memcontrol.c 148.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
82

83 84 85
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

86
/* Whether the swap controller is active */
A
Andrew Morton 已提交
87
#ifdef CONFIG_MEMCG_SWAP
88 89
int do_swap_account __read_mostly;
#else
90
#define do_swap_account		0
91 92
#endif

93 94 95 96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

99 100 101
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
102
	"rss_huge",
103
	"mapped_file",
104
	"dirty",
105
	"writeback",
106 107 108 109 110 111 112 113 114 115
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
148 149 150 151 152
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
153

154 155 156
/*
 * cgroup_event represents events which userspace want to receive.
 */
157
struct mem_cgroup_event {
158
	/*
159
	 * memcg which the event belongs to.
160
	 */
161
	struct mem_cgroup *memcg;
162 163 164 165 166 167 168 169
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
170 171 172 173 174
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
175
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
176
			      struct eventfd_ctx *eventfd, const char *args);
177 178 179 180 181
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
182
	void (*unregister_event)(struct mem_cgroup *memcg,
183
				 struct eventfd_ctx *eventfd);
184 185 186 187 188 189 190 191 192 193
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

194 195
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196

197 198
/* Stuffs for move charges at task migration. */
/*
199
 * Types of charges to be moved.
200
 */
201 202 203
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
204

205 206
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
207
	spinlock_t	  lock; /* for from, to */
208 209
	struct mem_cgroup *from;
	struct mem_cgroup *to;
210
	unsigned long flags;
211
	unsigned long precharge;
212
	unsigned long moved_charge;
213
	unsigned long moved_swap;
214 215 216
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
217
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 219
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
220

221 222 223 224
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
225
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
226
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
227

228 229
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
232
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
233 234 235
	NR_CHARGE_TYPE,
};

236
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
237 238 239 240
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
241
	_KMEM,
G
Glauber Costa 已提交
242 243
};

244 245
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
247 248
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
249

250 251 252 253 254 255 256
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

257 258 259 260 261 262 263 264 265 266 267 268 269
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

270 271 272 273 274
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

275 276 277 278 279 280
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
281 282
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
283
	return memcg->css.id;
L
Li Zefan 已提交
284 285
}

286 287 288 289 290 291
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
292 293 294 295
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

296
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
297 298 299
	return mem_cgroup_from_css(css);
}

300
#ifdef CONFIG_MEMCG_KMEM
301
/*
302
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
303 304 305 306 307
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
308
 *
309 310
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
311
 */
312 313
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
314

315 316 317 318 319 320 321 322 323 324 325 326 327
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

328 329 330 331 332 333
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
334
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 336
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
337
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 339 340
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
341
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342

343 344 345 346 347 348
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
349
struct static_key memcg_kmem_enabled_key;
350
EXPORT_SYMBOL(memcg_kmem_enabled_key);
351 352 353

#endif /* CONFIG_MEMCG_KMEM */

354
static struct mem_cgroup_per_zone *
355
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356
{
357 358 359
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

360
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

389
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
390 391 392 393 394 395
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

424
static struct mem_cgroup_per_zone *
425
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426
{
427 428
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
429

430
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

448 449
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
450
					 unsigned long new_usage_in_excess)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

480 481
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
482 483 484 485 486 487 488
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

489 490
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
491
{
492 493 494
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
495
	__mem_cgroup_remove_exceeded(mz, mctz);
496
	spin_unlock_irqrestore(&mctz->lock, flags);
497 498
}

499 500 501
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
502
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 504 505 506 507 508 509
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
510 511 512

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
513
	unsigned long excess;
514 515 516
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

517
	mctz = soft_limit_tree_from_page(page);
518 519 520 521 522
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523
		mz = mem_cgroup_page_zoneinfo(memcg, page);
524
		excess = soft_limit_excess(memcg);
525 526 527 528 529
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
530 531 532
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
533 534
			/* if on-tree, remove it */
			if (mz->on_tree)
535
				__mem_cgroup_remove_exceeded(mz, mctz);
536 537 538 539
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
540
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
541
			spin_unlock_irqrestore(&mctz->lock, flags);
542 543 544 545 546 547 548
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
549 550
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
551

552 553 554 555
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
556
			mem_cgroup_remove_exceeded(mz, mctz);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
579
	__mem_cgroup_remove_exceeded(mz, mctz);
580
	if (!soft_limit_excess(mz->memcg) ||
581
	    !css_tryget_online(&mz->memcg->css))
582 583 584 585 586 587 588 589 590 591
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

592
	spin_lock_irq(&mctz->lock);
593
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
594
	spin_unlock_irq(&mctz->lock);
595 596 597
	return mz;
}

598
/*
599 600
 * Return page count for single (non recursive) @memcg.
 *
601 602 603 604 605
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
606
 * a periodic synchronization of counter in memcg's counter.
607 608 609 610 611 612 613 614 615
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
616
 * common workload, threshold and synchronization as vmstat[] should be
617 618
 * implemented.
 */
619 620
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621
{
622
	long val = 0;
623 624
	int cpu;

625
	/* Per-cpu values can be negative, use a signed accumulator */
626
	for_each_possible_cpu(cpu)
627
		val += per_cpu(memcg->stat->count[idx], cpu);
628 629 630 631 632 633
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
634 635 636
	return val;
}

637
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 639 640 641 642
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

643
	for_each_possible_cpu(cpu)
644
		val += per_cpu(memcg->stat->events[idx], cpu);
645 646 647
	return val;
}

648
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649
					 struct page *page,
650
					 int nr_pages)
651
{
652 653 654 655
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
656
	if (PageAnon(page))
657
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658
				nr_pages);
659
	else
660
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661
				nr_pages);
662

663 664 665 666
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

667 668
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
669
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
670
	else {
671
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
672 673
		nr_pages = -nr_pages; /* for event */
	}
674

675
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
676 677
}

678 679 680
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
681
{
682
	unsigned long nr = 0;
683 684
	int zid;

685
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
686

687 688 689 690 691 692 693 694 695 696 697 698
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
699
}
700

701
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
702
			unsigned int lru_mask)
703
{
704
	unsigned long nr = 0;
705
	int nid;
706

707
	for_each_node_state(nid, N_MEMORY)
708 709
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
710 711
}

712 713
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
714 715 716
{
	unsigned long val, next;

717
	val = __this_cpu_read(memcg->stat->nr_page_events);
718
	next = __this_cpu_read(memcg->stat->targets[target]);
719
	/* from time_after() in jiffies.h */
720 721 722 723 724
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
725 726 727
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
728 729 730 731 732 733 734 735
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
736
	}
737
	return false;
738 739 740 741 742 743
}

/*
 * Check events in order.
 *
 */
744
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
745 746
{
	/* threshold event is triggered in finer grain than soft limit */
747 748
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
749
		bool do_softlimit;
750
		bool do_numainfo __maybe_unused;
751

752 753
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
754 755 756 757
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
758
		mem_cgroup_threshold(memcg);
759 760
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
761
#if MAX_NUMNODES > 1
762
		if (unlikely(do_numainfo))
763
			atomic_inc(&memcg->numainfo_events);
764
#endif
765
	}
766 767
}

768
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
769
{
770 771 772 773 774 775 776 777
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

778
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
779
}
M
Michal Hocko 已提交
780
EXPORT_SYMBOL(mem_cgroup_from_task);
781

782
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
783
{
784
	struct mem_cgroup *memcg = NULL;
785

786 787
	rcu_read_lock();
	do {
788 789 790 791 792 793
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
794
			memcg = root_mem_cgroup;
795 796 797 798 799
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
800
	} while (!css_tryget_online(&memcg->css));
801
	rcu_read_unlock();
802
	return memcg;
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
822
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
823
				   struct mem_cgroup *prev,
824
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
825
{
M
Michal Hocko 已提交
826
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
827
	struct cgroup_subsys_state *css = NULL;
828
	struct mem_cgroup *memcg = NULL;
829
	struct mem_cgroup *pos = NULL;
830

831 832
	if (mem_cgroup_disabled())
		return NULL;
833

834 835
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
836

837
	if (prev && !reclaim)
838
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
839

840 841
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
842
			goto out;
843
		return root;
844
	}
K
KAMEZAWA Hiroyuki 已提交
845

846
	rcu_read_lock();
M
Michal Hocko 已提交
847

848 849 850 851 852 853 854 855 856
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

857
		while (1) {
858
			pos = READ_ONCE(iter->position);
859 860
			if (!pos || css_tryget(&pos->css))
				break;
861
			/*
862 863 864 865 866 867
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
868
			 */
869 870
			(void)cmpxchg(&iter->position, pos, NULL);
		}
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
888
		}
K
KAMEZAWA Hiroyuki 已提交
889

890 891 892 893 894 895
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
896

897 898
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
899

900
		if (css_tryget(css)) {
901 902 903 904 905 906 907
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
908

909
			css_put(css);
910
		}
911

912
		memcg = NULL;
913
	}
914 915 916

	if (reclaim) {
		/*
917 918 919
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
920
		 */
921 922
		(void)cmpxchg(&iter->position, pos, memcg);

923 924 925 926 927 928 929
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
930
	}
931

932 933
out_unlock:
	rcu_read_unlock();
934
out:
935 936 937
	if (prev && prev != root)
		css_put(&prev->css);

938
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
939
}
K
KAMEZAWA Hiroyuki 已提交
940

941 942 943 944 945 946 947
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
948 949 950 951 952 953
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

977 978 979 980 981 982
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
983
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
984
	     iter != NULL;				\
985
	     iter = mem_cgroup_iter(root, iter, NULL))
986

