3804
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3805
	if (obj->pages == NULL)
3806
		return false;
3807

3808 3809 3810 3811
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3812
	if (obj->stolen || obj->phys_handle)
3813
		return false;
3814

3815 3816 3817 3818 3819 3820 3821 3822
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3823 3824
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3825
		return false;
3826
	}
3827

C
Chris Wilson 已提交
3828
	trace_i915_gem_object_clflush(obj);
3829
	drm_clflush_sg(obj->pages);
3830
	obj->cache_dirty = false;
3831 3832

	return true;
3833 3834 3835 3836
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3837
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3838
{
C
Chris Wilson 已提交
3839 3840
	uint32_t old_write_domain;

3841
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3842 3843
		return;

3844
	/* No actual flushing is required for the GTT write domain.  Writes
3845 3846
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3847 3848 3849 3850
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3851
	 */
3852 3853
	wmb();

3854 3855
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3856

3857 3858
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3859
	trace_i915_gem_object_change_domain(obj,
3860
					    obj->base.read_domains,
C
Chris Wilson 已提交
3861
					    old_write_domain);
3862 3863 3864 3865
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3866
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3867
{
C
Chris Wilson 已提交
3868
	uint32_t old_write_domain;
3869

3870
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3871 3872
		return;

3873
	if (i915_gem_clflush_object(obj, obj->pin_display))
3874 3875
		i915_gem_chipset_flush(obj->base.dev);

3876 3877
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3878

3879 3880
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3881
	trace_i915_gem_object_change_domain(obj,
3882
					    obj->base.read_domains,
C
Chris Wilson 已提交
3883
					    old_write_domain);
3884 3885
}

3886 3887 3888 3889 3890 3891
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3892
int
3893
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3894
{
C
Chris Wilson 已提交
3895
	uint32_t old_write_domain, old_read_domains;
3896
	struct i915_vma *vma;
3897
	int ret;
3898

3899 3900 3901
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3902
	ret = i915_gem_object_wait_rendering(obj, !write);
3903 3904 3905
	if (ret)
		return ret;

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3918
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3919

3920 3921 3922 3923 3924 3925 3926
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3927 3928
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3929

3930 3931 3932
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3933 3934
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3935
	if (write) {
3936 3937 3938
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3939 3940
	}

3941
	if (write)
3942
		intel_fb_obj_invalidate(obj, ORIGIN_GTT);
3943

C
Chris Wilson 已提交
3944 3945 3946 3947
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3948
	/* And bump the LRU for this access */
3949 3950
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3951
		list_move_tail(&vma->mm_list,
3952
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3953

3954 3955 3956
	return 0;
}

3957 3958 3959
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3960
	struct drm_device *dev = obj->base.dev;
3961
	struct i915_vma *vma, *next;
3962 3963 3964 3965 3966
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3967
	if (i915_gem_obj_is_pinned(obj)) {
3968 3969 3970 3971
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3972
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3973
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3974
			ret = i915_vma_unbind(vma);
3975 3976 3977
			if (ret)
				return ret;
		}
3978 3979
	}

3980
	if (i915_gem_obj_bound_any(obj)) {
3981
		ret = i915_gem_object_wait_rendering(obj, false);
3982 3983 3984 3985 3986 3987 3988 3989 3990
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3991
		if (INTEL_INFO(dev)->gen < 6) {
3992 3993 3994 3995 3996
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3997
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3998 3999
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4000
						    PIN_UPDATE);
4001 4002 4003
				if (ret)
					return ret;
			}
4004 4005
	}

4006 4007 4008 4009
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4010 4011 4012 4013 4014
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4015 4016 4017 4018 4019
	}

	return 0;
}

B
Ben Widawsky 已提交
4020 4021
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4022
{
B
Ben Widawsky 已提交
4023
	struct drm_i915_gem_caching *args = data;
4024 4025 4026
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4027 4028
	if (&obj->base == NULL)
		return -ENOENT;
4029

4030 4031 4032 4033 4034 4035
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4036 4037 4038 4039
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4040 4041 4042 4043
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4044

