denali.c 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
			INTR__ECC_TRANSACTION_DONE | \
			INTR__ECC_ERR | \
			INTR__PROGRAM_FAIL | \
			INTR__LOAD_COMP | \
			INTR__PROGRAM_COMP | \
			INTR__TIME_OUT | \
			INTR__ERASE_FAIL | \
			INTR__RST_COMP | \
			INTR__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64

65 66 67 68
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
69 70
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

71 72
/*
 * this macro allows us to convert from an MTD structure to our own
73 74
 * device context (denali) structure.
 */
75 76 77 78
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
79

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86 87 88 89 90
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

91 92 93 94
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
95 96 97 98
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
99 100 101 102
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
103 104
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

105 106 107 108
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
109
 * abstracts this common operation.
110
 */
111 112
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
113
{
114 115
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
116 117 118 119 120 121
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
122
	iowrite32(address, denali->flash_mem);
123 124 125
	*pdata = ioread32(denali->flash_mem + 0x10);
}

126 127 128 129
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
130 131 132 133 134 135 136 137 138 139 140 141 142
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
143
	uint32_t cmd;
144 145 146 147

	/* initialize the data buffer to store status */
	reset_buf(denali);

148 149 150 151 152
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
153 154 155 156 157
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
158
	uint32_t irq_status;
159
	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
160 161 162

	clear_interrupts(denali);

163
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
164 165

	irq_status = wait_for_irq(denali, irq_mask);
166

167
	if (irq_status & INTR__TIME_OUT)
168
		dev_err(denali->dev, "reset bank failed.\n");
169 170 171
}

/* Reset the flash controller */
172
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
173
{
174
	int i;
175

176
	for (i = 0; i < denali->max_banks; i++)
177
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
178
		denali->flash_reg + INTR_STATUS(i));
179

180
	for (i = 0; i < denali->max_banks; i++) {
181
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
182
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
183
			(INTR__RST_COMP | INTR__TIME_OUT)))
184
			cpu_relax();
185
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
186
			INTR__TIME_OUT)
187
			dev_dbg(denali->dev,
188 189 190
			"NAND Reset operation timed out on bank %d\n", i);
	}

191
	for (i = 0; i < denali->max_banks; i++)
192
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
193
			  denali->flash_reg + INTR_STATUS(i));
194 195 196 197

	return PASS;
}

198 199
/*
 * this routine calculates the ONFI timing values for a given mode and
200 201
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
202
 */
203
static void nand_onfi_timing_set(struct denali_nand_info *denali,
204
								uint16_t mode)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

243 244
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
245 246 247 248 249 250 251 252 253

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

254
	while (acc_clks * CLK_X - Trea[mode] < 3)
255 256
		acc_clks++;

257
	if (data_invalid - acc_clks * CLK_X < 2)
258
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259
			 __FILE__, __LINE__);
260 261 262 263 264 265 266 267 268 269

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
270
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
271 272 273 274 275 276 277 278 279
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
280 281
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
282 283
		acc_clks = 6;

284 285 286 287 288 289 290 291
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
292 293 294 295 296 297
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
298 299 300

	/*
	 * we needn't to do a reset here because driver has already
301
	 * reset all the banks before
302
	 */
303 304 305 306 307
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
308 309
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
310 311 312
			break;
	}

313
	nand_onfi_timing_set(denali, i);
314

315 316 317 318
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
319 320 321 322 323 324
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

325 326
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
327
{
328
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
329
		/* Set timing register values according to datasheet */
330 331 332 333 334 335 336
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
337 338 339
	}
}

340 341 342 343 344 345 346 347
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

348 349 350 351 352
	denali->max_banks = 1 << (features & FEATURES__N_BANKS);

	/* the encoding changed from rev 5.0 to 5.1 */
	if (denali->revision < 0x0501)
		denali->max_banks <<= 1;
353 354
}

355
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
356 357
{
	uint16_t status = PASS;
358
	uint32_t id_bytes[8], addr;
359 360
	uint8_t maf_id, device_id;
	int i;
361

362 363 364 365 366
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
367 368 369
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
370
	for (i = 0; i < 8; i++)
371 372 373
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
374 375 376 377 378

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
379
	} else if (maf_id == 0xEC) { /* Samsung NAND */
380
		get_samsung_nand_para(denali, device_id);
381 382
	}

383
	dev_info(denali->dev,
384
			"Dump timing register values:\n"
385 386
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
387 388 389
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
390
			ioread32(denali->flash_reg + RE_2_RE),
391 392 393 394 395 396
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