987
#define for_each_mem_cgroup(iter)			\
988
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
989
	     iter != NULL;				\
990
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
991

992 993 994
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
995
 * @memcg: memcg of the wanted lruvec
996 997 998 999 1000 1001 1002 1003 1004
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1005
	struct lruvec *lruvec;
1006

1007 1008 1009 1010
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1011

1012
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1023 1024 1025
}

/**
1026
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1027
 * @page: the page
1028
 * @zone: zone of the page
1029 1030 1031 1032
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1033
 */
1034
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1035 1036
{
	struct mem_cgroup_per_zone *mz;
1037
	struct mem_cgroup *memcg;
1038
	struct lruvec *lruvec;
1039

1040 1041 1042 1043
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1044

1045
	memcg = page->mem_cgroup;
1046
	/*
1047
	 * Swapcache readahead pages are added to the LRU - and
1048
	 * possibly migrated - before they are charged.
1049
	 */
1050 1051
	if (!memcg)
		memcg = root_mem_cgroup;
1052

1053
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1064
}
1065

1066
/**
1067 1068 1069 1070
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1071
 *
1072 1073
 * This function must be called when a page is added to or removed from an
 * lru list.
1074
 */
1075 1076
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1077 1078
{
	struct mem_cgroup_per_zone *mz;
1079
	unsigned long *lru_size;
1080 1081 1082 1083

	if (mem_cgroup_disabled())
		return;

1084 1085 1086 1087
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1088
}
1089

1090
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1091
{
1092
	struct mem_cgroup *task_memcg;
1093
	struct task_struct *p;
1094
	bool ret;
1095

1096
	p = find_lock_task_mm(task);
1097
	if (p) {
1098
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1099 1100 1101 1102 1103 1104 1105
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1106
		rcu_read_lock();
1107 1108
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1109
		rcu_read_unlock();
1110
	}
1111 1112
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1113 1114 1115
	return ret;
}

1116
#define mem_cgroup_from_counter(counter, member)	\
1117 1118
	container_of(counter, struct mem_cgroup, member)

1119
/**
1120
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1121
 * @memcg: the memory cgroup
1122
 *
1123
 * Returns the maximum amount of memory @mem can be charged with, in
1124
 * pages.
1125
 */
1126
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1127
{
1128 1129 1130
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1131

1132
	count = page_counter_read(&memcg->memory);
1133
	limit = READ_ONCE(memcg->memory.limit);
1134 1135 1136
	if (count < limit)
		margin = limit - count;

1137
	if (do_memsw_account()) {
1138
		count = page_counter_read(&memcg->memsw);
1139
		limit = READ_ONCE(memcg->memsw.limit);
1140 1141 1142 1143 1144
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1145 1146
}

1147
/*
Q
Qiang Huang 已提交
1148
 * A routine for checking "mem" is under move_account() or not.
1149
 *
Q
Qiang Huang 已提交
1150 1151 1152
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1153
 */
1154
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1155
{
1156 1157
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1158
	bool ret = false;
1159 1160 1161 1162 1163 1164 1165 1166 1167
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1168

1169 1170
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1171 1172
unlock:
	spin_unlock(&mc.lock);
1173 1174 1175
	return ret;
}

1176
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1177 1178
{
	if (mc.moving_task && current != mc.moving_task) {
1179
		if (mem_cgroup_under_move(memcg)) {
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1192
#define K(x) ((x) << (PAGE_SHIFT-10))
1193
/**
1194
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1195 1196 1197 1198 1199 1200 1201 1202
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1203
	/* oom_info_lock ensures that parallel ooms do not interleave */
1204
	static DEFINE_MUTEX(oom_info_lock);
1205 1206
	struct mem_cgroup *iter;
	unsigned int i;
1207

1208
	mutex_lock(&oom_info_lock);
1209 1210
	rcu_read_lock();

1211 1212 1213 1214 1215 1216 1217 1218
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1219
	pr_cont_cgroup_path(memcg->css.cgroup);
1220
	pr_cont("\n");
1221 1222 1223

	rcu_read_unlock();

1224 1225 1226 1227 1228 1229 1230 1231 1232
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1233 1234

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1235 1236
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1237 1238 1239
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1240
			if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1241
				continue;
1242
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1243 1244 1245 1246 1247 1248 1249 1250 1251
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1252
	mutex_unlock(&oom_info_lock);
1253 1254
}

1255 1256 1257 1258
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1259
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1260 1261
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1262 1263
	struct mem_cgroup *iter;

1264
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1265
		num++;
1266 1267 1268
	return num;
}

D
David Rientjes 已提交
1269 1270 1271
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1272
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1273
{
1274
	unsigned long limit;
1275

1276
	limit = memcg->memory.limit;
1277
	if (mem_cgroup_swappiness(memcg)) {
1278
		unsigned long memsw_limit;
1279

1280 1281
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1282 1283
	}
	return limit;
D
David Rientjes 已提交
1284 1285
}

1286 1287
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1288
{
1289 1290 1291 1292 1293 1294
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1295 1296 1297 1298 1299 1300
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1301 1302
	mutex_lock(&oom_lock);

1303
	/*
1304 1305 1306
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1307
	 */
1308
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1309
		mark_oom_victim(current);
1310
		goto unlock;
1311 1312
	}

1313
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1314
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1315
	for_each_mem_cgroup_tree(iter, memcg) {
1316
		struct css_task_iter it;
1317 1318
		struct task_struct *task;

1319 1320
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1321
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1332
				css_task_iter_end(&it);
1333 1334 1335
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1336
				goto unlock;
1337 1338 1339 1340
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1353
		}
1354
		css_task_iter_end(&it);
1355 1356
	}

1357 1358
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1359 1360
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1361 1362 1363
	}
unlock:
	mutex_unlock(&oom_lock);
1364 1365
}

1366 1367
#if MAX_NUMNODES > 1

1368 1369
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1370
 * @memcg: the target memcg
1371 1372 1373 1374 1375 1376 1377
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1378
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1379 1380
		int nid, bool noswap)
{
1381
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1382 1383 1384
		return true;
	if (noswap || !total_swap_pages)
		return false;
1385
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1386 1387 1388 1389
		return true;
	return false;

}
1390 1391 1392 1393 1394 1395 1396

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1397
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1398 1399
{
	int nid;
1400 1401 1402 1403
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1404
	if (!atomic_read(&memcg->numainfo_events))
1405
		return;
1406
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1407 1408 1409
		return;

	/* make a nodemask where this memcg uses memory from */
1410
	memcg->scan_nodes = node_states[N_MEMORY];
1411

1412
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1413

1414 1415
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1416
	}
1417

1418 1419
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1434
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1435 1436 1437
{
	int node;

1438 1439
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1440

1441
	node = next_node(node, memcg->scan_nodes);
1442
	if (node == MAX_NUMNODES)
1443
		node = first_node(memcg->scan_nodes);
1444 1445 1446 1447 1448 1449 1450 1451 1452
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1453
	memcg->last_scanned_node = node;
1454 1455 1456
	return node;
}
#else
1457
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1458 1459 1460 1461 1462
{
	return 0;
}
#endif

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1478
	excess = soft_limit_excess(root_memcg);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1507
		if (!soft_limit_excess(root_memcg))
1508
			break;
1509
	}
1510 1511
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1512 1513
}

1514 1515 1516 1517 1518 1519
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1520 1521
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1522 1523 1524 1525
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1526
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1527
{
1528
	struct mem_cgroup *iter, *failed = NULL;
1529

1530 1531
	spin_lock(&memcg_oom_lock);

1532
	for_each_mem_cgroup_tree(iter, memcg) {
1533
		if (iter->oom_lock) {
1534 1535 1536 1537 1538
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1539 1540
			mem_cgroup_iter_break(memcg, iter);
			break;
1541 1542
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1543
	}
K
KAMEZAWA Hiroyuki 已提交
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1556
		}
1557 1558
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1559 1560 1561 1562

	spin_unlock(&memcg_oom_lock);

	return !failed;
1563
}
1564

1565
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1566
{
K
KAMEZAWA Hiroyuki 已提交
1567 1568
	struct mem_cgroup *iter;

1569
	spin_lock(&memcg_oom_lock);
1570
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1571
	for_each_mem_cgroup_tree(iter, memcg)
1572
		iter->oom_lock = false;
1573
	spin_unlock(&memcg_oom_lock);
1574 1575
}

1576
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1577 1578 1579
{
	struct mem_cgroup *iter;

1580
	spin_lock(&memcg_oom_lock);
1581
	for_each_mem_cgroup_tree(iter, memcg)
1582 1583
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1584 1585
}

1586
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1587 1588 1589
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1590 1591
	/*
	 * When a new child is created while the hierarchy is under oom,
1592
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1593
	 */
1594
	spin_lock(&memcg_oom_lock);
1595
	for_each_mem_cgroup_tree(iter, memcg)
1596 1597 1598
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1599 1600
}

K
KAMEZAWA Hiroyuki 已提交
1601 1602
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1603
struct oom_wait_info {
1604
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1605 1606 1607 1608 1609 1610
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1611 1612
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1613 1614 1615
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1616
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1617

1618 1619
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1620 1621 1622 1623
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1624
static void memcg_oom_recover(struct mem_cgroup *memcg)
1625
{
1626 1627 1628 1629 1630 1631 1632 1633 1634
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1635
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1636 1637
}