4045 4046
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4047 4048
}

B
Ben Widawsky 已提交
4049 4050
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4051
{
B
Ben Widawsky 已提交
4052
	struct drm_i915_gem_caching *args = data;
4053 4054 4055 4056
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4057 4058
	switch (args->caching) {
	case I915_CACHING_NONE:
4059 4060
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4061
	case I915_CACHING_CACHED:
4062 4063
		level = I915_CACHE_LLC;
		break;
4064 4065 4066
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4067 4068 4069 4070
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4071 4072 4073 4074
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4089
/*
4090 4091 4092
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4093 4094
 */
int
4095 4096
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4097 4098
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
4099
{
4100
	u32 old_read_domains, old_write_domain;
4101 4102
	int ret;

4103 4104 4105
	ret = i915_gem_object_sync(obj, pipelined);
	if (ret)
		return ret;
4106

4107 4108 4109
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4110
	obj->pin_display++;
4111

4112 4113 4114 4115 4116 4117 4118 4119 4120
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4121 4122
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4123
	if (ret)
4124
		goto err_unpin_display;
4125

4126 4127 4128 4129
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4130 4131 4132
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4133
	if (ret)
4134
		goto err_unpin_display;
4135

4136
	i915_gem_object_flush_cpu_write_domain(obj);
4137

4138
	old_write_domain = obj->base.write_domain;
4139
	old_read_domains = obj->base.read_domains;
4140 4141 4142 4143

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4144
	obj->base.write_domain = 0;
4145
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4146 4147 4148

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4149
					    old_write_domain);
4150 4151

	return 0;
4152 4153

err_unpin_display:
4154
	obj->pin_display--;
4155 4156 4157 4158
	return ret;
}

void
4159 4160
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4161
{
4162 4163 4164
	if (WARN_ON(obj->pin_display == 0))
		return;

4165 4166
	i915_gem_object_ggtt_unpin_view(obj, view);

4167
	obj->pin_display--;
4168 4169
}

4170 4171 4172 4173 4174 4175
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4176
int
4177
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4178
{
C
Chris Wilson 已提交
4179
	uint32_t old_write_domain, old_read_domains;
4180 4181
	int ret;

4182 4183 4184
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4185
	ret = i915_gem_object_wait_rendering(obj, !write);
4186 4187 4188
	if (ret)
		return ret;

4189
	i915_gem_object_flush_gtt_write_domain(obj);
4190

4191 4192
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4193

4194
	/* Flush the CPU cache if it's still invalid. */
4195
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4196
		i915_gem_clflush_object(obj, false);
4197

4198
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4199 4200 4201 4202 4203
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4204
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4205 4206 4207 4208 4209

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4210 4211
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4212
	}
4213

4214
	if (write)
4215
		intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4216

C
Chris Wilson 已提交
4217 4218 4219 4220
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4221 4222 4223
	return 0;
}

4224 4225 4226
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4227 4228 4229 4230
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4231 4232 4233
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4234
static int
4235
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4236
{
4237 4238
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4239
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4240
	struct drm_i915_gem_request *request, *target = NULL;
4241
	unsigned reset_counter;
4242
	int ret;
4243

4244 4245 4246 4247 4248 4249 4250
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4251

4252
	spin_lock(&file_priv->mm.lock);
4253
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4254 4255
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4256

4257
		target = request;
4258
	}
4259
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4260 4261
	if (target)
		i915_gem_request_reference(target);
4262
	spin_unlock(&file_priv->mm.lock);
4263

4264
	if (target == NULL)
4265
		return 0;
4266

4267
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4268 4269
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4270

4271
	i915_gem_request_unreference__unlocked(target);
4272

4273 4274 4275
	return ret;
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4295 4296 4297 4298 4299 4300
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4301
{
4302
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4303
	struct i915_vma *vma;
4304
	unsigned bound;
4305 4306
	int ret;

4307 4308 4309
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4310
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4311
		return -EINVAL;
4312