397 398
	/*
	 * If the user specified to override the default timings
399
	 * with a specific ONFI mode, we apply those changes here.
400 401
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
402
		nand_onfi_timing_set(denali, onfi_timing_mode);
403 404 405 406

	return status;
}

407
static void denali_set_intr_modes(struct denali_nand_info *denali,
408 409 410
					uint16_t INT_ENABLE)
{
	if (INT_ENABLE)
411
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
412
	else
413
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
414 415
}

416 417
/*
 * validation function to verify that the controlling software is making
418
 * a valid request
419 420 421
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
422
	return flash_bank >= 0 && flash_bank < 4;
423 424 425 426
}

static void denali_irq_init(struct denali_nand_info *denali)
{
427
	uint32_t int_mask;
428
	int i;
429 430

	/* Disable global interrupts */
431
	denali_set_intr_modes(denali, false);
432 433 434 435

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
436
	for (i = 0; i < denali->max_banks; ++i)
437
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
438 439 440 441 442 443

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
444
	denali_set_intr_modes(denali, false);
445 446
}

447 448
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
449
{
450 451
	int i;

452
	for (i = 0; i < denali->max_banks; ++i)
453
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
454 455
}

456 457
/*
 * This function only returns when an interrupt that this driver cares about
458
 * occurs. This is to reduce the overhead of servicing interrupts
459 460 461
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
462
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
463 464 465
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
466 467
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
468
{
469
	uint32_t intr_status_reg;
470

471
	intr_status_reg = INTR_STATUS(denali->flash_bank);
472

473
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
474 475 476 477
}

static void clear_interrupts(struct denali_nand_info *denali)
{
478 479
	uint32_t status;

480 481 482
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
483
	clear_interrupt(denali, status);
484 485 486 487 488 489 490

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
491
	uint32_t intr_status_reg;
492

493
	intr_status_reg = INTR_STATUS(denali->flash_bank);
494 495 496 497

	return ioread32(denali->flash_reg + intr_status_reg);
}

498 499 500
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
501 502 503 504
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
505
	uint32_t irq_status;
506 507 508 509
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

510
	/* check to see if a valid NAND chip has been selected. */
511
	if (is_flash_bank_valid(denali->flash_bank)) {
512 513 514 515
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
516 517
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
518 519 520
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
521 522 523 524
			/*
			 * store the status in the device context for someone
			 * to read
			 */
525 526 527 528 529 530 531 532 533 534 535 536 537
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
538 539
	unsigned long comp_res;
	uint32_t intr_status;
540 541
	unsigned long timeout = msecs_to_jiffies(1000);

542
	do {
543 544
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
545 546 547
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

548
		if (intr_status & irq_mask) {
549 550 551 552 553
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
554 555 556 557 558 559

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
560 561
	} while (comp_res != 0);

562
	if (comp_res == 0) {
563
		/* timeout */
564
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
565
				intr_status, irq_mask);
566 567 568 569 570 571

		intr_status = 0;
	}
	return intr_status;
}

572 573 574 575
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
576
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
577 578
				bool transfer_spare)
{
579
	int ecc_en_flag, transfer_spare_flag;
580 581 582 583 584 585

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
586
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
587
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
588 589
}

590 591
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
592
 * controller's user guide for more information (section 4.2.3.6).
593
 */
594
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
595 596
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
597 598
{
	int status = PASS;
599
	uint32_t addr, cmd;
600 601 602

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

603
	clear_interrupts(denali);
604 605 606

	addr = BANK(denali->flash_bank) | denali->page;

607
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
608
		cmd = MODE_01 | addr;
609
		iowrite32(cmd, denali->flash_mem);
610
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
611
		/* read spare area */
612
		cmd = MODE_10 | addr;
613
		index_addr(denali, cmd, access_type);
614

615
		cmd = MODE_01 | addr;
616
		iowrite32(cmd, denali->flash_mem);
617
	} else if (op == DENALI_READ) {
618
		/* setup page read request for access type */
619
		cmd = MODE_10 | addr;
620
		index_addr(denali, cmd, access_type);
621

622 623
		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
624 625 626 627 628
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
629
static int write_data_to_flash_mem(struct denali_nand_info *denali,
630
				   const uint8_t *buf, int len)
631
{
632 633
	uint32_t *buf32;
	int i;
634

