memcontrol.c 190.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384
/* internal only representation about the status of kmem accounting. */
enum {
385
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 388 389 390 391 392 393
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399 400 401

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
402 403 404 405 406
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
407 408 409 410 411 412 413 414 415
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
416 417
#endif

418 419
/* Stuffs for move charges at task migration. */
/*
420 421
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 423
 */
enum move_type {
424
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 427 428
	NR_MOVE_TYPE,
};

429 430
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
431
	spinlock_t	  lock; /* for from, to */
432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
434
	unsigned long immigrate_flags;
435
	unsigned long precharge;
436
	unsigned long moved_charge;
437
	unsigned long moved_swap;
438 439 440
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
441
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 443
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
444

D
Daisuke Nishimura 已提交
445 446
static bool move_anon(void)
{
447
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
448 449
}

450 451
static bool move_file(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 454
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493 494 495 496 497 498
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

499 500
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
501
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

517 518 519 520 521
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

522 523 524 525 526 527
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
528 529
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
530
	return memcg->css.cgroup->id;
L
Li Zefan 已提交
531 532 533 534 535 536
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

537
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
538 539 540
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
541
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
542
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
543 544 545

void sock_update_memcg(struct sock *sk)
{
546
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
547
		struct mem_cgroup *memcg;
548
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
549 550 551

		BUG_ON(!sk->sk_prot->proto_cgroup);

552 553 554 555 556 557 558 559 560 561
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
562
			css_get(&sk->sk_cgrp->memcg->css);
563 564 565
			return;
		}

G
Glauber Costa 已提交
566 567
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
568
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
569 570
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
571
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
572 573 574 575 576 577 578 579
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
580
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
581 582 583
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
584
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
585 586
	}
}
G
Glauber Costa 已提交
587 588 589 590 591 592

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

593
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
594 595
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
596

597 598
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
599
	if (!memcg_proto_activated(&memcg->tcp_mem))
600 601 602 603 604 605 606 607 608
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

609
#ifdef CONFIG_MEMCG_KMEM
610 611
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
612 613 614 615 616
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
617 618 619 620 621 622
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
623 624
int memcg_limited_groups_array_size;

625 626 627 628 629 630
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
631
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 633
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
634
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 636 637
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
638
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639

640 641 642 643 644 645
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
646
struct static_key memcg_kmem_enabled_key;
647
EXPORT_SYMBOL(memcg_kmem_enabled_key);
648 649 650

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
651
	if (memcg_kmem_is_active(memcg)) {
652
		static_key_slow_dec(&memcg_kmem_enabled_key);
653 654
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
655 656 657 658 659
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 661 662 663 664 665 666 667 668 669 670 671 672
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

673
static void drain_all_stock_async(struct mem_cgroup *memcg);
674

675
static struct mem_cgroup_per_zone *
676
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
677
{
678
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
679
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
680 681
}

682
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
683
{
684
	return &memcg->css;
685 686
}

687
static struct mem_cgroup_per_zone *
688
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
689
{
690 691
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
692

693
	return mem_cgroup_zoneinfo(memcg, nid, zid);
694 695
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
873
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
874
				 enum mem_cgroup_stat_index idx)
875
{
876
	long val = 0;
877 878
	int cpu;

879 880
	get_online_cpus();
	for_each_online_cpu(cpu)
881
		val += per_cpu(memcg->stat->count[idx], cpu);
882
#ifdef CONFIG_HOTPLUG_CPU
883 884 885
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
886 887
#endif
	put_online_cpus();
888 889 890
	return val;
}

891
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
892 893 894
					 bool charge)
{
	int val = (charge) ? 1 : -1;
895
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
896 897
}

898
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
899 900 901 902 903
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

904
	get_online_cpus();
905
	for_each_online_cpu(cpu)
906
		val += per_cpu(memcg->stat->events[idx], cpu);
907
#ifdef CONFIG_HOTPLUG_CPU
908 909 910
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
911
#endif
912
	put_online_cpus();
913 914 915
	return val;
}

916
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917
					 struct page *page,
918
					 bool anon, int nr_pages)
919
{
920 921 922 923 924 925
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
926
				nr_pages);
927
	else
928
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
929
				nr_pages);
930

931 932 933 934
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

935 936
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
937
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
938
	else {
939
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
940 941
		nr_pages = -nr_pages; /* for event */
	}
942

943
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
944 945
}

946
unsigned long
947
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
948 949 950 951 952 953 954 955
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
956
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
957
			unsigned int lru_mask)
958 959
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
960
	enum lru_list lru;
961 962
	unsigned long ret = 0;

963
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
964

H
Hugh Dickins 已提交
965 966 967
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
968 969 970 971 972
	}
	return ret;
}

static unsigned long
973
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
974 975
			int nid, unsigned int lru_mask)
{
976 977 978
	u64 total = 0;
	int zid;

979
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
980 981
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
982

983 984
	return total;
}
985

986
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
987
			unsigned int lru_mask)
988
{
989
	int nid;
990 991
	u64 total = 0;

992
	for_each_node_state(nid, N_MEMORY)
993
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
994
	return total;
995 996
}

997 998
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
999 1000 1001
{
	unsigned long val, next;

1002
	val = __this_cpu_read(memcg->stat->nr_page_events);
1003
	next = __this_cpu_read(memcg->stat->targets[target]);
1004
	/* from time_after() in jiffies.h */
1005 1006 1007 1008 1009
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1010 1011 1012
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1013 1014 1015 1016 1017 1018 1019 1020
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1021
	}
1022
	return false;
1023 1024 1025 1026 1027 1028
}

/*
 * Check events in order.
 *
 */
1029
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1030
{
1031
	preempt_disable();
1032
	/* threshold event is triggered in finer grain than soft limit */
1033 1034
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1035
		bool do_softlimit;
1036
		bool do_numainfo __maybe_unused;
1037

1038 1039
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1040 1041 1042 1043 1044 1045
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1046
		mem_cgroup_threshold(memcg);
1047 1048
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1049
#if MAX_NUMNODES > 1
1050
		if (unlikely(do_numainfo))
1051
			atomic_inc(&memcg->numainfo_events);
1052
#endif
1053 1054
	} else
		preempt_enable();
1055 1056
}

1057
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1058
{
1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1067
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1068 1069
}

1070
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1071
{
1072
	struct mem_cgroup *memcg = NULL;
1073

1074 1075
	rcu_read_lock();
	do {
1076 1077
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1078
			memcg = root_mem_cgroup;
1079
	} while (!css_tryget(&memcg->css));
1080
	rcu_read_unlock();
1081
	return memcg;
1082 1083
}

1084 1085 1086 1087 1088 1089 1090
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1091
		struct mem_cgroup *last_visited)
1092
{
1093
	struct cgroup_subsys_state *prev_css, *next_css;
1094

1095
	prev_css = last_visited ? &last_visited->css : NULL;
1096
skip_node:
1097
	next_css = css_next_descendant_pre(prev_css, &root->css);
1098 1099 1100 1101 1102 1103 1104

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1105 1106 1107 1108 1109 1110 1111 1112
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1113
	 */
1114
	if (next_css) {
1115 1116
		if ((next_css == &root->css) ||
		    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1117
			return mem_cgroup_from_css(next_css);
1118 1119 1120

		prev_css = next_css;
		goto skip_node;
1121 1122 1123 1124 1125
	}

	return NULL;
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1154 1155 1156 1157 1158 1159 1160 1161 1162

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1163 1164 1165 1166 1167 1168 1169 1170
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1171
				   struct mem_cgroup *root,
1172 1173
				   int sequence)
{
1174 1175
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1205
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1206
				   struct mem_cgroup *prev,
1207
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1208
{
1209
	struct mem_cgroup *memcg = NULL;
1210
	struct mem_cgroup *last_visited = NULL;
1211

1212 1213
	if (mem_cgroup_disabled())
		return NULL;
1214

1215 1216
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1217

1218
	if (prev && !reclaim)
1219
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1220

1221 1222
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1223
			goto out_css_put;
1224
		return root;
1225
	}
K
KAMEZAWA Hiroyuki 已提交
1226

1227
	rcu_read_lock();
1228
	while (!memcg) {
1229
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1230
		int uninitialized_var(seq);
1231

1232 1233 1234 1235 1236 1237 1238
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1239
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1240
				iter->last_visited = NULL;
1241 1242
				goto out_unlock;
			}
M
Michal Hocko 已提交
1243

1244
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1245
		}
K
KAMEZAWA Hiroyuki 已提交
1246

1247
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1248

1249
		if (reclaim) {
1250 1251
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1252

M
Michal Hocko 已提交
1253
			if (!memcg)
1254 1255 1256 1257
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1258

1259
		if (prev && !memcg)
1260
			goto out_unlock;
1261
	}
1262 1263
out_unlock:
	rcu_read_unlock();
1264 1265 1266 1267
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1268
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1269
}
K
KAMEZAWA Hiroyuki 已提交
1270

1271 1272 1273 1274 1275 1276 1277
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1278 1279 1280 1281 1282 1283
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1284

1285 1286 1287 1288 1289 1290
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1291
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1292
	     iter != NULL;				\
1293
	     iter = mem_cgroup_iter(root, iter, NULL))
1294

1295
#define for_each_mem_cgroup(iter)			\
1296
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1297
	     iter != NULL;				\
1298
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1299

1300
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1301
{
1302
	struct mem_cgroup *memcg;
1303 1304

	rcu_read_lock();
1305 1306
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1307 1308 1309 1310
		goto out;

	switch (idx) {
	case PGFAULT:
1311 1312 1313 1314
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1315 1316 1317 1318 1319 1320 1321
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1322
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1323

1324 1325 1326
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1327
 * @memcg: memcg of the wanted lruvec
1328 1329 1330 1331 1332 1333 1334 1335 1336
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1337
	struct lruvec *lruvec;
1338

1339 1340 1341 1342
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1343 1344

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1355 1356
}

K
KAMEZAWA Hiroyuki 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1370

1371
/**
1372
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1373
 * @page: the page
1374
 * @zone: zone of the page
1375
 */
1376
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1377 1378
{
	struct mem_cgroup_per_zone *mz;
1379 1380
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1381
	struct lruvec *lruvec;
1382

1383 1384 1385 1386
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1387

K
KAMEZAWA Hiroyuki 已提交
1388
	pc = lookup_page_cgroup(page);
1389
	memcg = pc->mem_cgroup;
1390 1391

	/*
1392
	 * Surreptitiously switch any uncharged offlist page to root:
1393 1394 1395 1396 1397 1398 1399
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1400
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1401 1402
		pc->mem_cgroup = memcg = root_mem_cgroup;

1403
	mz = page_cgroup_zoneinfo(memcg, page);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1414
}
1415