4313 4314 4315
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4316 4317 4318 4319 4320 4321 4322 4323 4324
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4325
	if (vma) {
B
Ben Widawsky 已提交
4326 4327 4328
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4329
		if (i915_vma_misplaced(vma, alignment, flags)) {
4330
			unsigned long offset;
4331
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4332
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4333
			WARN(vma->pin_count,
4334
			     "bo is already pinned in %s with incorrect alignment:"
4335
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4336
			     " obj->map_and_fenceable=%d\n",
4337 4338
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4339
			     alignment,
4340
			     !!(flags & PIN_MAPPABLE),
4341
			     obj->map_and_fenceable);
4342
			ret = i915_vma_unbind(vma);
4343 4344
			if (ret)
				return ret;
4345 4346

			vma = NULL;
4347 4348 4349
		}
	}

4350
	bound = vma ? vma->bound : 0;
4351
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4352 4353
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4354 4355
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4356 4357
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4358 4359 4360
		if (ret)
			return ret;
	}
4361

4362 4363
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4378
		mappable = (vma->node.start + fence_size <=
4379 4380 4381 4382
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4383 4384
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4385

4386
	vma->pin_count++;
4387 4388 4389
	return 0;
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4411
				      alignment, flags | PIN_GLOBAL);
4412 4413
}

4414
void
4415 4416
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4417
{
4418
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4419

B
Ben Widawsky 已提交
4420
	BUG_ON(!vma);
4421
	WARN_ON(vma->pin_count == 0);
4422
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4423

4424
	--vma->pin_count;
4425 4426
}

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4453 4454
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4455
		    struct drm_file *file)
4456 4457
{
	struct drm_i915_gem_busy *args = data;
4458
	struct drm_i915_gem_object *obj;
4459 4460
	int ret;

4461
	ret = i915_mutex_lock_interruptible(dev);
4462
	if (ret)
4463
		return ret;
4464

4465
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4466
	if (&obj->base == NULL) {
4467 4468
		ret = -ENOENT;
		goto unlock;
4469
	}
4470

4471 4472 4473 4474
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4475
	 */
4476
	ret = i915_gem_object_flush_active(obj);
4477 4478
	if (ret)
		goto unref;
4479

4480 4481 4482 4483
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4484

4485
unref:
4486
	drm_gem_object_unreference(&obj->base);
4487
unlock:
4488
	mutex_unlock(&dev->struct_mutex);
4489
	return ret;
4490 4491 4492 4493 4494 4495
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4496
	return i915_gem_ring_throttle(dev, file_priv);
4497 4498
}

4499 4500 4501 4502
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4503
	struct drm_i915_private *dev_priv = dev->dev_private;
4504
	struct drm_i915_gem_madvise *args = data;
4505
	struct drm_i915_gem_object *obj;
4506
	int ret;
4507 4508 4509 4510 4511 4512 4513 4514 4515

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4516 4517 4518 4519
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4520
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4521
	if (&obj->base == NULL) {
4522 4523
		ret = -ENOENT;
		goto unlock;
4524 4525
	}

B
Ben Widawsky 已提交
4526
	if (i915_gem_obj_is_pinned(obj)) {
4527 4528
		ret = -EINVAL;
		goto out;
4529 4530
	}

4531 4532 4533 4534 4535 4536 4537 4538 4539
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4540 4541
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4542

C
Chris Wilson 已提交
4543
	/* if the object is no longer attached, discard its backing storage */
4544
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4545 4546
		i915_gem_object_truncate(obj);

4547
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4548

4549
out:
4550
	drm_gem_object_unreference(&obj->base);
4551
unlock:
4552
	mutex_unlock(&dev->struct_mutex);
4553
	return ret;
4554 4555
}

4556 4557
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4558
{
4559 4560
	int i;

4561
	INIT_LIST_HEAD(&obj->global_list);
4562 4563
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4564
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4565
	INIT_LIST_HEAD(&obj->vma_list);
4566
	INIT_LIST_HEAD(&obj->batch_pool_link);
4567

4568 4569
	obj->ops = ops;