635 636 637 638
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
639 640 641 642 643
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
644
		iowrite32(*buf32++, denali->flash_mem + 0x10);
645
	return i * 4; /* intent is to return the number of bytes read */
646 647 648
}

/* helper function that simply reads a buffer from the flash */
649
static int read_data_from_flash_mem(struct denali_nand_info *denali,
650
				    uint8_t *buf, int len)
651
{
652 653
	uint32_t *buf32;
	int i;
654

655 656 657 658 659
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
660 661 662 663 664 665 666
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
667
	return i * 4; /* intent is to return the number of bytes read */
668 669 670 671 672 673
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
674
	uint32_t irq_status;
675
	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
676 677 678 679
	int status = 0;

	denali->page = page;

680
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
681
							DENALI_WRITE) == PASS) {
682 683 684 685 686
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

687
		if (irq_status == 0) {
688
			dev_err(denali->dev, "OOB write failed\n");
689 690
			status = -EIO;
		}
691
	} else {
692
		dev_err(denali->dev, "unable to send pipeline command\n");
693
		status = -EIO;
694 695 696 697 698 699 700 701
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
702
	uint32_t irq_mask = INTR__LOAD_COMP;
703
	uint32_t irq_status, addr, cmd;
704 705 706

	denali->page = page;

707
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
708
							DENALI_READ) == PASS) {
709
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
710

711 712 713 714 715
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
716 717 718
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
719
			dev_err(denali->dev, "page on OOB timeout %d\n",
720
					denali->page);
721

722 723
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
724 725 726
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
727
		 * if you are in MAIN_ACCESS.
728 729
		 */
		addr = BANK(denali->flash_bank) | denali->page;
730
		cmd = MODE_10 | addr;
731
		index_addr(denali, cmd, MAIN_ACCESS);
732 733 734
	}
}

735 736 737 738
static int denali_check_erased_page(struct mtd_info *mtd,
				    struct nand_chip *chip, uint8_t *buf,
				    unsigned long uncor_ecc_flags,
				    unsigned int max_bitflips)
739
{
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	uint8_t *ecc_code = chip->buffers->ecccode;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int i, ret, stat;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; i < ecc_steps; i++) {
		if (!(uncor_ecc_flags & BIT(i)))
			continue;

		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
						  ecc_code, ecc_bytes,
						  NULL, 0,
						  chip->ecc.strength);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}

		buf += ecc_size;
		ecc_code += ecc_bytes;
	}
769

770
	return max_bitflips;
771
}
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bank = denali->flash_bank;
	uint32_t ecc_cor;
	unsigned int max_bitflips;

	ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);

	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
		/*
		 * This flag is set when uncorrectable error occurs at least in
		 * one ECC sector.  We can not know "how many sectors", or
		 * "which sector(s)".  We need erase-page check for all sectors.
		 */
		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
		return 0;
	}

	max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;

	/*
	 * The register holds the maximum of per-sector corrected bitflips.
	 * This is suitable for the return value of the ->read_page() callback.
	 * Unfortunately, we can not know the total number of corrected bits in
	 * the page.  Increase the stats by max_bitflips. (compromised solution)
	 */
	mtd->ecc_stats.corrected += max_bitflips;

	return max_bitflips;
}

808 809 810
#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
811
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
812
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
813 814
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

815 816 817
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags, uint8_t *buf)
818
{
819
	unsigned int ecc_size = denali->nand.ecc.size;
820
	unsigned int bitflips = 0;
821 822 823 824 825
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	/* read the ECC errors. we'll ignore them for now */
	denali_set_intr_modes(denali, false);

	do {
		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
		err_sector = ECC_SECTOR(err_addr);
		err_byte = ECC_BYTE(err_addr);

		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
		err_device = ECC_ERR_DEVICE(err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
			/*
845 846
			 * Check later if this is a real ECC error, or
			 * an erased sector.
847
			 */
848
			*uncor_ecc_flags |= BIT(err_sector);
849
		} else if (err_byte < ecc_size) {
850
			/*
851
			 * If err_byte is larger than ecc_size, means error
852 853 854 855 856 857 858 859
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

860
			offset = (err_sector * ecc_size + err_byte) *
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
						denali->devnum + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!ECC_LAST_ERR(err_cor_info));