1638
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1639
{
T
Tejun Heo 已提交
1640
	if (!current->memcg_may_oom)
1641
		return;
K
KAMEZAWA Hiroyuki 已提交
1642
	/*
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1655
	 */
1656
	css_get(&memcg->css);
T
Tejun Heo 已提交
1657 1658 1659
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1660 1661 1662 1663
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1664
 * @handle: actually kill/wait or just clean up the OOM state
1665
 *
1666 1667
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1668
 *
1669
 * Memcg supports userspace OOM handling where failed allocations must
1670 1671 1672 1673
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1674
 * the end of the page fault to complete the OOM handling.
1675 1676
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1677
 * completed, %false otherwise.
1678
 */
1679
bool mem_cgroup_oom_synchronize(bool handle)
1680
{
T
Tejun Heo 已提交
1681
	struct mem_cgroup *memcg = current->memcg_in_oom;
1682
	struct oom_wait_info owait;
1683
	bool locked;
1684 1685 1686

	/* OOM is global, do not handle */
	if (!memcg)
1687
		return false;
1688

1689
	if (!handle || oom_killer_disabled)
1690
		goto cleanup;
1691 1692 1693 1694 1695 1696

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1697

1698
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1709 1710
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1711
	} else {
1712
		schedule();
1713 1714 1715 1716 1717
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1718 1719 1720 1721 1722 1723 1724 1725
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1726
cleanup:
T
Tejun Heo 已提交
1727
	current->memcg_in_oom = NULL;
1728
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1729
	return true;
1730 1731
}

1732 1733 1734
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1735
 *
1736 1737 1738
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1739
 *
1740
 *   memcg = mem_cgroup_begin_page_stat(page);
1741 1742
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1743
 *   mem_cgroup_end_page_stat(memcg);
1744
 */
1745
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1746 1747
{
	struct mem_cgroup *memcg;
1748
	unsigned long flags;
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1762 1763 1764 1765
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1766
again:
1767
	memcg = page->mem_cgroup;
1768
	if (unlikely(!memcg))
1769 1770
		return NULL;

Q
Qiang Huang 已提交
1771
	if (atomic_read(&memcg->moving_account) <= 0)
1772
		return memcg;
1773

1774
	spin_lock_irqsave(&memcg->move_lock, flags);
1775
	if (memcg != page->mem_cgroup) {
1776
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1777 1778
		goto again;
	}
1779 1780 1781 1782 1783 1784 1785 1786

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1787 1788

	return memcg;
1789
}
1790
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1791

1792 1793 1794 1795
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1796
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1797
{
1798 1799 1800 1801 1802 1803 1804 1805
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1806

1807
	rcu_read_unlock();
1808
}
1809
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1810

1811 1812 1813 1814
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1815
#define CHARGE_BATCH	32U
1816 1817
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1818
	unsigned int nr_pages;
1819
	struct work_struct work;
1820
	unsigned long flags;
1821
#define FLUSHING_CACHED_CHARGE	0
1822 1823
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1824
static DEFINE_MUTEX(percpu_charge_mutex);
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1836
 */
1837
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1838 1839
{
	struct memcg_stock_pcp *stock;
1840
	bool ret = false;
1841

1842
	if (nr_pages > CHARGE_BATCH)
1843
		return ret;
1844

1845
	stock = &get_cpu_var(memcg_stock);
1846
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1847
		stock->nr_pages -= nr_pages;
1848 1849
		ret = true;
	}
1850 1851 1852 1853 1854
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1855
 * Returns stocks cached in percpu and reset cached information.
1856 1857 1858 1859 1860
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1861
	if (stock->nr_pages) {
1862
		page_counter_uncharge(&old->memory, stock->nr_pages);
1863
		if (do_memsw_account())
1864
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1865
		css_put_many(&old->css, stock->nr_pages);
1866
		stock->nr_pages = 0;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1877
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1878
	drain_stock(stock);
1879
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1880 1881 1882
}

/*
1883
 * Cache charges(val) to local per_cpu area.
1884
 * This will be consumed by consume_stock() function, later.
1885
 */
1886
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1887 1888 1889
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1890
	if (stock->cached != memcg) { /* reset if necessary */
1891
		drain_stock(stock);
1892
		stock->cached = memcg;
1893
	}
1894
	stock->nr_pages += nr_pages;
1895 1896 1897 1898
	put_cpu_var(memcg_stock);
}

/*
1899
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1900
 * of the hierarchy under it.
1901
 */
1902
static void drain_all_stock(struct mem_cgroup *root_memcg)
1903
{
1904
	int cpu, curcpu;
1905

1906 1907 1908
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1909 1910
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1911
	curcpu = get_cpu();
1912 1913
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1914
		struct mem_cgroup *memcg;
1915

1916 1917
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1918
			continue;
1919
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1920
			continue;
1921 1922 1923 1924 1925 1926
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1927
	}
1928
	put_cpu();
A
Andrew Morton 已提交
1929
	put_online_cpus();
1930
	mutex_unlock(&percpu_charge_mutex);
1931 1932
}

1933
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1934 1935 1936 1937 1938 1939
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1940
	if (action == CPU_ONLINE)
1941 1942
		return NOTIFY_OK;

1943
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1944
		return NOTIFY_OK;
1945

1946 1947 1948 1949 1950
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1971 1972 1973 1974 1975 1976 1977
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1978
	struct mem_cgroup *memcg;
1979 1980 1981 1982

	if (likely(!nr_pages))
		return;

1983 1984
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1985 1986 1987 1988
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1989 1990
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1991
{
1992
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1993
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1994
	struct mem_cgroup *mem_over_limit;
1995
	struct page_counter *counter;
1996
	unsigned long nr_reclaimed;
1997 1998
	bool may_swap = true;
	bool drained = false;
1999

2000
	if (mem_cgroup_is_root(memcg))
2001
		return 0;
2002
retry:
2003
	if (consume_stock(memcg, nr_pages))
2004
		return 0;
2005

2006
	if (!do_memsw_account() ||
2007 2008
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2009
			goto done_restock;
2010
		if (do_memsw_account())
2011 2012
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2013
	} else {
2014
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2015
		may_swap = false;
2016
	}
2017

2018 2019 2020 2021
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2032
		goto force;
2033 2034 2035 2036

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2037
	if (!gfpflags_allow_blocking(gfp_mask))
2038
		goto nomem;
2039

2040 2041
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2042 2043
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2044

2045
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2046
		goto retry;
2047

2048
	if (!drained) {
2049
		drain_all_stock(mem_over_limit);
2050 2051 2052 2053
		drained = true;
		goto retry;
	}

2054 2055
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2065
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2066 2067 2068 2069 2070 2071 2072 2073
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2074 2075 2076
	if (nr_retries--)
		goto retry;

2077
	if (gfp_mask & __GFP_NOFAIL)
2078
		goto force;
2079

2080
	if (fatal_signal_pending(current))
2081
		goto force;
2082

2083 2084
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2085 2086
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2087
nomem:
2088
	if (!(gfp_mask & __GFP_NOFAIL))
2089
		return -ENOMEM;
2090 2091 2092 2093 2094 2095 2096
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2097
	if (do_memsw_account())
2098 2099 2100 2101
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2102 2103

done_restock:
2104
	css_get_many(&memcg->css, batch);
2105 2106
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2107

2108
	/*
2109 2110
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2111
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2112 2113 2114 2115
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2116 2117
	 */
	do {
2118
		if (page_counter_read(&memcg->memory) > memcg->high) {
2119 2120 2121 2122 2123
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2124
			current->memcg_nr_pages_over_high += batch;
2125 2126 2127
			set_notify_resume(current);
			break;
		}
2128
	} while ((memcg = parent_mem_cgroup(memcg)));
2129 2130

	return 0;
2131
}
2132

2133
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2134
{
2135 2136 2137
	if (mem_cgroup_is_root(memcg))
		return;

2138
	page_counter_uncharge(&memcg->memory, nr_pages);
2139
	if (do_memsw_account())
2140
		page_counter_uncharge(&memcg->memsw, nr_pages);
2141

2142
	css_put_many(&memcg->css, nr_pages);
2143 2144
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2176
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2177
			  bool lrucare)
2178
{
2179
	int isolated;
2180

2181
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2182 2183 2184 2185 2186

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2187 2188
	if (lrucare)
		lock_page_lru(page, &isolated);
2189

2190 2191
	/*
	 * Nobody should be changing or seriously looking at
2192
	 * page->mem_cgroup at this point:
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2204
	page->mem_cgroup = memcg;
2205

2206 2207
	if (lrucare)
		unlock_page_lru(page, isolated);
2208
}
2209

2210
#ifdef CONFIG_MEMCG_KMEM
2211
static int memcg_alloc_cache_id(void)
2212
{
2213 2214 2215
	int id, size;
	int err;

2216
	id = ida_simple_get(&memcg_cache_ida,
2217 2218 2219
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2220

2221
	if (id < memcg_nr_cache_ids)
2222 2223 2224 2225 2226 2227
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2228
	down_write(&memcg_cache_ids_sem);
2229 2230

	size = 2 * (id + 1);
2231 2232 2233 2234 2235
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2236
	err = memcg_update_all_caches(size);
2237 2238
	if (!err)
		err = memcg_update_all_list_lrus(size);
2239 2240 2241 2242 2243
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2244
	if (err) {
2245
		ida_simple_remove(&memcg_cache_ida, id);
2246 2247 2248 2249 2250 2251 2252
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2253
	ida_simple_remove(&memcg_cache_ida, id);
2254 2255
}

2256
struct memcg_kmem_cache_create_work {
2257 2258 2259 2260 2261
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2262
static void memcg_kmem_cache_create_func(struct work_struct *w)
2263
{
2264 2265
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2266 2267
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2268