1416
/**
1417 1418 1419 1420
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1421
 *
1422 1423
 * This function must be called when a page is added to or removed from an
 * lru list.
1424
 */
1425 1426
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1427 1428
{
	struct mem_cgroup_per_zone *mz;
1429
	unsigned long *lru_size;
1430 1431 1432 1433

	if (mem_cgroup_disabled())
		return;

1434 1435 1436 1437
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1438
}
1439

1440
/*
1441
 * Checks whether given mem is same or in the root_mem_cgroup's
1442 1443
 * hierarchy subtree
 */
1444 1445
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1446
{
1447 1448
	if (root_memcg == memcg)
		return true;
1449
	if (!root_memcg->use_hierarchy || !memcg)
1450
		return false;
1451
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1452 1453 1454 1455 1456 1457 1458
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1459
	rcu_read_lock();
1460
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1461 1462
	rcu_read_unlock();
	return ret;
1463 1464
}

1465 1466
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1467
{
1468
	struct mem_cgroup *curr = NULL;
1469
	struct task_struct *p;
1470
	bool ret;
1471

1472
	p = find_lock_task_mm(task);
1473
	if (p) {
1474
		curr = get_mem_cgroup_from_mm(p->mm);
1475 1476 1477 1478 1479 1480 1481
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1482
		rcu_read_lock();
1483 1484 1485
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1486
		rcu_read_unlock();
1487
	}
1488
	/*
1489
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1490
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1491 1492
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1493
	 */
1494
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1495
	css_put(&curr->css);
1496 1497 1498
	return ret;
}

1499
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1500
{
1501
	unsigned long inactive_ratio;
1502
	unsigned long inactive;
1503
	unsigned long active;
1504
	unsigned long gb;
1505

1506 1507
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1508

1509 1510 1511 1512 1513 1514
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1515
	return inactive * inactive_ratio < active;
1516 1517
}

1518 1519 1520
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1521
/**
1522
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1523
 * @memcg: the memory cgroup
1524
 *
1525
 * Returns the maximum amount of memory @mem can be charged with, in
1526
 * pages.
1527
 */
1528
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1529
{
1530 1531
	unsigned long long margin;

1532
	margin = res_counter_margin(&memcg->res);
1533
	if (do_swap_account)
1534
		margin = min(margin, res_counter_margin(&memcg->memsw));
1535
	return margin >> PAGE_SHIFT;
1536 1537
}

1538
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1539 1540
{
	/* root ? */
T
Tejun Heo 已提交
1541
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1542 1543
		return vm_swappiness;

1544
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1561 1562 1563 1564

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1565
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1566
{
1567
	atomic_inc(&memcg_moving);
1568
	atomic_inc(&memcg->moving_account);
1569 1570 1571
	synchronize_rcu();
}

1572
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1573
{
1574 1575 1576 1577
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1578 1579
	if (memcg) {
		atomic_dec(&memcg_moving);
1580
		atomic_dec(&memcg->moving_account);
1581
	}
1582
}
1583

1584 1585 1586
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1587 1588
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1589 1590 1591 1592 1593 1594 1595
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1596
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1597 1598
{
	VM_BUG_ON(!rcu_read_lock_held());
1599
	return atomic_read(&memcg->moving_account) > 0;
1600
}
1601

1602
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1603
{
1604 1605
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1606
	bool ret = false;
1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1616

1617 1618
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1619 1620
unlock:
	spin_unlock(&mc.lock);
1621 1622 1623
	return ret;
}

1624
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1625 1626
{
	if (mc.moving_task && current != mc.moving_task) {
1627
		if (mem_cgroup_under_move(memcg)) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1640 1641 1642 1643
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1644
 * see mem_cgroup_stolen(), too.
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1658
#define K(x) ((x) << (PAGE_SHIFT-10))
1659
/**
1660
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1661 1662 1663 1664 1665 1666 1667 1668
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1669
	/* oom_info_lock ensures that parallel ooms do not interleave */
1670
	static DEFINE_MUTEX(oom_info_lock);
1671 1672
	struct mem_cgroup *iter;
	unsigned int i;
1673

1674
	if (!p)
1675 1676
		return;

1677
	mutex_lock(&oom_info_lock);
1678 1679
	rcu_read_lock();

T
Tejun Heo 已提交
1680 1681 1682 1683 1684
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1685 1686 1687

	rcu_read_unlock();

1688
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 1690 1691
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 1694 1695
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 1698 1699
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700 1701

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1702 1703
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1719
	mutex_unlock(&oom_info_lock);
1720 1721
}

1722 1723 1724 1725
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1726
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1727 1728
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1729 1730
	struct mem_cgroup *iter;

1731
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1732
		num++;
1733 1734 1735
	return num;
}

D
David Rientjes 已提交
1736 1737 1738
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1739
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1740 1741 1742
{
	u64 limit;

1743 1744
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1745
	/*
1746
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1747
	 */
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1762 1763
}

1764 1765
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1766 1767 1768 1769 1770 1771 1772
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1773
	/*
1774 1775 1776
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1777
	 */
1778
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1779 1780 1781 1782 1783
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1784 1785
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1786
		struct css_task_iter it;
1787 1788
		struct task_struct *task;

1789 1790
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1803
				css_task_iter_end(&it);
1804 1805 1806 1807 1808 1809 1810 1811
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1824
		}
1825
		css_task_iter_end(&it);
1826 1827 1828 1829 1830 1831 1832 1833 1834
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1871 1872
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1873
 * @memcg: the target memcg
1874 1875 1876 1877 1878 1879 1880
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1881
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1882 1883
		int nid, bool noswap)
{
1884
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1885 1886 1887
		return true;
	if (noswap || !total_swap_pages)
		return false;
1888
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1889 1890 1891 1892
		return true;
	return false;

}
1893
#if MAX_NUMNODES > 1
1894 1895 1896 1897 1898 1899 1900

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1901
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1902 1903
{
	int nid;
1904 1905 1906 1907
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1908
	if (!atomic_read(&memcg->numainfo_events))
1909
		return;
1910
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1911 1912 1913
		return;

	/* make a nodemask where this memcg uses memory from */
1914
	memcg->scan_nodes = node_states[N_MEMORY];
1915

1916
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1917

1918 1919
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1920
	}
1921

1922 1923
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1938
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1939 1940 1941
{
	int node;

1942 1943
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1944

1945
	node = next_node(node, memcg->scan_nodes);
1946
	if (node == MAX_NUMNODES)
1947
		node = first_node(memcg->scan_nodes);
1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1957
	memcg->last_scanned_node = node;
1958 1959 1960
	return node;
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1996
#else
1997
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1998 1999 2000
{
	return 0;
}
2001

2002 2003 2004 2005
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2006 2007
#endif

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2056
	}
2057 2058
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2059 2060
}

2061 2062 2063 2064 2065 2066
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2067 2068
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2069 2070 2071 2072
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2073
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2074
{
2075
	struct mem_cgroup *iter, *failed = NULL;
2076

2077 2078
	spin_lock(&memcg_oom_lock);

2079
	for_each_mem_cgroup_tree(iter, memcg) {
2080
		if (iter->oom_lock) {
2081 2082 2083 2084 2085
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2086 2087
			mem_cgroup_iter_break(memcg, iter);
			break;
2088 2089
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2090
	}
K
KAMEZAWA Hiroyuki 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2103
		}
2104 2105
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2106 2107 2108 2109

	spin_unlock(&memcg_oom_lock);

	return !failed;
2110
}
2111

2112
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2113
{
K
KAMEZAWA Hiroyuki 已提交
2114 2115
	struct mem_cgroup *iter;

2116
	spin_lock(&memcg_oom_lock);
2117
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2118
	for_each_mem_cgroup_tree(iter, memcg)
2119
		iter->oom_lock = false;
2120
	spin_unlock(&memcg_oom_lock);
2121 2122
}

2123
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2124 2125 2126
{
	struct mem_cgroup *iter;

2127
	for_each_mem_cgroup_tree(iter, memcg)
2128 2129 2130
		atomic_inc(&iter->under_oom);
}

2131
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2132 2133 2134
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2135 2136 2137 2138 2139
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2140
	for_each_mem_cgroup_tree(iter, memcg)
2141
		atomic_add_unless(&iter->under_oom, -1, 0);
2142 2143
}

K
KAMEZAWA Hiroyuki 已提交
2144 2145
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2146
struct oom_wait_info {
2147
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2148 2149 2150 2151 2152 2153
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2154 2155
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2159
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2160 2161

	/*
2162
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2163 2164
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2165 2166
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2167 2168 2169 2170
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2171
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2172
{
2173
	atomic_inc(&memcg->oom_wakeups);
2174 2175
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2176 2177
}

2178
static void memcg_oom_recover(struct mem_cgroup *memcg)
2179
{
2180 2181
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2182 2183
}

2184
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2185
{
2186 2187
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2188
	/*
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2201
	 */
2202 2203 2204 2205
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2206 2207 2208 2209
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2210
 * @handle: actually kill/wait or just clean up the OOM state
2211
 *
2212 2213
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2214
 *
2215
 * Memcg supports userspace OOM handling where failed allocations must
2216 2217 2218 2219
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2220
 * the end of the page fault to complete the OOM handling.
2221 2222
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2223
 * completed, %false otherwise.
2224
 */
2225
bool mem_cgroup_oom_synchronize(bool handle)
2226
{
2227
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2228
	struct oom_wait_info owait;
2229
	bool locked;
2230 2231 2232

	/* OOM is global, do not handle */
	if (!memcg)
2233
		return false;
2234

2235 2236
	if (!handle)
		goto cleanup;
2237 2238 2239 2240 2241 2242

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2243

2244
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2258
		schedule();
2259 2260 2261 2262 2263
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2264 2265 2266 2267 2268 2269 2270 2271
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2272 2273
cleanup:
	current->memcg_oom.memcg = NULL;
2274
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2275
	return true;
2276 2277
}

2278 2279 2280
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2298 2299
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2300
 */
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2315
	 * need to take move_lock_mem_cgroup(). Because we already hold
2316
	 * rcu_read_lock(), any calls to move_account will be delayed until
2317
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2318
	 */
2319
	if (!mem_cgroup_stolen(memcg))
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2337
	 * should take move_lock_mem_cgroup().
2338 2339 2340 2341
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2342
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2343
				 enum mem_cgroup_stat_index idx, int val)
2344
{
2345
	struct mem_cgroup *memcg;
2346
	struct page_cgroup *pc = lookup_page_cgroup(page);
2347
	unsigned long uninitialized_var(flags);
2348

2349
	if (mem_cgroup_disabled())
2350
		return;
2351

2352
	VM_BUG_ON(!rcu_read_lock_held());
2353 2354
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2355
		return;
2356