	/*
	 * Once handle all ecc errors, controller will trigger a
	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
	 * a while for this interrupt
	 */
	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
		cpu_relax();
	clear_interrupts(denali);
	denali_set_intr_modes(denali, true);

	return max_bitflips;
886 887 888
}

/* programs the controller to either enable/disable DMA transfers */
889
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
890
{
891
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
892 893 894
	ioread32(denali->flash_reg + DMA_ENABLE);
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static void denali_setup_dma64(struct denali_nand_info *denali, int op)
{
	uint32_t mode;
	const int page_count = 1;
	uint64_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;

	/* DMA is a three step process */

	/*
	 * 1. setup transfer type, interrupt when complete,
	 *    burst len = 64 bytes, the number of pages
	 */
	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);

	/* 2. set memory low address */
	index_addr(denali, mode, addr);

	/* 3. set memory high address */
	index_addr(denali, mode, addr >> 32);
}

static void denali_setup_dma32(struct denali_nand_info *denali, int op)
919
{
920
	uint32_t mode;
921
	const int page_count = 1;
922
	uint32_t addr = denali->buf.dma_buf;
923 924 925 926 927 928 929 930 931

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
932
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
933 934

	/* 3. set memory low address bits 23:8 */
935
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
936

937
	/* 4. interrupt when complete, burst len = 64 bytes */
938 939 940
	index_addr(denali, mode | 0x14000, 0x2400);
}

941 942 943 944 945 946 947 948
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
	if (denali->caps & DENALI_CAP_DMA_64BIT)
		denali_setup_dma64(denali, op);
	else
		denali_setup_dma32(denali, op);
}

949 950 951 952
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
953
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
954
			const uint8_t *buf, int page, bool raw_xfer)
955 956 957
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
958
	size_t size = mtd->writesize + mtd->oobsize;
959
	uint32_t irq_status;
960
	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
961 962 963
	int ret = 0;

	denali->page = page;
964

965 966
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
967 968 969 970 971 972 973 974
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

975
	if (raw_xfer) {
976
		/* transfer the data to the spare area */
977 978 979
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
980 981
	}

982
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
983 984

	clear_interrupts(denali);
985
	denali_enable_dma(denali, true);
986

987
	denali_setup_dma(denali, DENALI_WRITE);
988 989 990 991

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

992
	if (irq_status == 0) {
993 994
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
995
		ret = -EIO;
996 997
	}

998
	denali_enable_dma(denali, false);
999
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1000

1001
	return ret;
1002 1003 1004 1005
}

/* NAND core entry points */

1006 1007
/*
 * this is the callback that the NAND core calls to write a page. Since
1008 1009
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1010
 */
1011
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1012
				const uint8_t *buf, int oob_required, int page)
1013
{
1014 1015 1016 1017
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1018
	return write_page(mtd, chip, buf, page, false);
1019 1020
}

1021 1022
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1023
 * raw access is similar to ECC page writes, so all the work is done in the
1024
 * write_page() function above.
1025
 */
1026
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1027 1028
				 const uint8_t *buf, int oob_required,
				 int page)
1029
{
1030 1031 1032 1033
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1034
	return write_page(mtd, chip, buf, page, true);
1035 1036
}

1037
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1038 1039
			    int page)
{
1040
	return write_oob_data(mtd, chip->oob_poi, page);
1041 1042
}

1043
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1044
			   int page)
1045 1046 1047
{
	read_oob_data(mtd, chip->oob_poi, page);

1048
	return 0;
1049 1050 1051
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1052
			    uint8_t *buf, int oob_required, int page)
1053 1054 1055
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1056
	size_t size = mtd->writesize + mtd->oobsize;
1057
	uint32_t irq_status;
1058 1059 1060
	uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
				INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
				INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1061 1062
	unsigned long uncor_ecc_flags = 0;
	int stat = 0;
1063

1064
	denali->page = page;
1065

1066 1067
	setup_ecc_for_xfer(denali, true, false);

1068
	denali_enable_dma(denali, true);
1069
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1070 1071

	clear_interrupts(denali);
1072
	denali_setup_dma(denali, DENALI_READ);
1073 1074 1075 1076

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1077
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1078 1079

	memcpy(buf, denali->buf.buf, mtd->writesize);
1080

1081 1082 1083 1084
	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
	else if (irq_status & INTR__ECC_ERR)
		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
1085
	denali_enable_dma(denali, false);
1086

1087 1088 1089 1090
	if (stat < 0)
		return stat;

	if (uncor_ecc_flags) {
1091
		read_oob_data(mtd, chip->oob_poi, denali->page);
1092