2269
	memcg_create_kmem_cache(memcg, cachep);
2270

2271
	css_put(&memcg->css);
2272 2273 2274 2275 2276 2277
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2278 2279
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2280
{
2281
	struct memcg_kmem_cache_create_work *cw;
2282

2283
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2284
	if (!cw)
2285
		return;
2286 2287

	css_get(&memcg->css);
2288 2289 2290

	cw->memcg = memcg;
	cw->cachep = cachep;
2291
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2292 2293 2294 2295

	schedule_work(&cw->work);
}

2296 2297
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2298 2299 2300 2301
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2302
	 * in __memcg_schedule_kmem_cache_create will recurse.
2303 2304 2305 2306 2307 2308 2309
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2310
	current->memcg_kmem_skip_account = 1;
2311
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2312
	current->memcg_kmem_skip_account = 0;
2313
}
2314

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2328
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2329 2330
{
	struct mem_cgroup *memcg;
2331
	struct kmem_cache *memcg_cachep;
2332
	int kmemcg_id;
2333

2334
	VM_BUG_ON(!is_root_cache(cachep));
2335

V
Vladimir Davydov 已提交
2336 2337 2338 2339 2340 2341
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2342
	if (current->memcg_kmem_skip_account)
2343 2344
		return cachep;

2345
	memcg = get_mem_cgroup_from_mm(current->mm);
2346
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2347
	if (kmemcg_id < 0)
2348
		goto out;
2349

2350
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2351 2352
	if (likely(memcg_cachep))
		return memcg_cachep;
2353 2354 2355 2356 2357 2358 2359 2360 2361

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2362 2363 2364
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2365
	 */
2366
	memcg_schedule_kmem_cache_create(memcg, cachep);
2367
out:
2368
	css_put(&memcg->css);
2369
	return cachep;
2370 2371
}

2372 2373 2374
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2375
		css_put(&cachep->memcg_params.memcg->css);
2376 2377
}

2378 2379
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2380
{
2381 2382
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2383 2384
	int ret;

2385
	if (!memcg_kmem_is_active(memcg))
2386
		return 0;
2387

2388 2389
	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
		return -ENOMEM;
2390

2391 2392 2393 2394
	ret = try_charge(memcg, gfp, nr_pages);
	if (ret) {
		page_counter_uncharge(&memcg->kmem, nr_pages);
		return ret;
2395 2396
	}

2397
	page->mem_cgroup = memcg;
2398

2399
	return 0;
2400 2401
}

2402
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2403
{
2404 2405
	struct mem_cgroup *memcg;
	int ret;
2406

2407 2408
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2409
	css_put(&memcg->css);
2410
	return ret;
2411 2412
}

2413
void __memcg_kmem_uncharge(struct page *page, int order)
2414
{
2415
	struct mem_cgroup *memcg = page->mem_cgroup;
2416
	unsigned int nr_pages = 1 << order;
2417 2418 2419 2420

	if (!memcg)
		return;

2421
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2422

2423 2424
	page_counter_uncharge(&memcg->kmem, nr_pages);
	page_counter_uncharge(&memcg->memory, nr_pages);
2425
	if (do_memsw_account())
2426
		page_counter_uncharge(&memcg->memsw, nr_pages);
2427

2428
	page->mem_cgroup = NULL;
2429
	css_put_many(&memcg->css, nr_pages);
2430
}
2431 2432
#endif /* CONFIG_MEMCG_KMEM */

2433 2434 2435 2436
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2437 2438 2439
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2440
 */
2441
void mem_cgroup_split_huge_fixup(struct page *head)
2442
{
2443
	int i;
2444

2445 2446
	if (mem_cgroup_disabled())
		return;
2447

2448
	for (i = 1; i < HPAGE_PMD_NR; i++)
2449
		head[i].mem_cgroup = head->mem_cgroup;
2450

2451
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2452
		       HPAGE_PMD_NR);
2453
}
2454
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2455

A
Andrew Morton 已提交
2456
#ifdef CONFIG_MEMCG_SWAP
2457 2458
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2459
{
2460 2461
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2462
}
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2475
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2476 2477 2478
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2479
				struct mem_cgroup *from, struct mem_cgroup *to)
2480 2481 2482
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2483 2484
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2485 2486 2487

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2488
		mem_cgroup_swap_statistics(to, true);
2489 2490 2491 2492 2493 2494
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2495
				struct mem_cgroup *from, struct mem_cgroup *to)
2496 2497 2498
{
	return -EINVAL;
}
2499
#endif
K
KAMEZAWA Hiroyuki 已提交
2500

2501
static DEFINE_MUTEX(memcg_limit_mutex);
2502

2503
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2504
				   unsigned long limit)
2505
{
2506 2507 2508
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2509
	int retry_count;
2510
	int ret;
2511 2512 2513 2514 2515 2516

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2517 2518
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2519

2520
	oldusage = page_counter_read(&memcg->memory);
2521

2522
	do {
2523 2524 2525 2526
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2527 2528 2529 2530

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2531
			ret = -EINVAL;
2532 2533
			break;
		}
2534 2535 2536 2537
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2538 2539 2540 2541

		if (!ret)
			break;

2542 2543
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2544
		curusage = page_counter_read(&memcg->memory);
2545
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2546
		if (curusage >= oldusage)
2547 2548 2549
			retry_count--;
		else
			oldusage = curusage;
2550 2551
	} while (retry_count);

2552 2553
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2554

2555 2556 2557
	return ret;
}

L
Li Zefan 已提交
2558
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2559
					 unsigned long limit)
2560
{
2561 2562 2563
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2564
	int retry_count;
2565
	int ret;
2566

2567
	/* see mem_cgroup_resize_res_limit */
2568 2569 2570 2571 2572 2573
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2574 2575 2576 2577
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2578 2579 2580 2581

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2582 2583 2584
			ret = -EINVAL;
			break;
		}
2585 2586 2587 2588
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2589 2590 2591 2592

		if (!ret)
			break;

2593 2594
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2595
		curusage = page_counter_read(&memcg->memsw);
2596
		/* Usage is reduced ? */
2597
		if (curusage >= oldusage)
2598
			retry_count--;
2599 2600
		else
			oldusage = curusage;
2601 2602
	} while (retry_count);

2603 2604
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2605

2606 2607 2608
	return ret;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2618
	unsigned long excess;
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2643
		spin_lock_irq(&mctz->lock);
2644
		__mem_cgroup_remove_exceeded(mz, mctz);
2645 2646 2647 2648 2649 2650

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2651 2652 2653
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2654
		excess = soft_limit_excess(mz->memcg);
2655 2656 2657 2658 2659 2660 2661 2662 2663
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2664
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2665
		spin_unlock_irq(&mctz->lock);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2683 2684 2685 2686 2687 2688
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2689 2690
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2691 2692
	bool ret;

2693
	/*
2694 2695 2696 2697
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2698
	 */
2699 2700 2701 2702 2703 2704
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2717 2718
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2719
	/* try to free all pages in this cgroup */
2720
	while (nr_retries && page_counter_read(&memcg->memory)) {
2721
		int progress;
2722

2723 2724 2725
		if (signal_pending(current))
			return -EINTR;

2726 2727
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2728
		if (!progress) {
2729
			nr_retries--;
2730
			/* maybe some writeback is necessary */
2731
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2732
		}
2733 2734

	}
2735 2736

	return 0;
2737 2738
}

2739 2740 2741
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2742
{
2743
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2744

2745 2746
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2747
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2748 2749
}

2750 2751
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2752
{
2753
	return mem_cgroup_from_css(css)->use_hierarchy;
2754 2755
}

2756 2757
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2758 2759
{
	int retval = 0;
2760
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2761
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2762

2763
	mutex_lock(&memcg_create_mutex);
2764 2765 2766 2767

	if (memcg->use_hierarchy == val)
		goto out;

2768
	/*
2769
	 * If parent's use_hierarchy is set, we can't make any modifications
2770 2771 2772 2773 2774 2775
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2776
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2777
				(val == 1 || val == 0)) {
2778
		if (!memcg_has_children(memcg))
2779
			memcg->use_hierarchy = val;
2780 2781 2782 2783
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2784 2785

out:
2786
	mutex_unlock(&memcg_create_mutex);
2787 2788 2789 2790

	return retval;
}

2791 2792
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2793 2794
{
	struct mem_cgroup *iter;
2795
	unsigned long val = 0;
2796 2797 2798 2799 2800 2801 2802

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2803
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2804
{
2805
	unsigned long val;
2806

2807 2808 2809 2810 2811 2812
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2813
		if (!swap)
2814
			val = page_counter_read(&memcg->memory);
2815
		else
2816
			val = page_counter_read(&memcg->memsw);
2817
	}
2818
	return val;
2819 2820
}

2821 2822 2823 2824 2825 2826 2827
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2828

2829
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2830
			       struct cftype *cft)
B
Balbir Singh 已提交
2831
{
2832
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2833
	struct page_counter *counter;
2834

2835
	switch (MEMFILE_TYPE(cft->private)) {
2836
	case _MEM:
2837 2838
		counter = &memcg->memory;
		break;
2839
	case _MEMSWAP:
2840 2841
		counter = &memcg->memsw;
		break;
2842
	case _KMEM:
2843
		counter = &memcg->kmem;
2844
		break;
2845 2846 2847
	default:
		BUG();
	}
2848 2849 2850 2851

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2852
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2853
		if (counter == &memcg->memsw)
2854
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2867
}
2868 2869