2357
	this_cpu_add(memcg->stat->count[idx], val);
2358
}
2359

2360 2361 2362 2363
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2364
#define CHARGE_BATCH	32U
2365 2366
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2367
	unsigned int nr_pages;
2368
	struct work_struct work;
2369
	unsigned long flags;
2370
#define FLUSHING_CACHED_CHARGE	0
2371 2372
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2373
static DEFINE_MUTEX(percpu_charge_mutex);
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2385
 */
2386
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2387 2388 2389 2390
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2391 2392 2393
	if (nr_pages > CHARGE_BATCH)
		return false;

2394
	stock = &get_cpu_var(memcg_stock);
2395 2396
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2410 2411 2412 2413
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2414
		if (do_swap_account)
2415 2416
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2429
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2430 2431
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2443 2444
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2445
 * This will be consumed by consume_stock() function, later.
2446
 */
2447
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2448 2449 2450
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2451
	if (stock->cached != memcg) { /* reset if necessary */
2452
		drain_stock(stock);
2453
		stock->cached = memcg;
2454
	}
2455
	stock->nr_pages += nr_pages;
2456 2457 2458 2459
	put_cpu_var(memcg_stock);
}

/*
2460
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2461 2462
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2463
 */
2464
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2465
{
2466
	int cpu, curcpu;
2467

2468 2469
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2470
	curcpu = get_cpu();
2471 2472
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2473
		struct mem_cgroup *memcg;
2474

2475 2476
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2477
			continue;
2478
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2479
			continue;
2480 2481 2482 2483 2484 2485
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2486
	}
2487
	put_cpu();
2488 2489 2490 2491 2492 2493

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2494
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2495 2496 2497
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2498
	put_online_cpus();
2499 2500 2501 2502 2503 2504 2505 2506
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2507
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2508
{
2509 2510 2511 2512 2513
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2514
	drain_all_stock(root_memcg, false);
2515
	mutex_unlock(&percpu_charge_mutex);
2516 2517 2518
}

/* This is a synchronous drain interface. */
2519
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2520 2521
{
	/* called when force_empty is called */
2522
	mutex_lock(&percpu_charge_mutex);
2523
	drain_all_stock(root_memcg, true);
2524
	mutex_unlock(&percpu_charge_mutex);
2525 2526
}

2527 2528 2529 2530
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2531
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2532 2533 2534
{
	int i;

2535
	spin_lock(&memcg->pcp_counter_lock);
2536
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2537
		long x = per_cpu(memcg->stat->count[i], cpu);
2538

2539 2540
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2541
	}
2542
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2543
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2544

2545 2546
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2547
	}
2548
	spin_unlock(&memcg->pcp_counter_lock);
2549 2550
}

2551
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2552 2553 2554 2555 2556
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2557
	struct mem_cgroup *iter;
2558

2559
	if (action == CPU_ONLINE)
2560 2561
		return NOTIFY_OK;

2562
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2563
		return NOTIFY_OK;
2564

2565
	for_each_mem_cgroup(iter)
2566 2567
		mem_cgroup_drain_pcp_counter(iter, cpu);

2568 2569 2570 2571 2572
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2573

2574
/* See mem_cgroup_try_charge() for details */
2575 2576 2577 2578 2579 2580 2581
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2582
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583
				unsigned int nr_pages, unsigned int min_pages,
2584
				bool invoke_oom)
2585
{
2586
	unsigned long csize = nr_pages * PAGE_SIZE;
2587 2588 2589 2590 2591
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2592
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2593 2594 2595 2596

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2597
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2598 2599 2600
		if (likely(!ret))
			return CHARGE_OK;

2601
		res_counter_uncharge(&memcg->res, csize);
2602 2603 2604 2605
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2606 2607 2608 2609
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2610
	if (nr_pages > min_pages)
2611 2612 2613 2614 2615
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2616 2617 2618
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2619
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2620
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2621
		return CHARGE_RETRY;
2622
	/*
2623 2624 2625 2626 2627 2628 2629
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2630
	 */
2631
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2632 2633 2634 2635 2636 2637 2638 2639 2640
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2641 2642
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2643

2644
	return CHARGE_NOMEM;
2645 2646
}

2647 2648 2649 2650 2651
/**
 * mem_cgroup_try_charge - try charging a memcg
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
2652
 *
2653 2654
 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2655
 */
2656 2657 2658 2659
static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)
2660
{
2661
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2662 2663
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	int ret;
2664

2665 2666
	if (mem_cgroup_is_root(memcg))
		goto done;
K
KAMEZAWA Hiroyuki 已提交
2667
	/*
2668 2669 2670 2671
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
K
KAMEZAWA Hiroyuki 已提交
2672
	 */
2673 2674
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current)))
K
KAMEZAWA Hiroyuki 已提交
2675
		goto bypass;
2676

2677
	if (unlikely(task_in_memcg_oom(current)))
2678
		goto nomem;
2679

2680 2681
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;
K
KAMEZAWA Hiroyuki 已提交
2682
again:
2683 2684
	if (consume_stock(memcg, nr_pages))
		goto done;
2685

2686
	do {
2687
		bool invoke_oom = oom && !nr_oom_retries;
2688

2689
		/* If killed, bypass charge */
2690
		if (fatal_signal_pending(current))
2691
			goto bypass;
2692

2693 2694
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2695 2696 2697 2698
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2699
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2700
			goto again;
2701 2702 2703
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2704
			if (!oom || invoke_oom)
K
KAMEZAWA Hiroyuki 已提交
2705
				goto nomem;
2706 2707
			nr_oom_retries--;
			break;
2708
		}
2709 2710
	} while (ret != CHARGE_OK);

2711
	if (batch > nr_pages)
2712
		refill_stock(memcg, batch - nr_pages);
2713
done:
2714 2715
	return 0;
nomem:
2716
	if (!(gfp_mask & __GFP_NOFAIL))
2717
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2718
bypass:
2719
	return -EINTR;
2720
}
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/**
 * mem_cgroup_try_charge_mm - try charging a mm
 * @mm: mm_struct to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
 *
 * Returns the charged mem_cgroup associated with the given mm_struct or
 * NULL the charge failed.
 */
static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)

{
	struct mem_cgroup *memcg;
	int ret;

	memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
	css_put(&memcg->css);
	if (ret == -EINTR)
		memcg = root_mem_cgroup;
	else if (ret)
		memcg = NULL;

	return memcg;
}

2751 2752 2753 2754 2755
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2756
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2757
				       unsigned int nr_pages)
2758
{
2759
	if (!mem_cgroup_is_root(memcg)) {
2760 2761
		unsigned long bytes = nr_pages * PAGE_SIZE;

2762
		res_counter_uncharge(&memcg->res, bytes);
2763
		if (do_swap_account)
2764
			res_counter_uncharge(&memcg->memsw, bytes);
2765
	}
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2786 2787
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2788 2789 2790
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2791 2792 2793 2794 2795 2796
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2797
	return mem_cgroup_from_id(id);
2798 2799
}

2800
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2801
{
2802
	struct mem_cgroup *memcg = NULL;
2803
	struct page_cgroup *pc;
2804
	unsigned short id;
2805 2806
	swp_entry_t ent;

2807
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2808 2809

	pc = lookup_page_cgroup(page);
2810
	lock_page_cgroup(pc);
2811
	if (PageCgroupUsed(pc)) {
2812 2813 2814
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2815
	} else if (PageSwapCache(page)) {
2816
		ent.val = page_private(page);
2817
		id = lookup_swap_cgroup_id(ent);
2818
		rcu_read_lock();
2819 2820 2821
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2822
		rcu_read_unlock();
2823
	}
2824
	unlock_page_cgroup(pc);
2825
	return memcg;
2826 2827
}

2828
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2829
				       struct page *page,
2830
				       unsigned int nr_pages,
2831 2832
				       enum charge_type ctype,
				       bool lrucare)
2833
{
2834
	struct page_cgroup *pc = lookup_page_cgroup(page);
2835
	struct zone *uninitialized_var(zone);
2836
	struct lruvec *lruvec;
2837
	bool was_on_lru = false;
2838
	bool anon;
2839

2840
	lock_page_cgroup(pc);
2841
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2842 2843 2844 2845
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2846 2847 2848 2849 2850 2851 2852 2853 2854

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2855
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2856
			ClearPageLRU(page);
2857
			del_page_from_lru_list(page, lruvec, page_lru(page));
2858 2859 2860 2861
			was_on_lru = true;
		}
	}

2862
	pc->mem_cgroup = memcg;
2863 2864 2865 2866 2867 2868
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2869
	 */
K
KAMEZAWA Hiroyuki 已提交
2870
	smp_wmb();
2871
	SetPageCgroupUsed(pc);
2872

2873 2874
	if (lrucare) {
		if (was_on_lru) {
2875
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2876
			VM_BUG_ON_PAGE(PageLRU(page), page);
2877
			SetPageLRU(page);
2878
			add_page_to_lru_list(page, lruvec, page_lru(page));
2879 2880 2881 2882
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2883
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2884 2885 2886 2887
		anon = true;
	else
		anon = false;

2888
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2889
	unlock_page_cgroup(pc);
2890

2891
	/*
2892 2893 2894
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2895
	 */
2896
	memcg_check_events(memcg, page);
2897
}
2898

2899 2900
static DEFINE_MUTEX(set_limit_mutex);

2901
#ifdef CONFIG_MEMCG_KMEM
2902 2903
static DEFINE_MUTEX(activate_kmem_mutex);

2904 2905 2906
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2907
		memcg_kmem_is_active(memcg);
2908 2909
}

G
Glauber Costa 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2920
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2921 2922
}

2923
#ifdef CONFIG_SLABINFO
2924
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2925
{
2926
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2943 2944 2945 2946 2947 2948 2949 2950 2951
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2952 2953
	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
				    oom_gfp_allowed(gfp));
2954 2955
	if (ret == -EINTR)  {
		/*
2956
		 * mem_cgroup_try_charge() chosed to bypass to root due to
2957 2958 2959 2960 2961 2962 2963 2964 2965
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2966
		 * mem_cgroup_try_charge() above. Tasks that were already
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2986 2987 2988 2989 2990

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2991 2992 2993 2994 2995 2996 2997 2998
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2999
	if (memcg_kmem_test_and_clear_dead(memcg))
3000
		css_put(&memcg->css);
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3039 3040
static void kmem_cache_destroy_work_func(struct work_struct *w);

3041 3042 3043 3044
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3045
	VM_BUG_ON(!is_root_cache(s));
3046 3047 3048

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3049
		struct memcg_cache_params *new_params;
3050 3051 3052
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3053
		size += offsetof(struct memcg_cache_params, memcg_caches);
3054