1093 1094
		stat = denali_check_erased_page(mtd, chip, buf,
						uncor_ecc_flags, stat);
1095
	}
1096 1097

	return stat;
1098 1099 1100
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1101
				uint8_t *buf, int oob_required, int page)
1102 1103 1104
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1105
	size_t size = mtd->writesize + mtd->oobsize;
1106
	uint32_t irq_mask = INTR__DMA_CMD_COMP;
1107

1108
	denali->page = page;
1109

1110
	setup_ecc_for_xfer(denali, false, true);
1111
	denali_enable_dma(denali, true);
1112

1113
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1114 1115

	clear_interrupts(denali);
1116
	denali_setup_dma(denali, DENALI_READ);
1117 1118

	/* wait for operation to complete */
1119
	wait_for_irq(denali, irq_mask);
1120

1121
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1122

1123
	denali_enable_dma(denali, false);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1145

1146 1147 1148 1149 1150 1151 1152
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
1153
	return 0;
1154 1155
}

1156
static int denali_erase(struct mtd_info *mtd, int page)
1157 1158 1159
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1160
	uint32_t cmd, irq_status;
1161

1162
	clear_interrupts(denali);
1163 1164 1165

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1166
	index_addr(denali, cmd, 0x1);
1167 1168

	/* wait for erase to complete or failure to occur */
1169
	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1170

1171
	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1172 1173
}

1174
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1175 1176 1177
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1178 1179
	uint32_t addr, id;
	int i;
1180

1181
	switch (cmd) {
1182 1183 1184 1185
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1186
	case NAND_CMD_PARAM:
1187
		reset_buf(denali);
1188 1189
		/*
		 * sometimes ManufactureId read from register is not right
1190 1191
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1192
		 */
1193 1194
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1195
		index_addr(denali, addr | 1, col);
1196
		for (i = 0; i < 8; i++) {
1197
			index_addr_read_data(denali, addr | 2, &id);
1198
			write_byte_to_buf(denali, id);
1199 1200 1201 1202 1203 1204 1205 1206 1207
		}
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1208
		pr_err(": unsupported command received 0x%x\n", cmd);
1209
		break;
1210 1211 1212 1213 1214 1215 1216
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1217 1218 1219 1220 1221 1222 1223 1224
	/*
	 * The REVISION register may not be reliable.  Platforms are allowed to
	 * override it.
	 */
	if (!denali->revision)
		denali->revision =
				swab16(ioread32(denali->flash_reg + REVISION));

1225 1226
	/*
	 * tell driver how many bit controller will skip before
1227 1228 1229
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1230
	 */
1231 1232
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1233
	detect_max_banks(denali);
1234
	denali_nand_reset(denali);
1235 1236
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1237
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1238

1239
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1240 1241

	/* Should set value for these registers when init */
1242 1243
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1244 1245
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
int denali_calc_ecc_bytes(int step_size, int strength)
{
	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);

static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
			    struct denali_nand_info *denali)
{
	int oobavail = mtd->oobsize - denali->bbtskipbytes;
	int ret;

	/*
	 * If .size and .strength are already set (usually by DT),
	 * check if they are supported by this controller.
	 */
	if (chip->ecc.size && chip->ecc.strength)
		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);

	/*
	 * We want .size and .strength closest to the chip's requirement
	 * unless NAND_ECC_MAXIMIZE is requested.
	 */
	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
		if (!ret)
			return 0;
	}

	/* Max ECC strength is the last thing we can do */
	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
}
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1340
/* initialize driver data structures */
1341
static void denali_drv_init(struct denali_nand_info *denali)
1342
{
1343 1344 1345 1346
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1347 1348
	init_completion(&denali->complete);

1349 1350 1351 1352
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1353 1354 1355 1356 1357 1358 1359 1360 1361
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1362
static int denali_multidev_fixup(struct denali_nand_info *denali)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

1376 1377 1378 1379 1380 1381 1382 1383 1384
	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devnum == 0) {
		denali->devnum = 1;
		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
	}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (denali->devnum == 1)
		return 0;

	if (denali->devnum != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devnum);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->bbtskipbytes <<= 1;

	return 0;
1411 1412
}

1413
int denali_init(struct denali_nand_info *denali)
1414
{
1415 1416
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1417
	int ret;
1418

1419
	if (denali->platform == INTEL_CE4100) {
1420 1421
		/*
		 * Due to a silicon limitation, we can only support
1422 1423
		 * ONFI timing mode 1 and below.
		 */
1424
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1425 1426
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1427 1428 1429
		}
	}