#ifdef CONFIG_MEMCG_KMEM
2870 2871
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2872 2873 2874 2875
{
	int err = 0;
	int memcg_id;

2876
	BUG_ON(memcg->kmemcg_id >= 0);
2877
	BUG_ON(memcg->kmem_acct_activated);
2878
	BUG_ON(memcg->kmem_acct_active);
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2892
	mutex_lock(&memcg_create_mutex);
2893
	if (cgroup_is_populated(memcg->css.cgroup) ||
2894
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2895 2896 2897 2898
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2899

2900
	memcg_id = memcg_alloc_cache_id();
2901 2902 2903 2904 2905 2906
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2907 2908
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2909
	 */
2910
	err = page_counter_limit(&memcg->kmem, nr_pages);
2911 2912 2913 2914
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2915 2916
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2917 2918 2919
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2920
	memcg->kmemcg_id = memcg_id;
2921
	memcg->kmem_acct_activated = true;
2922
	memcg->kmem_acct_active = true;
2923
out:
2924 2925 2926 2927
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2928
				   unsigned long limit)
2929 2930 2931
{
	int ret;

2932
	mutex_lock(&memcg_limit_mutex);
2933
	if (!memcg_kmem_is_active(memcg))
2934
		ret = memcg_activate_kmem(memcg, limit);
2935
	else
2936 2937
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2938 2939 2940
	return ret;
}

2941
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2942
{
2943
	int ret = 0;
2944
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2945

2946 2947
	if (!parent)
		return 0;
2948

2949
	mutex_lock(&memcg_limit_mutex);
2950
	/*
2951 2952
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2953
	 */
2954
	if (memcg_kmem_is_active(parent))
2955 2956
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2957
	return ret;
2958
}
2959 2960
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2961
				   unsigned long limit)
2962 2963 2964
{
	return -EINVAL;
}
2965
#endif /* CONFIG_MEMCG_KMEM */
2966

2967 2968 2969 2970
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2971 2972
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2973
{
2974
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2975
	unsigned long nr_pages;
2976 2977
	int ret;

2978
	buf = strstrip(buf);
2979
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2980 2981
	if (ret)
		return ret;
2982

2983
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2984
	case RES_LIMIT:
2985 2986 2987 2988
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2989 2990 2991
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2992
			break;
2993 2994
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2995
			break;
2996 2997 2998 2999
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3000
		break;
3001 3002 3003
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3004 3005
		break;
	}
3006
	return ret ?: nbytes;
B
Balbir Singh 已提交
3007 3008
}

3009 3010
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3011
{
3012
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3013
	struct page_counter *counter;
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3028

3029
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3030
	case RES_MAX_USAGE:
3031
		page_counter_reset_watermark(counter);
3032 3033
		break;
	case RES_FAILCNT:
3034
		counter->failcnt = 0;
3035
		break;
3036 3037
	default:
		BUG();
3038
	}
3039

3040
	return nbytes;
3041 3042
}

3043
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3044 3045
					struct cftype *cft)
{
3046
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3047 3048
}

3049
#ifdef CONFIG_MMU
3050
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3051 3052
					struct cftype *cft, u64 val)
{
3053
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3054

3055
	if (val & ~MOVE_MASK)
3056
		return -EINVAL;
3057

3058
	/*
3059 3060 3061 3062
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3063
	 */
3064
	memcg->move_charge_at_immigrate = val;
3065 3066
	return 0;
}
3067
#else
3068
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3069 3070 3071 3072 3073
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3074

3075
#ifdef CONFIG_NUMA
3076
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3077
{
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3090
	int nid;
3091
	unsigned long nr;
3092
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3093

3094 3095 3096 3097 3098 3099 3100 3101 3102
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3103 3104
	}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3120 3121 3122 3123 3124 3125
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3126
static int memcg_stat_show(struct seq_file *m, void *v)
3127
{
3128
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129
	unsigned long memory, memsw;
3130 3131
	struct mem_cgroup *mi;
	unsigned int i;
3132

3133 3134 3135 3136
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3137 3138
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3139
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3140
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3141
			continue;
3142
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3143
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3144
	}
L
Lee Schermerhorn 已提交
3145

3146 3147 3148 3149 3150 3151 3152 3153
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3154
	/* Hierarchical information */
3155 3156 3157 3158
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3159
	}
3160 3161
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3162
	if (do_memsw_account())
3163 3164
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3165

3166
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3167
		unsigned long long val = 0;
3168

3169
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3170
			continue;
3171 3172
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3173
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3191
	}
K
KAMEZAWA Hiroyuki 已提交
3192

K
KOSAKI Motohiro 已提交
3193 3194 3195 3196
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3197
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3198 3199 3200 3201 3202
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3203
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3204
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3205

3206 3207 3208 3209
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3210
			}
3211 3212 3213 3214
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3215 3216 3217
	}
#endif

3218 3219 3220
	return 0;
}

3221 3222
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3223
{
3224
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3225

3226
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3227 3228
}

3229 3230
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3231
{
3232
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3233

3234
	if (val > 100)
K
KOSAKI Motohiro 已提交
3235 3236
		return -EINVAL;

3237
	if (css->parent)
3238 3239 3240
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3241

K
KOSAKI Motohiro 已提交
3242 3243 3244
	return 0;
}

3245 3246 3247
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3248
	unsigned long usage;
3249 3250 3251 3252
	int i;

	rcu_read_lock();
	if (!swap)
3253
		t = rcu_dereference(memcg->thresholds.primary);
3254
	else
3255
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3256 3257 3258 3259

	if (!t)
		goto unlock;

3260
	usage = mem_cgroup_usage(memcg, swap);
3261 3262

	/*
3263
	 * current_threshold points to threshold just below or equal to usage.
3264 3265 3266
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3267
	i = t->current_threshold;
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3291
	t->current_threshold = i - 1;
3292 3293 3294 3295 3296 3297
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3298 3299
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3300
		if (do_memsw_account())
3301 3302 3303 3304
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3305 3306 3307 3308 3309 3310 3311
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3312 3313 3314 3315 3316 3317 3318
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3319 3320
}

3321
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3322 3323 3324
{
	struct mem_cgroup_eventfd_list *ev;

3325 3326
	spin_lock(&memcg_oom_lock);

3327
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3328
		eventfd_signal(ev->eventfd, 1);
3329 3330

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3331 3332 3333
	return 0;
}

3334
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3335
{
K
KAMEZAWA Hiroyuki 已提交
3336 3337
	struct mem_cgroup *iter;

3338
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3339
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3340 3341
}

3342
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3343
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3344
{
3345 3346
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3347 3348
	unsigned long threshold;
	unsigned long usage;
3349
	int i, size, ret;
3350

3351
	ret = page_counter_memparse(args, "-1", &threshold);
3352 3353 3354 3355
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3356

3357
	if (type == _MEM) {
3358
		thresholds = &memcg->thresholds;
3359
		usage = mem_cgroup_usage(memcg, false);
3360
	} else if (type == _MEMSWAP) {
3361
		thresholds = &memcg->memsw_thresholds;
3362
		usage = mem_cgroup_usage(memcg, true);
3363
	} else
3364 3365 3366
		BUG();

	/* Check if a threshold crossed before adding a new one */
3367
	if (thresholds->primary)
3368 3369
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3370
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3371 3372

	/* Allocate memory for new array of thresholds */
3373
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3374
			GFP_KERNEL);
3375
	if (!new) {
3376 3377 3378
		ret = -ENOMEM;
		goto unlock;
	}
3379
	new->size = size;
3380 3381

	/* Copy thresholds (if any) to new array */
3382 3383
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3384
				sizeof(struct mem_cgroup_threshold));
3385 3386
	}

3387
	/* Add new threshold */
3388 3389
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3390 3391

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3392
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3393 3394 3395
			compare_thresholds, NULL);

	/* Find current threshold */
3396
	new->current_threshold = -1;
3397
	for (i = 0; i < size; i++) {
3398
		if (new->entries[i].threshold <= usage) {
3399
			/*
3400 3401
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3402 3403
			 * it here.
			 */
3404
			++new->current_threshold;
3405 3406
		} else
			break;
3407 3408
	}

3409 3410 3411 3412 3413
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3414

3415
	/* To be sure that nobody uses thresholds */
3416 3417 3418 3419 3420 3421 3422 3423
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3424
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3425 3426
	struct eventfd_ctx *eventfd, const char *args)
{
3427
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3428 3429
}

3430
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3431 3432
	struct eventfd_ctx *eventfd, const char *args)
{
3433
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3434 3435
}

3436
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3437
	struct eventfd_ctx *eventfd, enum res_type type)
3438
{
3439 3440
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3441
	unsigned long usage;
3442
	int i, j, size;
3443 3444

	mutex_lock(&memcg->thresholds_lock);
3445 3446

	if (type == _MEM) {
3447
		thresholds = &memcg->thresholds;
3448
		usage = mem_cgroup_usage(memcg, false);
3449
	} else if (type == _MEMSWAP) {
3450
		thresholds = &memcg->memsw_thresholds;
3451
		usage = mem_cgroup_usage(memcg, true);
3452
	} else
3453 3454
		BUG();

3455 3456 3457
	if (!thresholds->primary)
		goto unlock;

3458 3459 3460 3461
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3462 3463 3464
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3465 3466 3467
			size++;
	}

3468
	new = thresholds->spare;
3469

3470 3471
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3472 3473
		kfree(new);
		new = NULL;
3474
		goto swap_buffers;
3475 3476
	}