3055 3056
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3057 3058
			return -ENOMEM;

3059
		new_params->is_root_cache = true;
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3073
			new_params->memcg_caches[i] =
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3086 3087 3088
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3089 3090 3091 3092
	}
	return 0;
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
char *memcg_create_cache_name(struct mem_cgroup *memcg,
			      struct kmem_cache *root_cache)
{
	static char *buf = NULL;

	/*
	 * We need a mutex here to protect the shared buffer. Since this is
	 * expected to be called only on cache creation, we can employ the
	 * slab_mutex for that purpose.
	 */
	lockdep_assert_held(&slab_mutex);

	if (!buf) {
		buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
		if (!buf)
			return NULL;
	}

	cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
	return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
			 memcg_cache_id(memcg), buf);
}

3116 3117
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3118
{
3119
	size_t size;
3120 3121 3122 3123

	if (!memcg_kmem_enabled())
		return 0;

3124 3125
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3126
		size += memcg_limited_groups_array_size * sizeof(void *);
3127 3128
	} else
		size = sizeof(struct memcg_cache_params);
3129

3130 3131 3132 3133
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3134
	if (memcg) {
3135
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3136
		s->memcg_params->root_cache = root_cache;
3137 3138
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3139
		css_get(&memcg->css);
3140 3141 3142
	} else
		s->memcg_params->is_root_cache = true;

3143 3144 3145
	return 0;
}

3146 3147
void memcg_free_cache_params(struct kmem_cache *s)
{
3148 3149 3150 3151
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3152 3153 3154
	kfree(s->memcg_params);
}

3155
void memcg_register_cache(struct kmem_cache *s)
3156
{
3157 3158 3159 3160
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

3161 3162 3163
	if (is_root_cache(s))
		return;

3164 3165 3166 3167 3168 3169
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3170 3171 3172 3173
	root = s->memcg_params->root_cache;
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);

3174
	/*
3175 3176 3177
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3178
	 */
3179 3180
	smp_wmb();

3181 3182 3183 3184 3185
	/*
	 * Initialize the pointer to this cache in its parent's memcg_params
	 * before adding it to the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3186
	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3187
	root->memcg_params->memcg_caches[id] = s;
3188 3189 3190 3191

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
3192
}
3193

3194 3195 3196 3197 3198 3199 3200 3201
void memcg_unregister_cache(struct kmem_cache *s)
{
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	if (is_root_cache(s))
		return;
3202

3203 3204 3205 3206 3207 3208
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3209
	root = s->memcg_params->root_cache;
3210 3211
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);
3212 3213 3214 3215 3216

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3217 3218 3219 3220 3221
	/*
	 * Clear the pointer to this cache in its parent's memcg_params only
	 * after removing it from the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3222
	VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
3223
	root->memcg_params->memcg_caches[id] = NULL;
3224 3225
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
3282
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
G
Glauber Costa 已提交
3283
		kmem_cache_shrink(cachep);
3284
	else
G
Glauber Costa 已提交
3285 3286 3287 3288 3289 3290 3291 3292
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3313 3314 3315 3316 3317 3318 3319
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3320
int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3321 3322
{
	struct kmem_cache *c;
3323
	int i, failed = 0;
3324 3325 3326 3327 3328 3329 3330 3331

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
3332 3333
	 * we'll take the activate_kmem_mutex to protect ourselves against
	 * this.
3334
	 */
3335
	mutex_lock(&activate_kmem_mutex);
3336 3337
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3355
		cancel_work_sync(&c->memcg_params->destroy);
3356
		kmem_cache_destroy(c);
3357 3358 3359

		if (cache_from_memcg_idx(s, i))
			failed++;
3360
	}
3361
	mutex_unlock(&activate_kmem_mutex);
3362
	return failed;
3363 3364
}

G
Glauber Costa 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3382 3383 3384 3385 3386 3387
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3388 3389
static void memcg_create_cache_work_func(struct work_struct *w)
{
3390 3391 3392
	struct create_work *cw = container_of(w, struct create_work, work);
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3393

3394
	kmem_cache_create_memcg(memcg, cachep);
3395
	css_put(&memcg->css);
3396 3397 3398 3399 3400 3401
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3402 3403
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3404 3405 3406 3407
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3408 3409
	if (cw == NULL) {
		css_put(&memcg->css);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3455
	struct kmem_cache *memcg_cachep;
3456 3457 3458 3459

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3460 3461 3462
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3463 3464 3465 3466
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3467
		goto out;
3468

3469 3470 3471
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3472
		goto out;
3473 3474
	}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3502 3503 3504
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3541 3542 3543
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3554
	memcg = get_mem_cgroup_from_mm(current->mm);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3617
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3618 3619
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3620 3621 3622 3623
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3624 3625
#endif /* CONFIG_MEMCG_KMEM */

3626 3627
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3628
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3629 3630
/*
 * Because tail pages are not marked as "used", set it. We're under
3631 3632 3633
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3634
 */
3635
void mem_cgroup_split_huge_fixup(struct page *head)
3636 3637
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3638
	struct page_cgroup *pc;
3639
	struct mem_cgroup *memcg;
3640
	int i;
3641

3642 3643
	if (mem_cgroup_disabled())
		return;
3644 3645

	memcg = head_pc->mem_cgroup;
3646 3647
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3648
		pc->mem_cgroup = memcg;
3649 3650 3651
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3652 3653
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3654
}
3655
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3656

3657
/**
3658
 * mem_cgroup_move_account - move account of the page
3659
 * @page: the page
3660
 * @nr_pages: number of regular pages (>1 for huge pages)
3661 3662 3663 3664 3665
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3666
 * - page is not on LRU (isolate_page() is useful.)
3667
 * - compound_lock is held when nr_pages > 1
3668
 *
3669 3670
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3671
 */
3672 3673 3674 3675
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3676
				   struct mem_cgroup *to)
3677
{
3678 3679
	unsigned long flags;
	int ret;
3680
	bool anon = PageAnon(page);
3681

3682
	VM_BUG_ON(from == to);
3683
	VM_BUG_ON_PAGE(PageLRU(page), page);
3684 3685 3686 3687 3688 3689 3690
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3691
	if (nr_pages > 1 && !PageTransHuge(page))
3692 3693 3694 3695 3696 3697 3698 3699
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3700
	move_lock_mem_cgroup(from, &flags);
3701

3702 3703 3704 3705 3706 3707
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3708

3709 3710 3711 3712 3713 3714
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3715

3716
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3717

3718
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3719
	pc->mem_cgroup = to;
3720
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3721
	move_unlock_mem_cgroup(from, &flags);
3722 3723
	ret = 0;
unlock:
3724
	unlock_page_cgroup(pc);
3725 3726 3727
	/*
	 * check events
	 */
3728 3729
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3730
out:
3731 3732 3733
	return ret;
}

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3754
 */
3755 3756
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3757
				  struct mem_cgroup *child)
3758 3759
{
	struct mem_cgroup *parent;
3760
	unsigned int nr_pages;
3761
	unsigned long uninitialized_var(flags);
3762 3763
	int ret;

3764
	VM_BUG_ON(mem_cgroup_is_root(child));
3765

3766 3767 3768 3769 3770
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3771

3772
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3773

3774 3775 3776 3777 3778 3779
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3780

3781
	if (nr_pages > 1) {
3782
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3783
		flags = compound_lock_irqsave(page);
3784
	}
3785

3786
	ret = mem_cgroup_move_account(page, nr_pages,
3787
				pc, child, parent);
3788 3789
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3790

3791
	if (nr_pages > 1)
3792
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3793
	putback_lru_page(page);
3794
put:
3795
	put_page(page);
3796
out:
3797 3798 3799
	return ret;
}

3800
int mem_cgroup_charge_anon(struct page *page,
3801
			      struct mm_struct *mm, gfp_t gfp_mask)
3802
{
3803
	unsigned int nr_pages = 1;
3804
	struct mem_cgroup *memcg;
3805
	bool oom = true;
A
Andrea Arcangeli 已提交
3806

3807 3808 3809 3810 3811 3812 3813
	if (mem_cgroup_disabled())
		return 0;

	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
	VM_BUG_ON(!mm);

A
Andrea Arcangeli 已提交
3814
	if (PageTransHuge(page)) {
3815
		nr_pages <<= compound_order(page);
3816
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3817 3818 3819 3820 3821
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3822
	}
3823

3824 3825 3826
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
	if (!memcg)
		return -ENOMEM;
3827 3828
	__mem_cgroup_commit_charge(memcg, page, nr_pages,
				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3829 3830 3831
	return 0;
}

3832 3833 3834
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3835
 * struct page_cgroup is acquired. This refcnt will be consumed by
3836 3837
 * "commit()" or removed by "cancel()"
 */
3838 3839 3840 3841
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3842
{
3843
	struct mem_cgroup *memcg = NULL;
3844
	struct page_cgroup *pc;
3845
	int ret;
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
3856 3857 3858
		goto out;
	if (do_swap_account)
		memcg = try_get_mem_cgroup_from_page(page);
3859
	if (!memcg)
3860 3861
		memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3862
	css_put(&memcg->css);
3863
	if (ret == -EINTR)
3864 3865 3866 3867 3868 3869
		memcg = root_mem_cgroup;
	else if (ret)
		return ret;
out:
	*memcgp = memcg;
	return 0;
3870 3871
}

3872 3873 3874
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
3875 3876
	if (mem_cgroup_disabled()) {
		*memcgp = NULL;
3877
		return 0;
3878
	}
3879 3880 3881 3882 3883 3884 3885
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
3886
		struct mem_cgroup *memcg;
3887

3888 3889 3890 3891 3892
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
		*memcgp = memcg;
		return 0;
3893
	}
3894 3895 3896
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3897 3898 3899 3900 3901 3902 3903 3904 3905
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3906
static void
3907
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3908
					enum charge_type ctype)
3909
{
3910
	if (mem_cgroup_disabled())
3911
		return;
3912
	if (!memcg)
3913
		return;
3914

3915
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3916 3917 3918
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3919 3920 3921
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3922
	 */
3923
	if (do_swap_account && PageSwapCache(page)) {
3924
		swp_entry_t ent = {.val = page_private(page)};
3925
		mem_cgroup_uncharge_swap(ent);
3926
	}
3927 3928
}

3929 3930
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3931
{
3932
	__mem_cgroup_commit_charge_swapin(page, memcg,
3933
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3934 3935
}

3936
int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3937
				gfp_t gfp_mask)
3938
{
3939
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3940
	struct mem_cgroup *memcg;
3941 3942
	int ret;

3943
	if (mem_cgroup_disabled())
3944 3945 3946 3947
		return 0;
	if (PageCompound(page))
		return 0;