4570 4571 4572 4573 4574 4575
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4576 4577 4578 4579 4580
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4581 4582
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4583
{
4584
	struct drm_i915_gem_object *obj;
4585
	struct address_space *mapping;
D
Daniel Vetter 已提交
4586
	gfp_t mask;
4587

4588
	obj = i915_gem_object_alloc(dev);
4589 4590
	if (obj == NULL)
		return NULL;
4591

4592
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4593
		i915_gem_object_free(obj);
4594 4595
		return NULL;
	}
4596

4597 4598 4599 4600 4601 4602 4603
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4604
	mapping = file_inode(obj->base.filp)->i_mapping;
4605
	mapping_set_gfp_mask(mapping, mask);
4606

4607
	i915_gem_object_init(obj, &i915_gem_object_ops);
4608

4609 4610
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4611

4612 4613
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4629 4630
	trace_i915_gem_object_create(obj);

4631
	return obj;
4632 4633
}

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4658
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4659
{
4660
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4661
	struct drm_device *dev = obj->base.dev;
4662
	struct drm_i915_private *dev_priv = dev->dev_private;
4663
	struct i915_vma *vma, *next;
4664

4665 4666
	intel_runtime_pm_get(dev_priv);

4667 4668
	trace_i915_gem_object_destroy(obj);

4669
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4670 4671 4672 4673
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4674 4675
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4676

4677 4678
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4679

4680
			WARN_ON(i915_vma_unbind(vma));
4681

4682 4683
			dev_priv->mm.interruptible = was_interruptible;
		}
4684 4685
	}

B
Ben Widawsky 已提交
4686 4687 4688 4689 4690
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4691 4692
	WARN_ON(obj->frontbuffer_bits);

4693 4694 4695 4696 4697
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4698 4699
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4700
	if (discard_backing_storage(obj))
4701
		obj->madv = I915_MADV_DONTNEED;
4702
	i915_gem_object_put_pages(obj);
4703
	i915_gem_object_free_mmap_offset(obj);
4704

4705 4706
	BUG_ON(obj->pages);

4707 4708
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4709

4710 4711 4712
	if (obj->ops->release)
		obj->ops->release(obj);

4713 4714
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4715

4716
	kfree(obj->bit_17);
4717
	i915_gem_object_free(obj);
4718 4719

	intel_runtime_pm_put(dev_priv);
4720 4721
}

4722 4723
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4724 4725
{
	struct i915_vma *vma;
4726 4727 4728 4729 4730
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4731
			return vma;
4732 4733 4734 4735 4736 4737 4738 4739 4740
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4741

4742 4743 4744 4745
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4746 4747
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4748
			return vma;
4749 4750 4751
	return NULL;
}

B
Ben Widawsky 已提交
4752 4753
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4754
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4755
	WARN_ON(vma->node.allocated);
4756 4757 4758 4759 4760

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4761 4762
	vm = vma->vm;

4763 4764
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4765

4766
	list_del(&vma->vma_link);
4767

4768
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4769 4770
}

4771 4772 4773 4774
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4775
	struct intel_engine_cs *ring;
4776 4777 4778
	int i;

	for_each_ring(ring, dev_priv, i)
4779
		dev_priv->gt.stop_ring(ring);
4780 4781
}

4782
int
4783
i915_gem_suspend(struct drm_device *dev)
4784
{
4785
	struct drm_i915_private *dev_priv = dev->dev_private;
4786
	int ret = 0;
4787

4788
	mutex_lock(&dev->struct_mutex);
4789
	ret = i915_gpu_idle(dev);
4790
	if (ret)
4791
		goto err;
4792

4793
	i915_gem_retire_requests(dev);
4794

4795
	i915_gem_stop_ringbuffers(dev);
4796 4797
	mutex_unlock(&dev->struct_mutex);

4798
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4799
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4800
	flush_delayed_work(&dev_priv->mm.idle_work);
4801

4802 4803 4804 4805 4806
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4807
	return 0;
4808 4809 4810 4811

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4812 4813
}

4814
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4815
{
4816
	struct drm_device *dev = ring->dev;
4817
	struct drm_i915_private *dev_priv = dev->dev_private;
4818 4819
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4820
	int i, ret;
B
Ben Widawsky 已提交
4821