1430 1431 1432 1433 1434
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1435

1436
	mtd->dev.parent = denali->dev;
1437 1438 1439
	denali_hw_init(denali);
	denali_drv_init(denali);

1440 1441 1442 1443
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1444
		dev_err(denali->dev, "Unable to request IRQ\n");
1445
		return ret;
1446 1447 1448
	}

	/* now that our ISR is registered, we can enable interrupts */
1449
	denali_set_intr_modes(denali, true);
1450
	nand_set_flash_node(chip, denali->dev->of_node);
1451 1452 1453
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";
1454 1455

	/* register the driver with the NAND core subsystem */
1456 1457 1458 1459
	chip->select_chip = denali_select_chip;
	chip->cmdfunc = denali_cmdfunc;
	chip->read_byte = denali_read_byte;
	chip->waitfunc = denali_waitfunc;
1460 1461
	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
1462

1463 1464
	/*
	 * scan for NAND devices attached to the controller
1465
	 * this is the first stage in a two step process to register
1466 1467
	 * with the nand subsystem
	 */
1468 1469
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1470
		goto failed_req_irq;
1471

1472 1473 1474
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1475
			     mtd->writesize + mtd->oobsize,
1476 1477 1478 1479 1480 1481
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

1482 1483 1484
	ret = dma_set_mask(denali->dev,
			   DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
					64 : 32));
1485
	if (ret) {
1486
		dev_err(denali->dev, "No usable DMA configuration\n");
1487 1488 1489 1490
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1491
			     mtd->writesize + mtd->oobsize,
1492 1493
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1494
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1495
		ret = -EIO;
1496
		goto failed_req_irq;
1497 1498
	}

1499 1500
	/*
	 * second stage of the NAND scan
1501
	 * this stage requires information regarding ECC and
1502 1503
	 * bad block management.
	 */
1504 1505

	/* Bad block management */
1506 1507
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1508 1509

	/* skip the scan for now until we have OOB read and write support */
1510 1511 1512
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1513

1514
	/* no subpage writes on denali */
1515
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1516

1517 1518 1519
	ret = denali_ecc_setup(mtd, chip, denali);
	if (ret) {
		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1520
		goto failed_req_irq;
1521 1522
	}

1523 1524 1525 1526 1527
	dev_dbg(denali->dev,
		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);

	iowrite32(chip->ecc.strength, denali->flash_reg + ECC_CORRECTION);
1528 1529 1530 1531 1532 1533
	iowrite32(mtd->erasesize / mtd->writesize,
		  denali->flash_reg + PAGES_PER_BLOCK);
	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
		  denali->flash_reg + DEVICE_WIDTH);
	iowrite32(mtd->writesize, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	iowrite32(mtd->oobsize, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
1534 1535 1536 1537 1538 1539 1540

	iowrite32(chip->ecc.size, denali->flash_reg + CFG_DATA_BLOCK_SIZE);
	iowrite32(chip->ecc.size, denali->flash_reg + CFG_LAST_DATA_BLOCK_SIZE);
	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
	iowrite32(mtd->writesize / chip->ecc.size,
		  denali->flash_reg + CFG_NUM_DATA_BLOCKS);

1541
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1542

1543
	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1544 1545 1546 1547 1548 1549 1550
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1551

1552 1553 1554
	ret = denali_multidev_fixup(denali);
	if (ret)
		goto failed_req_irq;
1555

1556 1557
	ret = nand_scan_tail(mtd);
	if (ret)
1558
		goto failed_req_irq;
1559

1560
	ret = mtd_device_register(mtd, NULL, 0);
1561
	if (ret) {
1562
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1563
		goto failed_req_irq;
1564 1565 1566
	}
	return 0;

1567
failed_req_irq:
1568 1569
	denali_irq_cleanup(denali->irq, denali);

1570 1571
	return ret;
}
1572
EXPORT_SYMBOL(denali_init);
1573 1574

/* driver exit point */
1575
void denali_remove(struct denali_nand_info *denali)
1576
{
1577
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1578 1579 1580 1581 1582
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1583
	int bufsize = mtd->writesize + mtd->oobsize;
1584

1585
	nand_release(mtd);
1586
	denali_irq_cleanup(denali->irq, denali);
1587
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1588
			 DMA_BIDIRECTIONAL);
1589
}
1590
EXPORT_SYMBOL(denali_remove);