3948
	if (PageSwapCache(page)) { /* shmem */
3949 3950
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3951 3952 3953 3954
		if (ret)
			return ret;
		__mem_cgroup_commit_charge_swapin(page, memcg, type);
		return 0;
3955
	}
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

	/*
	 * Page cache insertions can happen without an actual mm
	 * context, e.g. during disk probing on boot.
	 */
	if (unlikely(!mm))
		memcg = root_mem_cgroup;
	else {
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
	}
	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
	return 0;
3970 3971
}

3972
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3973 3974
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3975 3976 3977
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3978

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3990
		batch->memcg = memcg;
3991 3992
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3993
	 * In those cases, all pages freed continuously can be expected to be in
3994 3995 3996 3997 3998 3999 4000 4001
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4002
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4003 4004
		goto direct_uncharge;

4005 4006 4007 4008 4009
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4010
	if (batch->memcg != memcg)
4011 4012
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4013
	batch->nr_pages++;
4014
	if (uncharge_memsw)
4015
		batch->memsw_nr_pages++;
4016 4017
	return;
direct_uncharge:
4018
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4019
	if (uncharge_memsw)
4020 4021 4022
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4023
}
4024

4025
/*
4026
 * uncharge if !page_mapped(page)
4027
 */
4028
static struct mem_cgroup *
4029 4030
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4031
{
4032
	struct mem_cgroup *memcg = NULL;
4033 4034
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4035
	bool anon;
4036

4037
	if (mem_cgroup_disabled())
4038
		return NULL;
4039

A
Andrea Arcangeli 已提交
4040
	if (PageTransHuge(page)) {
4041
		nr_pages <<= compound_order(page);
4042
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
4043
	}
4044
	/*
4045
	 * Check if our page_cgroup is valid
4046
	 */
4047
	pc = lookup_page_cgroup(page);
4048
	if (unlikely(!PageCgroupUsed(pc)))
4049
		return NULL;
4050

4051
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4052

4053
	memcg = pc->mem_cgroup;
4054

K
KAMEZAWA Hiroyuki 已提交
4055 4056 4057
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4058 4059
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4060
	switch (ctype) {
4061
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4062 4063 4064 4065 4066
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4067 4068
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4069
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4070
		/* See mem_cgroup_prepare_migration() */
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4092
	}
K
KAMEZAWA Hiroyuki 已提交
4093

4094
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4095

4096
	ClearPageCgroupUsed(pc);
4097 4098 4099 4100 4101 4102
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4103

4104
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4105
	/*
4106
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4107
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4108
	 */
4109
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4110
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4111
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4112
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4113
	}
4114 4115 4116 4117 4118 4119
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4120
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4121

4122
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4123 4124 4125

unlock_out:
	unlock_page_cgroup(pc);
4126
	return NULL;
4127 4128
}

4129 4130
void mem_cgroup_uncharge_page(struct page *page)
{
4131 4132 4133
	/* early check. */
	if (page_mapped(page))
		return;
4134
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4147 4148
	if (PageSwapCache(page))
		return;
4149
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4150 4151 4152 4153
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4154 4155
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4156
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4157 4158
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4173 4174
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4195 4196 4197 4198 4199 4200
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4201
	memcg_oom_recover(batch->memcg);
4202 4203 4204 4205
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4206
#ifdef CONFIG_SWAP
4207
/*
4208
 * called after __delete_from_swap_cache() and drop "page" account.
4209 4210
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4211 4212
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4213 4214
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4215 4216 4217 4218 4219
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4220
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4221

K
KAMEZAWA Hiroyuki 已提交
4222 4223
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4224
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4225 4226
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4227
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4228
}
4229
#endif
4230

A
Andrew Morton 已提交
4231
#ifdef CONFIG_MEMCG_SWAP
4232 4233 4234 4235 4236
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4237
{
4238
	struct mem_cgroup *memcg;
4239
	unsigned short id;
4240 4241 4242 4243

	if (!do_swap_account)
		return;

4244 4245 4246
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4247
	if (memcg) {
4248 4249 4250 4251
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4252
		if (!mem_cgroup_is_root(memcg))
4253
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4254
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4255
		css_put(&memcg->css);
4256
	}
4257
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4258
}
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4275
				struct mem_cgroup *from, struct mem_cgroup *to)
4276 4277 4278
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4279 4280
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4281 4282 4283

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4284
		mem_cgroup_swap_statistics(to, true);
4285
		/*
4286 4287 4288
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4289 4290 4291 4292 4293 4294
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4295
		 */
L
Li Zefan 已提交
4296
		css_get(&to->css);
4297 4298 4299 4300 4301 4302
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4303
				struct mem_cgroup *from, struct mem_cgroup *to)
4304 4305 4306
{
	return -EINVAL;
}
4307
#endif
K
KAMEZAWA Hiroyuki 已提交
4308

4309
/*
4310 4311
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4312
 */
4313 4314
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4315
{
4316
	struct mem_cgroup *memcg = NULL;
4317
	unsigned int nr_pages = 1;
4318
	struct page_cgroup *pc;
4319
	enum charge_type ctype;
4320

4321
	*memcgp = NULL;
4322

4323
	if (mem_cgroup_disabled())
4324
		return;
4325

4326 4327 4328
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4329 4330 4331
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4332 4333
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4365
	}
4366
	unlock_page_cgroup(pc);
4367 4368 4369 4370
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4371
	if (!memcg)
4372
		return;
4373

4374
	*memcgp = memcg;
4375 4376 4377 4378 4379 4380 4381
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4382
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4383
	else
4384
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4385 4386 4387 4388 4389
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4390
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4391
}
4392

4393
/* remove redundant charge if migration failed*/
4394
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4395
	struct page *oldpage, struct page *newpage, bool migration_ok)
4396
{
4397
	struct page *used, *unused;
4398
	struct page_cgroup *pc;
4399
	bool anon;
4400

4401
	if (!memcg)
4402
		return;
4403

4404
	if (!migration_ok) {
4405 4406
		used = oldpage;
		unused = newpage;
4407
	} else {
4408
		used = newpage;
4409 4410
		unused = oldpage;
	}
4411
	anon = PageAnon(used);
4412 4413 4414 4415
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4416
	css_put(&memcg->css);
4417
	/*
4418 4419 4420
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4421
	 */
4422 4423 4424 4425 4426
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4427
	/*
4428 4429 4430 4431 4432 4433
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4434
	 */
4435
	if (anon)
4436
		mem_cgroup_uncharge_page(used);
4437
}
4438

4439 4440 4441 4442 4443 4444 4445 4446
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4447
	struct mem_cgroup *memcg = NULL;
4448 4449 4450 4451 4452 4453 4454 4455 4456
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4457 4458
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4459
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4460 4461
		ClearPageCgroupUsed(pc);
	}
4462 4463
	unlock_page_cgroup(pc);

4464 4465 4466 4467 4468 4469
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4470 4471 4472 4473 4474
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4475
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4476 4477
}

4478 4479 4480 4481 4482 4483
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4484 4485 4486 4487 4488
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4508 4509
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4510 4511 4512 4513
	}
}
#endif

4514
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4515
				unsigned long long val)
4516
{
4517
	int retry_count;
4518
	u64 memswlimit, memlimit;
4519
	int ret = 0;
4520 4521
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4522
	int enlarge;
4523 4524 4525 4526 4527 4528 4529 4530 4531

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4532

4533
	enlarge = 0;
4534
	while (retry_count) {
4535 4536 4537 4538
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4539 4540 4541
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4542
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4543 4544 4545 4546 4547 4548
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4549 4550
			break;
		}
4551 4552 4553 4554 4555

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4556
		ret = res_counter_set_limit(&memcg->res, val);
4557 4558 4559 4560 4561 4562
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4563 4564 4565 4566 4567
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4568 4569
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4570 4571
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4572
		if (curusage >= oldusage)
4573 4574 4575
			retry_count--;
		else
			oldusage = curusage;
4576
	}
4577 4578
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4579

4580 4581 4582
	return ret;
}

L
Li Zefan 已提交
4583 4584
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4585
{
4586
	int retry_count;
4587
	u64 memlimit, memswlimit, oldusage, curusage;
4588 4589
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4590
	int enlarge = 0;
4591

4592
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4593
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4594
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4595 4596 4597 4598 4599 4600 4601 4602
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4603
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4604 4605 4606 4607 4608 4609 4610 4611
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4612 4613 4614
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4615
		ret = res_counter_set_limit(&memcg->memsw, val);
4616 4617 4618 4619 4620 4621
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4622 4623 4624 4625 4626
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4627 4628 4629
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4630
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4631
		/* Usage is reduced ? */
4632
		if (curusage >= oldusage)
4633
			retry_count--;
4634 4635
		else
			oldusage = curusage;
4636
	}
4637 4638
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4639 4640 4641
	return ret;
}

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4734 4735 4736 4737 4738 4739 4740
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4741
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4742 4743
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4744
 */
4745
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4746
				int node, int zid, enum lru_list lru)
4747
{
4748
	struct lruvec *lruvec;
4749
	unsigned long flags;
4750
	struct list_head *list;
4751 4752
	struct page *busy;
	struct zone *zone;
4753

K
KAMEZAWA Hiroyuki 已提交
4754
	zone = &NODE_DATA(node)->node_zones[zid];
4755 4756
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4757

4758
	busy = NULL;
4759
	do {
4760
		struct page_cgroup *pc;
4761 4762
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4763
		spin_lock_irqsave(&zone->lru_lock, flags);
4764
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4765
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4766
			break;
4767
		}
4768 4769 4770
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4771
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4772
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4773 4774
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4775
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4776

4777
		pc = lookup_page_cgroup(page);
4778

4779
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4780
			/* found lock contention or "pc" is obsolete. */
4781
			busy = page;
4782 4783 4784
			cond_resched();
		} else
			busy = NULL;
4785
	} while (!list_empty(list));
4786 4787 4788
}

/*
4789 4790
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4791
 * This enables deleting this mem_cgroup.
4792 4793
 *
 * Caller is responsible for holding css reference on the memcg.
4794
 */
4795
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4796
{
4797
	int node, zid;
4798
	u64 usage;
4799

4800
	do {
4801 4802
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4803 4804
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4805
		for_each_node_state(node, N_MEMORY) {
4806
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4807 4808
				enum lru_list lru;
				for_each_lru(lru) {
4809
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4810
							node, zid, lru);
4811
				}
4812
			}
4813
		}
4814 4815
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4816
		cond_resched();
4817

4818
		/*
4819 4820 4821 4822 4823
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4824 4825 4826 4827 4828 4829
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4830 4831 4832
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4833 4834
}