4822
	if (!HAS_L3_DPF(dev) || !remap_info)
4823
		return 0;
B
Ben Widawsky 已提交
4824

4825 4826 4827
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4828

4829 4830 4831 4832 4833
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4834
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4835 4836 4837
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4838 4839
	}

4840
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4841

4842
	return ret;
B
Ben Widawsky 已提交
4843 4844
}

4845 4846
void i915_gem_init_swizzling(struct drm_device *dev)
{
4847
	struct drm_i915_private *dev_priv = dev->dev_private;
4848

4849
	if (INTEL_INFO(dev)->gen < 5 ||
4850 4851 4852 4853 4854 4855
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4856 4857 4858
	if (IS_GEN5(dev))
		return;

4859 4860
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4861
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4862
	else if (IS_GEN7(dev))
4863
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4864 4865
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4866 4867
	else
		BUG();
4868
}
D
Daniel Vetter 已提交
4869

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4913
int i915_gem_init_rings(struct drm_device *dev)
4914
{
4915
	struct drm_i915_private *dev_priv = dev->dev_private;
4916
	int ret;
4917

4918
	ret = intel_init_render_ring_buffer(dev);
4919
	if (ret)
4920
		return ret;
4921 4922

	if (HAS_BSD(dev)) {
4923
		ret = intel_init_bsd_ring_buffer(dev);
4924 4925
		if (ret)
			goto cleanup_render_ring;
4926
	}
4927

4928
	if (intel_enable_blt(dev)) {
4929 4930 4931 4932 4933
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4934 4935 4936 4937 4938 4939
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4940 4941 4942 4943 4944
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4945

4946
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4947
	if (ret)
4948
		goto cleanup_bsd2_ring;
4949 4950 4951

	return 0;

4952 4953
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4954 4955
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4969
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4970
	struct intel_engine_cs *ring;
4971
	int ret, i;
4972 4973 4974 4975

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4976 4977 4978
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4979
	if (dev_priv->ellc_size)
4980
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4981

4982 4983 4984
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4985

4986
	if (HAS_PCH_NOP(dev)) {
4987 4988 4989 4990 4991 4992 4993 4994 4995
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4996 4997
	}

4998 4999
	i915_gem_init_swizzling(dev);

5000 5001 5002 5003 5004 5005 5006 5007
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
5008 5009 5010
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5011
			goto out;
D
Daniel Vetter 已提交
5012
	}
5013

5014 5015 5016
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

5017
	ret = i915_ppgtt_init_hw(dev);
5018
	if (ret && ret != -EIO) {
5019
		DRM_ERROR("PPGTT enable failed %d\n", ret);
5020
		i915_gem_cleanup_ringbuffer(dev);
5021 5022
	}

5023
	ret = i915_gem_context_enable(dev_priv);
5024
	if (ret && ret != -EIO) {
5025
		DRM_ERROR("Context enable failed %d\n", ret);
5026
		i915_gem_cleanup_ringbuffer(dev);
5027

5028
		goto out;
5029
	}
D
Daniel Vetter 已提交
5030

5031 5032
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5033
	return ret;
5034 5035
}

5036 5037 5038 5039 5040
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5041 5042 5043
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5044
	mutex_lock(&dev->struct_mutex);
5045 5046 5047

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5048 5049 5050
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5051 5052 5053
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5054
	if (!i915.enable_execlists) {
5055
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5056 5057 5058
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5059
	} else {
5060
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5061 5062 5063
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5064 5065
	}

5066 5067 5068 5069 5070 5071 5072 5073
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5074
	ret = i915_gem_init_userptr(dev);
5075 5076
	if (ret)
		goto out_unlock;
5077

5078
	i915_gem_init_global_gtt(dev);
5079

5080
	ret = i915_gem_context_init(dev);
5081 5082
	if (ret)
		goto out_unlock;
5083

D
Daniel Vetter 已提交
5084 5085
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5086
		goto out_unlock;
5087