3477
	new->size = size;
3478 3479

	/* Copy thresholds and find current threshold */
3480 3481 3482
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3483 3484
			continue;

3485
		new->entries[j] = thresholds->primary->entries[i];
3486
		if (new->entries[j].threshold <= usage) {
3487
			/*
3488
			 * new->current_threshold will not be used
3489 3490 3491
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3492
			++new->current_threshold;
3493 3494 3495 3496
		}
		j++;
	}

3497
swap_buffers:
3498 3499
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3500 3501 3502 3503 3504 3505
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3506
	rcu_assign_pointer(thresholds->primary, new);
3507

3508
	/* To be sure that nobody uses thresholds */
3509
	synchronize_rcu();
3510
unlock:
3511 3512
	mutex_unlock(&memcg->thresholds_lock);
}
3513

3514
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3515 3516
	struct eventfd_ctx *eventfd)
{
3517
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3518 3519
}

3520
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3521 3522
	struct eventfd_ctx *eventfd)
{
3523
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3524 3525
}

3526
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3527
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3528 3529 3530 3531 3532 3533 3534
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3535
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3536 3537 3538 3539 3540

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3541
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3542
		eventfd_signal(eventfd, 1);
3543
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3544 3545 3546 3547

	return 0;
}

3548
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3549
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3550 3551 3552
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3553
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3554

3555
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3556 3557 3558 3559 3560 3561
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3562
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3563 3564
}

3565
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3566
{
3567
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3568

3569
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3570
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3571 3572 3573
	return 0;
}

3574
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3575 3576
	struct cftype *cft, u64 val)
{
3577
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3578 3579

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3580
	if (!css->parent || !((val == 0) || (val == 1)))
3581 3582
		return -EINVAL;

3583
	memcg->oom_kill_disable = val;
3584
	if (!val)
3585
		memcg_oom_recover(memcg);
3586

3587 3588 3589
	return 0;
}

A
Andrew Morton 已提交
3590
#ifdef CONFIG_MEMCG_KMEM
3591
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3592
{
3593 3594 3595 3596 3597
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3598

3599
	return tcp_init_cgroup(memcg, ss);
3600
}
3601

3602 3603
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3604 3605 3606 3607
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3646 3647
}

3648
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3649
{
3650 3651 3652 3653 3654
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3655
	tcp_destroy_cgroup(memcg);
3656
}
3657
#else
3658
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3659 3660 3661
{
	return 0;
}
G
Glauber Costa 已提交
3662

3663 3664 3665 3666
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3667 3668 3669
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3670 3671
#endif

3672 3673 3674 3675 3676 3677 3678
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3689 3690 3691 3692 3693
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3704 3705 3706
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3707 3708
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3709 3710 3711
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3712 3713 3714
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3715
 *
3716 3717 3718 3719 3720
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3721
 */
3722 3723 3724
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3725 3726 3727 3728 3729 3730 3731 3732
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3733 3734 3735
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3736 3737 3738 3739 3740

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3741
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3742 3743 3744 3745
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3757 3758 3759 3760
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3761 3762
#endif	/* CONFIG_CGROUP_WRITEBACK */

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3776 3777 3778 3779 3780
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3781
static void memcg_event_remove(struct work_struct *work)
3782
{
3783 3784
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3785
	struct mem_cgroup *memcg = event->memcg;
3786 3787 3788

	remove_wait_queue(event->wqh, &event->wait);

3789
	event->unregister_event(memcg, event->eventfd);
3790 3791 3792 3793 3794 3795

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3796
	css_put(&memcg->css);
3797 3798 3799 3800 3801 3802 3803
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3804 3805
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3806
{
3807 3808
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3809
	struct mem_cgroup *memcg = event->memcg;
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3822
		spin_lock(&memcg->event_list_lock);
3823 3824 3825 3826 3827 3828 3829 3830
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3831
		spin_unlock(&memcg->event_list_lock);
3832 3833 3834 3835 3836
	}

	return 0;
}

3837
static void memcg_event_ptable_queue_proc(struct file *file,
3838 3839
		wait_queue_head_t *wqh, poll_table *pt)
{
3840 3841
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3842 3843 3844 3845 3846 3847

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3848 3849
 * DO NOT USE IN NEW FILES.
 *
3850 3851 3852 3853 3854
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3855 3856
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3857
{
3858
	struct cgroup_subsys_state *css = of_css(of);
3859
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3860
	struct mem_cgroup_event *event;
3861 3862 3863 3864
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3865
	const char *name;
3866 3867 3868
	char *endp;
	int ret;

3869 3870 3871
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3872 3873
	if (*endp != ' ')
		return -EINVAL;
3874
	buf = endp + 1;
3875

3876
	cfd = simple_strtoul(buf, &endp, 10);
3877 3878
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3879
	buf = endp + 1;
3880 3881 3882 3883 3884

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3885
	event->memcg = memcg;
3886
	INIT_LIST_HEAD(&event->list);
3887 3888 3889
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3915 3916 3917 3918 3919
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3920 3921
	 *
	 * DO NOT ADD NEW FILES.
3922
	 */
A
Al Viro 已提交
3923
	name = cfile.file->f_path.dentry->d_name.name;
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3935 3936
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3937 3938 3939 3940 3941
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3942
	/*
3943 3944 3945
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3946
	 */
A
Al Viro 已提交
3947
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3948
					       &memory_cgrp_subsys);
3949
	ret = -EINVAL;
3950
	if (IS_ERR(cfile_css))
3951
		goto out_put_cfile;
3952 3953
	if (cfile_css != css) {
		css_put(cfile_css);
3954
		goto out_put_cfile;
3955
	}
3956

3957
	ret = event->register_event(memcg, event->eventfd, buf);
3958 3959 3960 3961 3962
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3963 3964 3965
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3966 3967 3968 3969

	fdput(cfile);
	fdput(efile);

3970
	return nbytes;
3971 3972

out_put_css:
3973
	css_put(css);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3986
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3987
	{
3988
		.name = "usage_in_bytes",
3989
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3990
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3991
	},
3992 3993
	{
		.name = "max_usage_in_bytes",
3994
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3995
		.write = mem_cgroup_reset,
3996
		.read_u64 = mem_cgroup_read_u64,
3997
	},
B
Balbir Singh 已提交
3998
	{
3999
		.name = "limit_in_bytes",
4000
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4001
		.write = mem_cgroup_write,
4002
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4003
	},
4004 4005 4006
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4007
		.write = mem_cgroup_write,
4008
		.read_u64 = mem_cgroup_read_u64,
4009
	},
B
Balbir Singh 已提交
4010 4011
	{
		.name = "failcnt",
4012
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4013
		.write = mem_cgroup_reset,
4014
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4015
	},
4016 4017
	{
		.name = "stat",
4018
		.seq_show = memcg_stat_show,
4019
	},
4020 4021
	{
		.name = "force_empty",
4022
		.write = mem_cgroup_force_empty_write,
4023
	},
4024 4025 4026 4027 4028
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4029
	{
4030
		.name = "cgroup.event_control",		/* XXX: for compat */
4031
		.write = memcg_write_event_control,
4032
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4033
	},
K
KOSAKI Motohiro 已提交
4034 4035 4036 4037 4038
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4039 4040 4041 4042 4043
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4044 4045
	{
		.name = "oom_control",
4046
		.seq_show = mem_cgroup_oom_control_read,
4047
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4048 4049
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4050 4051 4052
	{
		.name = "pressure_level",
	},
4053 4054 4055
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4056
		.seq_show = memcg_numa_stat_show,
4057 4058
	},
#endif
4059 4060 4061 4062
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4063
		.write = mem_cgroup_write,
4064
		.read_u64 = mem_cgroup_read_u64,
4065 4066 4067 4068
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4069
		.read_u64 = mem_cgroup_read_u64,
4070 4071 4072 4073
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4074
		.write = mem_cgroup_reset,
4075
		.read_u64 = mem_cgroup_read_u64,
4076 4077 4078 4079
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4080
		.write = mem_cgroup_reset,
4081
		.read_u64 = mem_cgroup_read_u64,
4082
	},
4083 4084 4085
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4086 4087 4088 4089
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4090 4091
	},
#endif
4092
#endif
4093
	{ },	/* terminate */
4094
};
4095

4096
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4097 4098
{
	struct mem_cgroup_per_node *pn;
4099
	struct mem_cgroup_per_zone *mz;
4100
	int zone, tmp = node;
4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4109 4110
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4111
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4112 4113
	if (!pn)
		return 1;
4114 4115 4116

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4117
		lruvec_init(&mz->lruvec);
4118 4119
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4120
		mz->memcg = memcg;
4121
	}
4122
	memcg->nodeinfo[node] = pn;
4123 4124 4125
	return 0;
}

4126
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4127
{
4128
	kfree(memcg->nodeinfo[node]);
4129 4130
}

4131 4132
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4133
	struct mem_cgroup *memcg;
4134
	size_t size;
4135

4136 4137
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4138

4139
	memcg = kzalloc(size, GFP_KERNEL);
4140
	if (!memcg)
4141 4142
		return NULL;

4143 4144
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4145
		goto out_free;
T
Tejun Heo 已提交
4146 4147 4148 4149

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4150
	return memcg;
4151

T
Tejun Heo 已提交
4152 4153
out_free_stat:
	free_percpu(memcg->stat);
4154
out_free:
4155
	kfree(memcg);
4156
	return NULL;
4157 4158
}

4159
/*
4160 4161 4162 4163 4164 4165 4166 4167
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4168
 */
4169 4170

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4171
{
4172
	int node;
4173

4174 4175
	cancel_work_sync(&memcg->high_work);