4835 4836
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4847 4848
}

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4859

4860
	/* returns EBUSY if there is a task or if we come here twice. */
4861
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4862 4863
		return -EBUSY;

4864 4865
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4866
	/* try to free all pages in this cgroup */
4867
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4868
		int progress;
4869

4870 4871 4872
		if (signal_pending(current))
			return -EINTR;

4873
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4874
						false);
4875
		if (!progress) {
4876
			nr_retries--;
4877
			/* maybe some writeback is necessary */
4878
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4879
		}
4880 4881

	}
K
KAMEZAWA Hiroyuki 已提交
4882
	lru_add_drain();
4883 4884 4885
	mem_cgroup_reparent_charges(memcg);

	return 0;
4886 4887
}

4888 4889
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4890
{
4891
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4892

4893 4894
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4895
	return mem_cgroup_force_empty(memcg);
4896 4897
}

4898 4899
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4900
{
4901
	return mem_cgroup_from_css(css)->use_hierarchy;
4902 4903
}

4904 4905
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4906 4907
{
	int retval = 0;
4908
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4909
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4910

4911
	mutex_lock(&memcg_create_mutex);
4912 4913 4914 4915

	if (memcg->use_hierarchy == val)
		goto out;

4916
	/*
4917
	 * If parent's use_hierarchy is set, we can't make any modifications
4918 4919 4920 4921 4922 4923
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4924
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4925
				(val == 1 || val == 0)) {
4926
		if (list_empty(&memcg->css.cgroup->children))
4927
			memcg->use_hierarchy = val;
4928 4929 4930 4931
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4932 4933

out:
4934
	mutex_unlock(&memcg_create_mutex);
4935 4936 4937 4938

	return retval;
}

4939

4940
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4941
					       enum mem_cgroup_stat_index idx)
4942
{
K
KAMEZAWA Hiroyuki 已提交
4943
	struct mem_cgroup *iter;
4944
	long val = 0;
4945

4946
	/* Per-cpu values can be negative, use a signed accumulator */
4947
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4948 4949 4950 4951 4952
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4953 4954
}

4955
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4956
{
K
KAMEZAWA Hiroyuki 已提交
4957
	u64 val;
4958

4959
	if (!mem_cgroup_is_root(memcg)) {
4960
		if (!swap)
4961
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4962
		else
4963
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4964 4965
	}

4966 4967 4968 4969
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4970 4971
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4972

K
KAMEZAWA Hiroyuki 已提交
4973
	if (swap)
4974
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4975 4976 4977 4978

	return val << PAGE_SHIFT;
}

4979 4980
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
4981
{
4982
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4983
	u64 val;
4984
	int name;
G
Glauber Costa 已提交
4985
	enum res_type type;
4986 4987 4988

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4989

4990 4991
	switch (type) {
	case _MEM:
4992
		if (name == RES_USAGE)
4993
			val = mem_cgroup_usage(memcg, false);
4994
		else
4995
			val = res_counter_read_u64(&memcg->res, name);
4996 4997
		break;
	case _MEMSWAP:
4998
		if (name == RES_USAGE)
4999
			val = mem_cgroup_usage(memcg, true);
5000
		else
5001
			val = res_counter_read_u64(&memcg->memsw, name);
5002
		break;
5003 5004 5005
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5006 5007 5008
	default:
		BUG();
	}
5009

5010
	return val;
B
Balbir Singh 已提交
5011
}
5012 5013

#ifdef CONFIG_MEMCG_KMEM
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5042
	mutex_lock(&memcg_create_mutex);
5043
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5044 5045 5046 5047
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
5048

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
	err = memcg_update_all_caches(memcg_id + 1);
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
5082
out:
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5111 5112 5113
	return ret;
}

5114
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5115
{
5116
	int ret = 0;
5117
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5118

5119 5120
	if (!parent)
		return 0;
5121

5122
	mutex_lock(&activate_kmem_mutex);
5123
	/*
5124 5125
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5126
	 */
5127 5128 5129
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5130
	return ret;
5131
}
5132 5133 5134 5135 5136 5137
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5138
#endif /* CONFIG_MEMCG_KMEM */
5139

5140 5141 5142 5143
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5144
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5145
			    char *buffer)
B
Balbir Singh 已提交
5146
{
5147
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5148 5149
	enum res_type type;
	int name;
5150 5151 5152
	unsigned long long val;
	int ret;

5153 5154
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5155

5156
	switch (name) {
5157
	case RES_LIMIT:
5158 5159 5160 5161
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5162 5163
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5164 5165 5166
		if (ret)
			break;
		if (type == _MEM)
5167
			ret = mem_cgroup_resize_limit(memcg, val);
5168
		else if (type == _MEMSWAP)
5169
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5170
		else if (type == _KMEM)
5171
			ret = memcg_update_kmem_limit(memcg, val);
5172 5173
		else
			return -EINVAL;
5174
		break;
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5189 5190 5191 5192 5193
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5194 5195
}

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5206 5207
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5220
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5221
{
5222
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5223 5224
	int name;
	enum res_type type;
5225

5226 5227
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5228

5229
	switch (name) {
5230
	case RES_MAX_USAGE:
5231
		if (type == _MEM)
5232
			res_counter_reset_max(&memcg->res);
5233
		else if (type == _MEMSWAP)
5234
			res_counter_reset_max(&memcg->memsw);
5235 5236 5237 5238
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5239 5240
		break;
	case RES_FAILCNT:
5241
		if (type == _MEM)
5242
			res_counter_reset_failcnt(&memcg->res);
5243
		else if (type == _MEMSWAP)
5244
			res_counter_reset_failcnt(&memcg->memsw);
5245 5246 5247 5248
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5249 5250
		break;
	}
5251

5252
	return 0;
5253 5254
}

5255
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5256 5257
					struct cftype *cft)
{
5258
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5259 5260
}

5261
#ifdef CONFIG_MMU
5262
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5263 5264
					struct cftype *cft, u64 val)
{
5265
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5266 5267 5268

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5269

5270
	/*
5271 5272 5273 5274
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5275
	 */
5276
	memcg->move_charge_at_immigrate = val;
5277 5278
	return 0;
}
5279
#else
5280
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5281 5282 5283 5284 5285
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5286

5287
#ifdef CONFIG_NUMA
5288
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5289
{
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5302
	int nid;
5303
	unsigned long nr;
5304
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5305

5306 5307 5308 5309 5310 5311 5312 5313 5314
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5315 5316
	}

5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5332 5333 5334 5335 5336 5337
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5338 5339 5340 5341 5342
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5343
static int memcg_stat_show(struct seq_file *m, void *v)
5344
{
5345
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5346 5347
	struct mem_cgroup *mi;
	unsigned int i;
5348

5349
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5350
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5351
			continue;
5352 5353
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5354
	}
L
Lee Schermerhorn 已提交
5355

5356 5357 5358 5359 5360 5361 5362 5363
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5364
	/* Hierarchical information */
5365 5366
	{
		unsigned long long limit, memsw_limit;
5367
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5368
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5369
		if (do_swap_account)
5370 5371
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5372
	}
K
KOSAKI Motohiro 已提交
5373

5374 5375 5376
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5377
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5378
			continue;
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5399
	}
K
KAMEZAWA Hiroyuki 已提交
5400

K
KOSAKI Motohiro 已提交
5401 5402 5403 5404
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5405
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5406 5407 5408 5409 5410
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5411
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5412
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5413

5414 5415 5416 5417
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5418
			}
5419 5420 5421 5422
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5423 5424 5425
	}
#endif

5426 5427 5428
	return 0;
}

5429 5430
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5431
{
5432
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5433

5434
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5435 5436
}

5437 5438
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5439
{
5440
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5441
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5442

T
Tejun Heo 已提交
5443
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5444 5445
		return -EINVAL;

5446
	mutex_lock(&memcg_create_mutex);
5447

K
KOSAKI Motohiro 已提交
5448
	/* If under hierarchy, only empty-root can set this value */
5449
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5450
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5451
		return -EINVAL;
5452
	}
K
KOSAKI Motohiro 已提交
5453 5454 5455

	memcg->swappiness = val;

5456
	mutex_unlock(&memcg_create_mutex);
5457

K
KOSAKI Motohiro 已提交
5458 5459 5460
	return 0;
}

5461 5462 5463 5464 5465 5466 5467 5468
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5469
		t = rcu_dereference(memcg->thresholds.primary);
5470
	else
5471
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5472 5473 5474 5475 5476 5477 5478

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5479
	 * current_threshold points to threshold just below or equal to usage.
5480 5481 5482
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5483
	i = t->current_threshold;
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5507
	t->current_threshold = i - 1;
5508 5509 5510 5511 5512 5513
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5514 5515 5516 5517 5518 5519 5520
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5521 5522 5523 5524 5525 5526 5527
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5528 5529 5530 5531 5532 5533 5534
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5535 5536
}

5537
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5538 5539 5540
{
	struct mem_cgroup_eventfd_list *ev;

5541
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5542 5543 5544 5545
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5546
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5547
{
K
KAMEZAWA Hiroyuki 已提交
5548 5549
	struct mem_cgroup *iter;

5550
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5551
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5552 5553
}

5554
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5555
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5556
{
5557 5558
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5559
	u64 threshold, usage;
5560
	int i, size, ret;
5561 5562 5563 5564 5565 5566

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5567

5568
	if (type == _MEM)
5569
		thresholds = &memcg->thresholds;
5570
	else if (type == _MEMSWAP)
5571
		thresholds = &memcg->memsw_thresholds;
5572 5573 5574 5575 5576 5577
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5578
	if (thresholds->primary)
5579 5580
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5581
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5582 5583

	/* Allocate memory for new array of thresholds */
5584
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5585
			GFP_KERNEL);
5586
	if (!new) {
5587 5588 5589
		ret = -ENOMEM;
		goto unlock;
	}
5590
	new->size = size;
5591 5592

	/* Copy thresholds (if any) to new array */
5593 5594
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5595
				sizeof(struct mem_cgroup_threshold));
5596 5597
	}

5598
	/* Add new threshold */
5599 5600
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5601 5602

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5603
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5604 5605 5606
			compare_thresholds, NULL);

	/* Find current threshold */
5607
	new->current_threshold = -1;
5608
	for (i = 0; i < size; i++) {
5609
		if (new->entries[i].threshold <= usage) {
5610
			/*
5611 5612
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5613 5614
			 * it here.
			 */
5615
			++new->current_threshold;
5616 5617
		} else
			break;
5618 5619
	}

5620 5621 5622 5623 5624
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5625

5626
	/* To be sure that nobody uses thresholds */
5627 5628 5629 5630 5631 5632 5633 5634
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5635
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5636 5637
	struct eventfd_ctx *eventfd, const char *args)
{
5638
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5639 5640
}