5088
	ret = i915_gem_init_hw(dev);
5089 5090 5091 5092 5093 5094 5095 5096
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5097
	}
5098 5099

out_unlock:
5100
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5101
	mutex_unlock(&dev->struct_mutex);
5102

5103
	return ret;
5104 5105
}

5106 5107 5108
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5109
	struct drm_i915_private *dev_priv = dev->dev_private;
5110
	struct intel_engine_cs *ring;
5111
	int i;
5112

5113
	for_each_ring(ring, dev_priv, i)
5114
		dev_priv->gt.cleanup_ring(ring);
5115 5116
}

5117
static void
5118
init_ring_lists(struct intel_engine_cs *ring)
5119 5120 5121 5122 5123
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5124 5125
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5126
{
5127 5128
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5129 5130 5131 5132
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5133
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5134 5135
}

5136 5137 5138
void
i915_gem_load(struct drm_device *dev)
{
5139
	struct drm_i915_private *dev_priv = dev->dev_private;
5140 5141
	int i;

5142
	dev_priv->objects =
5143 5144 5145 5146
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5147 5148 5149 5150 5151
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5152 5153 5154 5155 5156
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5157

B
Ben Widawsky 已提交
5158 5159 5160
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5161
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5162 5163
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5164
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5165 5166
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5167
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5168
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5169 5170
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5171 5172
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5173
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5174

5175 5176
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5177 5178 5179
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5180 5181 5182 5183
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5184 5185 5186 5187
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5188
	/* Initialize fence registers to zero */
5189 5190
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5191

5192
	i915_gem_detect_bit_6_swizzle(dev);
5193
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5194

5195 5196
	dev_priv->mm.interruptible = true;

5197
	i915_gem_shrinker_init(dev_priv);
5198 5199

	mutex_init(&dev_priv->fb_tracking.lock);
5200
}
5201

5202
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5203
{
5204
	struct drm_i915_file_private *file_priv = file->driver_priv;
5205 5206 5207 5208 5209

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5210
	spin_lock(&file_priv->mm.lock);
5211 5212 5213 5214 5215 5216 5217 5218 5219
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5220
	spin_unlock(&file_priv->mm.lock);
5221

5222
	if (!list_empty(&file_priv->rps.link)) {
5223
		spin_lock(&to_i915(dev)->rps.client_lock);
5224
		list_del(&file_priv->rps.link);
5225
		spin_unlock(&to_i915(dev)->rps.client_lock);
5226
	}
5227 5228 5229 5230 5231
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5232
	int ret;
5233 5234 5235 5236 5237 5238 5239 5240 5241

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5242
	file_priv->file = file;
5243
	INIT_LIST_HEAD(&file_priv->rps.link);
5244 5245 5246 5247

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5248 5249 5250
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5251

5252
	return ret;
5253 5254
}

5255 5256 5257 5258 5259 5260 5261 5262 5263
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5281
/* All the new VM stuff */
5282 5283 5284
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5285 5286 5287 5288
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5289
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5290 5291

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5292 5293 5294 5295
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5296 5297
			return vma->node.start;
	}
5298

5299 5300
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5301 5302 5303
	return -1;
}

5304 5305
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5306
			      const struct i915_ggtt_view *view)
5307
{
5308
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5309 5310 5311
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5312 5313
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5314 5315
			return vma->node.start;

5316
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5337
				  const struct i915_ggtt_view *view)
5338 5339 5340 5341 5342 5343
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5344
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5345
		    drm_mm_node_allocated(&vma->node))
5346 5347 5348 5349 5350 5351 5352
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5353
	struct i915_vma *vma;
5354

5355 5356
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5368
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5369 5370 5371

	BUG_ON(list_empty(&o->vma_list));

5372 5373 5374 5375
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5376 5377
		if (vma->vm == vm)
			return vma->node.size;
5378
	}
5379 5380 5381
	return 0;
}

5382
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5383 5384
{
	struct i915_vma *vma;
5385
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5386 5387
		if (vma->pin_count > 0)
			return true;
5388

5389
	return false;
5390
}
5391