4176
	mem_cgroup_remove_from_trees(memcg);
4177 4178 4179 4180 4181

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4182
	memcg_wb_domain_exit(memcg);
4183
	kfree(memcg);
4184
}
4185

4186 4187 4188
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4189
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4190
{
4191
	if (!memcg->memory.parent)
4192
		return NULL;
4193
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4194
}
G
Glauber Costa 已提交
4195
EXPORT_SYMBOL(parent_mem_cgroup);
4196

L
Li Zefan 已提交
4197
static struct cgroup_subsys_state * __ref
4198
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4199
{
4200
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4201
	long error = -ENOMEM;
4202
	int node;
B
Balbir Singh 已提交
4203

4204 4205
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4206
		return ERR_PTR(error);
4207

B
Bob Liu 已提交
4208
	for_each_node(node)
4209
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4210
			goto free_out;
4211

4212
	/* root ? */
4213
	if (parent_css == NULL) {
4214
		root_mem_cgroup = memcg;
4215
		page_counter_init(&memcg->memory, NULL);
4216
		memcg->high = PAGE_COUNTER_MAX;
4217
		memcg->soft_limit = PAGE_COUNTER_MAX;
4218 4219
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4220
	}
4221

4222
	INIT_WORK(&memcg->high_work, high_work_func);
4223 4224 4225 4226 4227
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4228
	vmpressure_init(&memcg->vmpressure);
4229 4230
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4231 4232 4233
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4234 4235 4236
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4237 4238 4239 4240 4241 4242 4243 4244
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4245
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4246
{
4247
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4248
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4249
	int ret;
4250

4251
	if (css->id > MEM_CGROUP_ID_MAX)
4252 4253
		return -ENOSPC;

T
Tejun Heo 已提交
4254
	if (!parent)
4255 4256
		return 0;

4257
	mutex_lock(&memcg_create_mutex);
4258 4259 4260 4261 4262 4263

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4264
		page_counter_init(&memcg->memory, &parent->memory);
4265
		memcg->high = PAGE_COUNTER_MAX;
4266
		memcg->soft_limit = PAGE_COUNTER_MAX;
4267 4268
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4269

4270
		/*
4271 4272
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4273
		 */
4274
	} else {
4275
		page_counter_init(&memcg->memory, NULL);
4276
		memcg->high = PAGE_COUNTER_MAX;
4277
		memcg->soft_limit = PAGE_COUNTER_MAX;
4278 4279
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4280 4281 4282 4283 4284
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4285
		if (parent != root_mem_cgroup)
4286
			memory_cgrp_subsys.broken_hierarchy = true;
4287
	}
4288
	mutex_unlock(&memcg_create_mutex);
4289

4290 4291 4292 4293
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

4294 4295 4296 4297 4298
#ifdef CONFIG_INET
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
		static_key_slow_inc(&memcg_sockets_enabled_key);
#endif

4299 4300 4301 4302 4303 4304 4305 4306
	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4307 4308
}

4309
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4310
{
4311
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4312
	struct mem_cgroup_event *event, *tmp;
4313 4314 4315 4316 4317 4318

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4319 4320
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4321 4322 4323
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4324
	spin_unlock(&memcg->event_list_lock);
4325

4326
	vmpressure_cleanup(&memcg->vmpressure);
4327 4328

	memcg_deactivate_kmem(memcg);
4329 4330

	wb_memcg_offline(memcg);
4331 4332
}

4333 4334 4335 4336 4337 4338 4339
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4340
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4341
{
4342
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4343

4344
	memcg_destroy_kmem(memcg);
4345 4346 4347 4348
#ifdef CONFIG_INET
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
		static_key_slow_dec(&memcg_sockets_enabled_key);
#endif
4349
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4350 4351
}

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4369 4370 4371
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4372 4373
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4374
	memcg->soft_limit = PAGE_COUNTER_MAX;
4375
	memcg_wb_domain_size_changed(memcg);
4376 4377
}

4378
#ifdef CONFIG_MMU
4379
/* Handlers for move charge at task migration. */
4380
static int mem_cgroup_do_precharge(unsigned long count)
4381
{
4382
	int ret;
4383

4384 4385
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4386
	if (!ret) {
4387 4388 4389
		mc.precharge += count;
		return ret;
	}
4390 4391

	/* Try charges one by one with reclaim */
4392
	while (count--) {
4393
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4394 4395
		if (ret)
			return ret;
4396
		mc.precharge++;
4397
		cond_resched();
4398
	}
4399
	return 0;
4400 4401 4402
}

/**
4403
 * get_mctgt_type - get target type of moving charge
4404 4405 4406
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4407
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4408 4409 4410 4411 4412 4413
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4414 4415 4416
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4417 4418 4419 4420 4421
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4422
	swp_entry_t	ent;
4423 4424 4425
};

enum mc_target_type {
4426
	MC_TARGET_NONE = 0,
4427
	MC_TARGET_PAGE,
4428
	MC_TARGET_SWAP,
4429 4430
};

D
Daisuke Nishimura 已提交
4431 4432
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4433
{
D
Daisuke Nishimura 已提交
4434
	struct page *page = vm_normal_page(vma, addr, ptent);
4435

D
Daisuke Nishimura 已提交
4436 4437 4438
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4439
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4440
			return NULL;
4441 4442 4443 4444
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4445 4446 4447 4448 4449 4450
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4451
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4452 4453 4454 4455 4456 4457
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4458
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4459
		return NULL;
4460 4461 4462 4463
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4464
	page = find_get_page(swap_address_space(ent), ent.val);
4465
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4466 4467 4468 4469
		entry->val = ent.val;

	return page;
}
4470 4471 4472 4473 4474 4475 4476
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4477

4478 4479 4480 4481 4482 4483 4484 4485 4486
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4487
	if (!(mc.flags & MOVE_FILE))
4488 4489 4490
		return NULL;

	mapping = vma->vm_file->f_mapping;
4491
	pgoff = linear_page_index(vma, addr);
4492 4493

	/* page is moved even if it's not RSS of this task(page-faulted). */
4494 4495
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4496 4497 4498 4499
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4500
			if (do_memsw_account())
4501 4502 4503 4504 4505 4506 4507
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4508
#endif
4509 4510 4511
	return page;
}

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4533
	bool anon;
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
4548 4549
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4550 4551 4552 4553 4554 4555 4556 4557
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4558 4559
	anon = PageAnon(page);

4560 4561
	spin_lock_irqsave(&from->move_lock, flags);

4562
	if (!anon && page_mapped(page)) {
4563 4564 4565 4566 4567 4568
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4616
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4617 4618 4619
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4620
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4621 4622 4623 4624 4625 4626
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4627
	else if (pte_none(ptent))
4628
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4629 4630

	if (!page && !ent.val)
4631
		return ret;
4632 4633
	if (page) {
		/*
4634
		 * Do only loose check w/o serialization.
4635
		 * mem_cgroup_move_account() checks the page is valid or
4636
		 * not under LRU exclusion.
4637
		 */
4638
		if (page->mem_cgroup == mc.from) {
4639 4640 4641 4642 4643 4644 4645
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4646 4647
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4648
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4649 4650 4651
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4652 4653 4654 4655
	}
	return ret;
}

4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4669
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4670
	if (!(mc.flags & MOVE_ANON))
4671
		return ret;
4672
	if (page->mem_cgroup == mc.from) {
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4689 4690 4691 4692
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4693
	struct vm_area_struct *vma = walk->vma;
4694 4695 4696
	pte_t *pte;
	spinlock_t *ptl;

4697
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4698 4699
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4700
		spin_unlock(ptl);
4701
		return 0;
4702
	}
4703

4704 4705
	if (pmd_trans_unstable(pmd))
		return 0;
4706 4707
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4708
		if (get_mctgt_type(vma, addr, *pte, NULL))
4709 4710 4711 4712
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4713 4714 4715
	return 0;
}

4716 4717 4718 4719
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4720 4721 4722 4723
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4724
	down_read(&mm->mmap_sem);
4725
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4726
	up_read(&mm->mmap_sem);
4727 4728 4729 4730 4731 4732 4733 4734 4735

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4736 4737 4738 4739 4740
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4741 4742
}

4743 4744
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4745
{
4746 4747 4748
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4749
	/* we must uncharge all the leftover precharges from mc.to */
4750
	if (mc.precharge) {
4751
		cancel_charge(mc.to, mc.precharge);
4752 4753 4754 4755 4756 4757 4758
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4759
		cancel_charge(mc.from, mc.moved_charge);
4760
		mc.moved_charge = 0;
4761
	}
4762 4763 4764
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4765
		if (!mem_cgroup_is_root(mc.from))
4766
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4767

4768
		/*
4769 4770
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4771
		 */
4772
		if (!mem_cgroup_is_root(mc.to))
4773 4774
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4775
		css_put_many(&mc.from->css, mc.moved_swap);
4776

L
Li Zefan 已提交
4777
		/* we've already done css_get(mc.to) */
4778 4779
		mc.moved_swap = 0;
	}
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4793
	spin_lock(&mc.lock);
4794 4795
	mc.from = NULL;
	mc.to = NULL;
4796
	spin_unlock(&mc.lock);
4797 4798
}

4799
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4800
{
4801
	struct cgroup_subsys_state *css;
4802
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4803
	struct mem_cgroup *from;
4804
	struct task_struct *leader, *p;
4805
	struct mm_struct *mm;
4806
	unsigned long move_flags;
4807
	int ret = 0;
4808

4809 4810
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4811 4812
		return 0;