5641
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5642 5643
	struct eventfd_ctx *eventfd, const char *args)
{
5644
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5645 5646
}

5647
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5648
	struct eventfd_ctx *eventfd, enum res_type type)
5649
{
5650 5651
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5652
	u64 usage;
5653
	int i, j, size;
5654 5655 5656

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5657
		thresholds = &memcg->thresholds;
5658
	else if (type == _MEMSWAP)
5659
		thresholds = &memcg->memsw_thresholds;
5660 5661 5662
	else
		BUG();

5663 5664 5665
	if (!thresholds->primary)
		goto unlock;

5666 5667 5668 5669 5670 5671
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5672 5673 5674
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5675 5676 5677
			size++;
	}

5678
	new = thresholds->spare;
5679

5680 5681
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5682 5683
		kfree(new);
		new = NULL;
5684
		goto swap_buffers;
5685 5686
	}

5687
	new->size = size;
5688 5689

	/* Copy thresholds and find current threshold */
5690 5691 5692
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5693 5694
			continue;

5695
		new->entries[j] = thresholds->primary->entries[i];
5696
		if (new->entries[j].threshold <= usage) {
5697
			/*
5698
			 * new->current_threshold will not be used
5699 5700 5701
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5702
			++new->current_threshold;
5703 5704 5705 5706
		}
		j++;
	}

5707
swap_buffers:
5708 5709
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5710 5711 5712 5713 5714 5715
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5716
	rcu_assign_pointer(thresholds->primary, new);
5717

5718
	/* To be sure that nobody uses thresholds */
5719
	synchronize_rcu();
5720
unlock:
5721 5722
	mutex_unlock(&memcg->thresholds_lock);
}
5723

5724
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5725 5726
	struct eventfd_ctx *eventfd)
{
5727
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5728 5729
}

5730
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5731 5732
	struct eventfd_ctx *eventfd)
{
5733
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5734 5735
}

5736
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5737
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5738 5739 5740 5741 5742 5743 5744
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5745
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5746 5747 5748 5749 5750

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5751
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5752
		eventfd_signal(eventfd, 1);
5753
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5754 5755 5756 5757

	return 0;
}

5758
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5759
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5760 5761 5762
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5763
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5764

5765
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5766 5767 5768 5769 5770 5771
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5772
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5773 5774
}

5775
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5776
{
5777
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5778

5779 5780
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5781 5782 5783
	return 0;
}

5784
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5785 5786
	struct cftype *cft, u64 val)
{
5787
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5788
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5789 5790

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5791
	if (!parent || !((val == 0) || (val == 1)))
5792 5793
		return -EINVAL;

5794
	mutex_lock(&memcg_create_mutex);
5795
	/* oom-kill-disable is a flag for subhierarchy. */
5796
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5797
		mutex_unlock(&memcg_create_mutex);
5798 5799
		return -EINVAL;
	}
5800
	memcg->oom_kill_disable = val;
5801
	if (!val)
5802
		memcg_oom_recover(memcg);
5803
	mutex_unlock(&memcg_create_mutex);
5804 5805 5806
	return 0;
}

A
Andrew Morton 已提交
5807
#ifdef CONFIG_MEMCG_KMEM
5808
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5809
{
5810 5811
	int ret;

5812
	memcg->kmemcg_id = -1;
5813 5814 5815
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5816

5817
	return mem_cgroup_sockets_init(memcg, ss);
5818
}
5819

5820
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5821
{
5822
	mem_cgroup_sockets_destroy(memcg);
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5849 5850 5851 5852 5853 5854 5855

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5856
		css_put(&memcg->css);
G
Glauber Costa 已提交
5857
}
5858
#else
5859
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5860 5861 5862
{
	return 0;
}
G
Glauber Costa 已提交
5863

5864 5865 5866 5867 5868
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5869 5870
{
}
5871 5872
#endif

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5886 5887 5888 5889 5890
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5891
static void memcg_event_remove(struct work_struct *work)
5892
{
5893 5894
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5895
	struct mem_cgroup *memcg = event->memcg;
5896 5897 5898

	remove_wait_queue(event->wqh, &event->wait);

5899
	event->unregister_event(memcg, event->eventfd);
5900 5901 5902 5903 5904 5905

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5906
	css_put(&memcg->css);
5907 5908 5909 5910 5911 5912 5913
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5914 5915
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5916
{
5917 5918
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5919
	struct mem_cgroup *memcg = event->memcg;
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5932
		spin_lock(&memcg->event_list_lock);
5933 5934 5935 5936 5937 5938 5939 5940
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5941
		spin_unlock(&memcg->event_list_lock);
5942 5943 5944 5945 5946
	}

	return 0;
}

5947
static void memcg_event_ptable_queue_proc(struct file *file,
5948 5949
		wait_queue_head_t *wqh, poll_table *pt)
{
5950 5951
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5952 5953 5954 5955 5956 5957

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5958 5959
 * DO NOT USE IN NEW FILES.
 *
5960 5961 5962 5963 5964
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5965
static int memcg_write_event_control(struct cgroup_subsys_state *css,
5966
				     struct cftype *cft, char *buffer)
5967
{
5968
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5969
	struct mem_cgroup_event *event;
5970 5971 5972 5973
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5974
	const char *name;
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5992
	event->memcg = memcg;
5993
	INIT_LIST_HEAD(&event->list);
5994 5995 5996
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6022 6023 6024 6025 6026
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6027 6028
	 *
	 * DO NOT ADD NEW FILES.
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6042 6043
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6044 6045 6046 6047 6048
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6049
	/*
6050 6051 6052
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6053
	 */
6054 6055
	cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
					&memory_cgrp_subsys);
6056
	ret = -EINVAL;
6057
	if (IS_ERR(cfile_css))
6058
		goto out_put_cfile;
6059 6060
	if (cfile_css != css) {
		css_put(cfile_css);
6061
		goto out_put_cfile;
6062
	}
6063

6064
	ret = event->register_event(memcg, event->eventfd, buffer);
6065 6066 6067 6068 6069
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6070 6071 6072
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6073 6074 6075 6076 6077 6078 6079

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6080
	css_put(css);
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6093 6094
static struct cftype mem_cgroup_files[] = {
	{
6095
		.name = "usage_in_bytes",
6096
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6097
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6098
	},
6099 6100
	{
		.name = "max_usage_in_bytes",
6101
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6102
		.trigger = mem_cgroup_reset,
6103
		.read_u64 = mem_cgroup_read_u64,
6104
	},
B
Balbir Singh 已提交
6105
	{
6106
		.name = "limit_in_bytes",
6107
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6108
		.write_string = mem_cgroup_write,
6109
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6110
	},
6111 6112 6113 6114
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6115
		.read_u64 = mem_cgroup_read_u64,
6116
	},
B
Balbir Singh 已提交
6117 6118
	{
		.name = "failcnt",
6119
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6120
		.trigger = mem_cgroup_reset,
6121
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6122
	},
6123 6124
	{
		.name = "stat",
6125
		.seq_show = memcg_stat_show,
6126
	},
6127 6128 6129 6130
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6131 6132
	{
		.name = "use_hierarchy",
6133
		.flags = CFTYPE_INSANE,
6134 6135 6136
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6137
	{
6138 6139
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6140 6141 6142
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6143 6144 6145 6146 6147
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6148 6149 6150 6151 6152
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6153 6154
	{
		.name = "oom_control",
6155
		.seq_show = mem_cgroup_oom_control_read,
6156
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6157 6158
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6159 6160 6161
	{
		.name = "pressure_level",
	},
6162 6163 6164
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6165
		.seq_show = memcg_numa_stat_show,
6166 6167
	},
#endif
6168 6169 6170 6171 6172
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6173
		.read_u64 = mem_cgroup_read_u64,
6174 6175 6176 6177
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6178
		.read_u64 = mem_cgroup_read_u64,
6179 6180 6181 6182 6183
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6184
		.read_u64 = mem_cgroup_read_u64,
6185 6186 6187 6188 6189
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6190
		.read_u64 = mem_cgroup_read_u64,
6191
	},
6192 6193 6194
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6195
		.seq_show = mem_cgroup_slabinfo_read,
6196 6197
	},
#endif
6198
#endif
6199
	{ },	/* terminate */
6200
};
6201

6202 6203 6204 6205 6206
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6207
		.read_u64 = mem_cgroup_read_u64,
6208 6209 6210 6211 6212
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6213
		.read_u64 = mem_cgroup_read_u64,
6214 6215 6216 6217 6218
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6219
		.read_u64 = mem_cgroup_read_u64,
6220 6221 6222 6223 6224
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6225
		.read_u64 = mem_cgroup_read_u64,
6226 6227 6228 6229
	},
	{ },	/* terminate */
};
#endif
6230
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6231 6232
{
	struct mem_cgroup_per_node *pn;
6233
	struct mem_cgroup_per_zone *mz;
6234
	int zone, tmp = node;
6235 6236 6237 6238 6239 6240 6241 6242
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6243 6244
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6245
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6246 6247
	if (!pn)
		return 1;
6248 6249 6250

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6251
		lruvec_init(&mz->lruvec);
6252 6253
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6254
		mz->memcg = memcg;
6255
	}
6256
	memcg->nodeinfo[node] = pn;
6257 6258 6259
	return 0;
}

6260
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6261
{
6262
	kfree(memcg->nodeinfo[node]);
6263 6264
}

6265 6266
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6267
	struct mem_cgroup *memcg;
6268
	size_t size;
6269

6270 6271
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6272

6273
	memcg = kzalloc(size, GFP_KERNEL);
6274
	if (!memcg)
6275 6276
		return NULL;

6277 6278
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6279
		goto out_free;
6280 6281
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6282 6283

out_free:
6284
	kfree(memcg);
6285
	return NULL;
6286 6287
}

6288
/*
6289 6290 6291 6292 6293 6294 6295 6296
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6297
 */
6298 6299

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6300
{
6301
	int node;
6302

6303
	mem_cgroup_remove_from_trees(memcg);
6304 6305 6306 6307 6308 6309

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6321
	disarm_static_keys(memcg);
6322
	kfree(memcg);
6323
}
6324

6325 6326 6327
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6328
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6329
{
6330
	if (!memcg->res.parent)
6331
		return NULL;
6332
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6333
}
G
Glauber Costa 已提交
6334
EXPORT_SYMBOL(parent_mem_cgroup);
6335

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6359
static struct cgroup_subsys_state * __ref
6360
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6361
{
6362
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6363
	long error = -ENOMEM;
6364
	int node;
B
Balbir Singh 已提交
6365

6366 6367
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6368
		return ERR_PTR(error);
6369

B
Bob Liu 已提交
6370
	for_each_node(node)
6371
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6372
			goto free_out;
6373

6374
	/* root ? */
6375
	if (parent_css == NULL) {
6376
		root_mem_cgroup = memcg;
6377 6378 6379
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6380
	}
6381

6382 6383 6384 6385 6386
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6387
	vmpressure_init(&memcg->vmpressure);
6388 6389
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6390 6391 6392 6393 6394 6395 6396 6397 6398

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6399
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6400
{
6401 6402
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6403

6404 6405 6406
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6407
	if (!parent)
6408 6409
		return 0;

6410
	mutex_lock(&memcg_create_mutex);
6411 6412 6413 6414 6415 6416

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6417 6418
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6419
		res_counter_init(&memcg->kmem, &parent->kmem);
6420

6421
		/*
6422 6423
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6424
		 */
6425
	} else {
6426 6427
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6428
		res_counter_init(&memcg->kmem, NULL);
6429 6430 6431 6432 6433
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6434
		if (parent != root_mem_cgroup)
6435
			memory_cgrp_subsys.broken_hierarchy = true;
6436
	}
6437
	mutex_unlock(&memcg_create_mutex);
6438

6439
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6440 6441
}

M
Michal Hocko 已提交
6442 6443 6444 6445 6446 6447 6448 6449
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6450
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6451 6452 6453 6454 6455 6456

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6457
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6458 6459
}

6460
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6461
{
6462
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6463
	struct mem_cgroup_event *event, *tmp;
6464
	struct cgroup_subsys_state *iter;
6465 6466 6467 6468 6469 6470

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6471 6472
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6473 6474 6475
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6476
	spin_unlock(&memcg->event_list_lock);
6477

6478 6479
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6480
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6481 6482 6483 6484 6485 6486 6487 6488

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

G
Glauber Costa 已提交
6489
	mem_cgroup_destroy_all_caches(memcg);
6490
	vmpressure_cleanup(&memcg->vmpressure);
6491 6492
}

6493
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6494
{
6495
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6532

6533
	memcg_destroy_kmem(memcg);
6534
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6535 6536
}

6537
#ifdef CONFIG_MMU
6538
/* Handlers for move charge at task migration. */
6539 6540
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6541
{
6542 6543
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6544
	struct mem_cgroup *memcg = mc.to;
6545

6546
	if (mem_cgroup_is_root(memcg)) {
6547 6548 6549 6550 6551 6552 6553 6554
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6555
		 * "memcg" cannot be under rmdir() because we've already checked
6556 6557 6558 6559
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6560
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6561
			goto one_by_one;
6562
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6563
						PAGE_SIZE * count, &dummy)) {
6564
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6581
		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6582
		if (ret)
6583
			/* mem_cgroup_clear_mc() will do uncharge later */
6584
			return ret;
6585 6586
		mc.precharge++;
	}
6587 6588 6589 6590
	return ret;
}

/**
6591
 * get_mctgt_type - get target type of moving charge
6592 6593 6594
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6595
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6596 6597 6598 6599 6600 6601
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6602 6603 6604
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6605 6606 6607 6608 6609
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6610
	swp_entry_t	ent;
6611 6612 6613
};

enum mc_target_type {
6614
	MC_TARGET_NONE = 0,
6615
	MC_TARGET_PAGE,
6616
	MC_TARGET_SWAP,
6617 6618
};

D
Daisuke Nishimura 已提交
6619 6620
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6621
{
D
Daisuke Nishimura 已提交
6622
	struct page *page = vm_normal_page(vma, addr, ptent);
6623

D
Daisuke Nishimura 已提交
6624 6625 6626 6627
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6628
		if (!move_anon())
D
Daisuke Nishimura 已提交
6629
			return NULL;
6630 6631
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6632 6633 6634 6635 6636 6637 6638
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6639
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6640 6641 6642 6643 6644 6645 6646 6647
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6648 6649 6650 6651
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6652
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6653 6654 6655 6656 6657
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6658 6659 6660 6661 6662 6663 6664
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6665

6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6685 6686 6687 6688 6689 6690
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6691
		if (do_swap_account)
6692
			*entry = swap;
6693
		page = find_get_page(swap_address_space(swap), swap.val);
6694
	}
6695
#endif
6696 6697 6698
	return page;
}

6699
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6700 6701 6702 6703
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6704
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6705 6706 6707 6708 6709 6710
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6711 6712
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6713 6714

	if (!page && !ent.val)
6715
		return ret;
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6731 6732
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6733
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6734 6735 6736
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6737 6738 6739 6740
	}
	return ret;
}

6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6755
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6776 6777 6778 6779 6780 6781 6782 6783
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6784
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6785 6786
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6787
		spin_unlock(ptl);
6788
		return 0;
6789
	}
6790

6791 6792
	if (pmd_trans_unstable(pmd))
		return 0;
6793 6794
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6795
		if (get_mctgt_type(vma, addr, *pte, NULL))
6796 6797 6798 6799
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6800 6801 6802
	return 0;
}

6803 6804 6805 6806 6807
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6808
	down_read(&mm->mmap_sem);
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6820
	up_read(&mm->mmap_sem);
6821 6822 6823 6824 6825 6826 6827 6828 6829

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6830 6831 6832 6833 6834
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6835 6836
}

6837 6838
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6839
{
6840 6841
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6842
	int i;
6843

6844
	/* we must uncharge all the leftover precharges from mc.to */
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6856
	}
6857 6858 6859 6860 6861 6862
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6863 6864 6865

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6866 6867 6868 6869 6870 6871 6872 6873 6874

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6875
		/* we've already done css_get(mc.to) */
6876 6877
		mc.moved_swap = 0;
	}
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6893
	spin_lock(&mc.lock);
6894 6895
	mc.from = NULL;
	mc.to = NULL;
6896
	spin_unlock(&mc.lock);
6897
	mem_cgroup_end_move(from);
6898 6899
}

6900
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6901
				 struct cgroup_taskset *tset)
6902
{
6903
	struct task_struct *p = cgroup_taskset_first(tset);
6904
	int ret = 0;
6905
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6906
	unsigned long move_charge_at_immigrate;
6907

6908 6909 6910 6911 6912 6913 6914
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6915 6916 6917
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6918
		VM_BUG_ON(from == memcg);
6919 6920 6921 6922 6923

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6924 6925 6926 6927
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6928
			VM_BUG_ON(mc.moved_charge);
6929
			VM_BUG_ON(mc.moved_swap);
6930
			mem_cgroup_start_move(from);
6931
			spin_lock(&mc.lock);
6932
			mc.from = from;
6933
			mc.to = memcg;
6934
			mc.immigrate_flags = move_charge_at_immigrate;
6935
			spin_unlock(&mc.lock);
6936
			/* We set mc.moving_task later */
6937 6938 6939 6940

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6941 6942
		}
		mmput(mm);
6943 6944 6945 6946
	}
	return ret;
}

6947
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6948
				     struct cgroup_taskset *tset)
6949
{
6950
	mem_cgroup_clear_mc();
6951 6952
}

6953 6954 6955
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6956
{
6957 6958 6959 6960
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6961 6962 6963 6964
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6965

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6976
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6977
		if (mc.precharge < HPAGE_PMD_NR) {
6978
			spin_unlock(ptl);
6979 6980 6981 6982 6983 6984 6985 6986
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6987
							pc, mc.from, mc.to)) {
6988 6989 6990 6991 6992 6993 6994
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6995
		spin_unlock(ptl);
6996
		return 0;
6997 6998
	}

6999 7000
	if (pmd_trans_unstable(pmd))
		return 0;
7001 7002 7003 7004
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7005
		swp_entry_t ent;
7006 7007 7008 7009

		if (!mc.precharge)
			break;

7010
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7011 7012 7013 7014 7015
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7016
			if (!mem_cgroup_move_account(page, 1, pc,
7017
						     mc.from, mc.to)) {
7018
				mc.precharge--;
7019 7020
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7021 7022
			}
			putback_lru_page(page);
7023
put:			/* get_mctgt_type() gets the page */
7024 7025
			put_page(page);
			break;
7026 7027
		case MC_TARGET_SWAP:
			ent = target.ent;
7028
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7029
				mc.precharge--;
7030 7031 7032
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7033
			break;
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7048
		ret = mem_cgroup_do_precharge(1);
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7092
	up_read(&mm->mmap_sem);
7093 7094
}

7095
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7096
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7097
{
7098
	struct task_struct *p = cgroup_taskset_first(tset);
7099
	struct mm_struct *mm = get_task_mm(p);
7100 7101

	if (mm) {
7102 7103
		if (mc.to)
			mem_cgroup_move_charge(mm);
7104 7105
		mmput(mm);
	}
7106 7107
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7108
}
7109
#else	/* !CONFIG_MMU */
7110
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7111
				 struct cgroup_taskset *tset)
7112 7113 7114
{
	return 0;
}
7115
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7116
				     struct cgroup_taskset *tset)
7117 7118
{
}
7119
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7120
				 struct cgroup_taskset *tset)
7121 7122 7123
{
}
#endif
B
Balbir Singh 已提交
7124

7125 7126 7127 7128
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7129
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7130 7131 7132 7133 7134 7135
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7136 7137
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7138 7139
}

7140
struct cgroup_subsys memory_cgrp_subsys = {
7141
	.css_alloc = mem_cgroup_css_alloc,
7142
	.css_online = mem_cgroup_css_online,
7143 7144
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7145 7146
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7147
	.attach = mem_cgroup_move_task,
7148
	.bind = mem_cgroup_bind,
7149
	.base_cftypes = mem_cgroup_files,
7150
	.early_init = 0,
B
Balbir Singh 已提交
7151
};
7152

A
Andrew Morton 已提交
7153
#ifdef CONFIG_MEMCG_SWAP
7154 7155
static int __init enable_swap_account(char *s)
{
7156
	if (!strcmp(s, "1"))
7157
		really_do_swap_account = 1;
7158
	else if (!strcmp(s, "0"))
7159 7160 7161
		really_do_swap_account = 0;
	return 1;
}
7162
__setup("swapaccount=", enable_swap_account);
7163

7164 7165
static void __init memsw_file_init(void)
{
7166
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7167 7168 7169 7170 7171 7172 7173 7174
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7175
}
7176

7177
#else
7178
static void __init enable_swap_cgroup(void)
7179 7180
{
}
7181
#endif
7182 7183

/*
7184 7185 7186 7187 7188 7189
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7190 7191 7192 7193
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7194
	enable_swap_cgroup();
7195
	mem_cgroup_soft_limit_tree_init();
7196
	memcg_stock_init();
7197 7198 7199
	return 0;
}
subsys_initcall(mem_cgroup_init);