4813 4814 4815 4816 4817 4818 4819
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4820
	cgroup_taskset_for_each_leader(leader, css, tset) {
4821 4822
		WARN_ON_ONCE(p);
		p = leader;
4823
		memcg = mem_cgroup_from_css(css);
4824 4825 4826 4827
	}
	if (!p)
		return 0;

4828 4829 4830 4831 4832 4833 4834 4835 4836
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4862
	}
4863
	mmput(mm);
4864 4865 4866
	return ret;
}

4867
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4868
{
4869 4870
	if (mc.to)
		mem_cgroup_clear_mc();
4871 4872
}

4873 4874 4875
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4876
{
4877
	int ret = 0;
4878
	struct vm_area_struct *vma = walk->vma;
4879 4880
	pte_t *pte;
	spinlock_t *ptl;
4881 4882 4883
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4884

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4895
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4896
		if (mc.precharge < HPAGE_PMD_NR) {
4897
			spin_unlock(ptl);
4898 4899 4900 4901 4902 4903 4904
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4905
							     mc.from, mc.to)) {
4906 4907 4908 4909 4910 4911 4912
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4913
		spin_unlock(ptl);
4914
		return 0;
4915 4916
	}

4917 4918
	if (pmd_trans_unstable(pmd))
		return 0;
4919 4920 4921 4922
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4923
		swp_entry_t ent;
4924 4925 4926 4927

		if (!mc.precharge)
			break;

4928
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4929 4930 4931 4932
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4933
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4934
				mc.precharge--;
4935 4936
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4937 4938
			}
			putback_lru_page(page);
4939
put:			/* get_mctgt_type() gets the page */
4940 4941
			put_page(page);
			break;
4942 4943
		case MC_TARGET_SWAP:
			ent = target.ent;
4944
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4945
				mc.precharge--;
4946 4947 4948
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4949
			break;
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4964
		ret = mem_cgroup_do_precharge(1);
4965 4966 4967 4968 4969 4970 4971 4972 4973
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4974 4975 4976 4977
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4978 4979

	lru_add_drain_all();
4980 4981 4982 4983 4984 4985 4986
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5000 5001 5002 5003 5004
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5005
	up_read(&mm->mmap_sem);
5006
	atomic_dec(&mc.from->moving_account);
5007 5008
}

5009
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5010
{
5011 5012
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
5013
	struct mm_struct *mm = get_task_mm(p);
5014 5015

	if (mm) {
5016 5017
		if (mc.to)
			mem_cgroup_move_charge(mm);
5018 5019
		mmput(mm);
	}
5020 5021
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5022
}
5023
#else	/* !CONFIG_MMU */
5024
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5025 5026 5027
{
	return 0;
}
5028
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5029 5030
{
}
5031
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5032 5033 5034
{
}
#endif
B
Balbir Singh 已提交
5035

5036 5037
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5038 5039
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5040
 */
5041
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5042 5043
{
	/*
5044
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5045 5046 5047
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5048
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5049 5050 5051
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5052 5053
}

5054 5055 5056
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5057 5058 5059
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5060 5061 5062 5063 5064
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5065
	unsigned long low = READ_ONCE(memcg->low);
5066 5067

	if (low == PAGE_COUNTER_MAX)
5068
		seq_puts(m, "max\n");
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5083
	err = page_counter_memparse(buf, "max", &low);
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5095
	unsigned long high = READ_ONCE(memcg->high);
5096 5097

	if (high == PAGE_COUNTER_MAX)
5098
		seq_puts(m, "max\n");
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5113
	err = page_counter_memparse(buf, "max", &high);
5114 5115 5116 5117 5118
	if (err)
		return err;

	memcg->high = high;

5119
	memcg_wb_domain_size_changed(memcg);
5120 5121 5122 5123 5124 5125
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5126
	unsigned long max = READ_ONCE(memcg->memory.limit);
5127 5128

	if (max == PAGE_COUNTER_MAX)
5129
		seq_puts(m, "max\n");
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5144
	err = page_counter_memparse(buf, "max", &max);
5145 5146 5147 5148 5149 5150 5151
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5152
	memcg_wb_domain_size_changed(memcg);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5171
		.flags = CFTYPE_NOT_ON_ROOT,
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5195
		.file_offset = offsetof(struct mem_cgroup, events_file),
5196 5197 5198 5199 5200
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5201
struct cgroup_subsys memory_cgrp_subsys = {
5202
	.css_alloc = mem_cgroup_css_alloc,
5203
	.css_online = mem_cgroup_css_online,
5204
	.css_offline = mem_cgroup_css_offline,
5205
	.css_released = mem_cgroup_css_released,
5206
	.css_free = mem_cgroup_css_free,
5207
	.css_reset = mem_cgroup_css_reset,
5208 5209
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5210
	.attach = mem_cgroup_move_task,
5211
	.bind = mem_cgroup_bind,
5212 5213
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5214
	.early_init = 0,
B
Balbir Singh 已提交
5215
};
5216

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5239
	if (page_counter_read(&memcg->memory) >= memcg->low)
5240 5241 5242 5243 5244 5245 5246 5247
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5248
		if (page_counter_read(&memcg->memory) >= memcg->low)
5249 5250 5251 5252 5253
			return false;
	}
	return true;
}

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5289
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5290
		if (page->mem_cgroup)
5291
			goto out;
5292

5293
		if (do_memsw_account()) {
5294 5295 5296 5297 5298 5299 5300 5301 5302
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5355 5356
	commit_charge(page, memcg, lrucare);

5357 5358 5359 5360 5361
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5362 5363 5364 5365
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5366

5367
	if (do_memsw_account() && PageSwapCache(page)) {
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5407 5408 5409 5410
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5411
	unsigned long nr_pages = nr_anon + nr_file;
5412 5413
	unsigned long flags;

5414
	if (!mem_cgroup_is_root(memcg)) {
5415
		page_counter_uncharge(&memcg->memory, nr_pages);
5416
		if (do_memsw_account())
5417
			page_counter_uncharge(&memcg->memsw, nr_pages);
5418 5419
		memcg_oom_recover(memcg);
	}
5420 5421 5422 5423 5424 5425

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5426
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5427 5428
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5429 5430

	if (!mem_cgroup_is_root(memcg))
5431
		css_put_many(&memcg->css, nr_pages);
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5454
		if (!page->mem_cgroup)
5455 5456 5457 5458
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5459
		 * page->mem_cgroup at this point, we have fully
5460
		 * exclusive access to the page.
5461 5462
		 */

5463
		if (memcg != page->mem_cgroup) {
5464
			if (memcg) {
5465 5466 5467
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5468
			}
5469
			memcg = page->mem_cgroup;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5483
		page->mem_cgroup = NULL;
5484 5485 5486 5487 5488

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5489 5490
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5491 5492
}

5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5505
	/* Don't touch page->lru of any random page, pre-check: */
5506
	if (!page->mem_cgroup)
5507 5508
		return;

5509 5510 5511
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5512

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5524

5525 5526
	if (!list_empty(page_list))
		uncharge_list(page_list);
5527 5528 5529
}

/**
5530
 * mem_cgroup_replace_page - migrate a charge to another page
5531 5532 5533 5534 5535 5536
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5537
 * Either or both pages might be on the LRU already.
5538
 */
5539
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5540
{
5541
	struct mem_cgroup *memcg;
5542 5543 5544 5545 5546
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5547 5548
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5549 5550 5551 5552 5553

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5554
	if (newpage->mem_cgroup)
5555 5556
		return;

5557
	/* Swapcache readahead pages can get replaced before being charged */
5558
	memcg = oldpage->mem_cgroup;
5559
	if (!memcg)
5560 5561
		return;

5562
	lock_page_lru(oldpage, &isolated);
5563
	oldpage->mem_cgroup = NULL;
5564
	unlock_page_lru(oldpage, isolated);
5565

5566
	commit_charge(newpage, memcg, true);
5567 5568
}

5569
#ifdef CONFIG_INET
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593

struct static_key memcg_sockets_enabled_key;
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5594 5595 5596 5597 5598 5599 5600
	if (memcg == root_mem_cgroup)
		goto out;
#ifdef CONFIG_MEMCG_KMEM
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
		goto out;
#endif
	if (css_tryget_online(&memcg->css))
5601
		sk->sk_memcg = memcg;
5602
out:
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5623
	gfp_t gfp_mask = GFP_KERNEL;
5624

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
#ifdef CONFIG_MEMCG_KMEM
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		struct page_counter *counter;

		if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
					    nr_pages, &counter)) {
			memcg->tcp_mem.memory_pressure = 0;
			return true;
		}
		page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
		memcg->tcp_mem.memory_pressure = 1;
		return false;
5637
	}
5638 5639 5640 5641 5642 5643 5644 5645 5646
#endif
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5657 5658 5659 5660 5661 5662 5663 5664 5665
#ifdef CONFIG_MEMCG_KMEM
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
				      nr_pages);
		return;
	}
#endif
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5666 5667
}

5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
#endif /* CONFIG_INET */

static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5683

5684
/*
5685 5686 5687 5688 5689 5690
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5691 5692 5693
 */
static int __init mem_cgroup_init(void)
{
5694 5695
	int cpu, node;

5696
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5719 5720 5721
	return 0;
}
subsys_initcall(mem_cgroup_init);
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5739
	if (!do_memsw_account())
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5757 5758 5759 5760 5761 5762 5763
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5779
	if (!do_memsw_account())
5780 5781 5782 5783
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5784
	memcg = mem_cgroup_from_id(id);
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */