denali.c 53.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31 32
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

33
/* We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
			INTR_STATUS0__ECC_TRANSACTION_DONE | \
			INTR_STATUS0__ECC_ERR | \
			INTR_STATUS0__PROGRAM_FAIL | \
			INTR_STATUS0__LOAD_COMP | \
			INTR_STATUS0__PROGRAM_COMP | \
			INTR_STATUS0__TIME_OUT | \
			INTR_STATUS0__ERASE_FAIL | \
			INTR_STATUS0__RST_COMP | \
			INTR_STATUS0__ERASE_COMP)

58
/* indicates whether or not the internal value for the flash bank is
59
   valid or not */
60
#define CHIP_SELECT_INVALID	-1
61 62 63

#define SUPPORT_8BITECC		1

64
/* This macro divides two integers and rounds fractional values up
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
   configuration options. */
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

87
/* this is a helper macro that allows us to
88 89 90 91 92 93 94 95 96 97 98
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};


99 100
/* these are static lookup tables that give us easy access to
   registers in the NAND controller.
101
 */
102 103 104
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
						  INTR_STATUS1,
						  INTR_STATUS2,
105 106 107
						  INTR_STATUS3};

static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
108 109 110
							DEVICE_RESET__BANK1,
							DEVICE_RESET__BANK2,
							DEVICE_RESET__BANK3};
111 112

static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
113 114 115
							INTR_STATUS1__TIME_OUT,
							INTR_STATUS2__TIME_OUT,
							INTR_STATUS3__TIME_OUT};
116 117

static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
118 119 120
							INTR_STATUS1__RST_COMP,
							INTR_STATUS2__RST_COMP,
							INTR_STATUS3__RST_COMP};
121 122

/* specifies the debug level of the driver */
123
static int nand_debug_level;
124 125 126

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
127 128 129 130
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
131 132 133 134
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

#define DEBUG_DENALI 0

135 136 137 138 139
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
140
*/
141 142
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
143
{
144 145
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
146 147 148 149 150 151
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
152
	iowrite32(address, denali->flash_mem);
153 154 155
	*pdata = ioread32(denali->flash_mem + 0x10);
}

156
/* We need to buffer some data for some of the NAND core routines.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

	/* initiate a device status read */
178
	cmd = MODE_11 | BANK(denali->flash_bank);
179
	index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
180
	iowrite32(cmd | STATUS_CYCLE, denali->flash_mem);
181 182 183 184 185

	/* update buffer with status value */
	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));

#if DEBUG_DENALI
186 187
	printk(KERN_INFO "device reporting status value of 0x%2x\n",
			denali->buf.buf[0]);
188 189 190 191 192 193 194
#endif
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
195
	uint32_t irq_mask = reset_complete[denali->flash_bank] |
196 197 198 199 200 201
			    operation_timeout[denali->flash_bank];
	int bank = 0;

	clear_interrupts(denali);

	bank = device_reset_banks[denali->flash_bank];
202
	iowrite32(bank, denali->flash_reg + DEVICE_RESET);
203 204

	irq_status = wait_for_irq(denali, irq_mask);
205

206 207 208 209 210
	if (irq_status & operation_timeout[denali->flash_bank])
		printk(KERN_ERR "reset bank failed.\n");
}

/* Reset the flash controller */
211
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
212 213 214 215 216 217 218
{
	uint32_t i;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
219
		iowrite32(reset_complete[i] | operation_timeout[i],
220 221 222
		denali->flash_reg + intr_status_addresses[i]);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
223
		iowrite32(device_reset_banks[i],
224 225 226
				denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg +
						intr_status_addresses[i]) &
227 228 229 230 231 232 233 234 235
			(reset_complete[i] | operation_timeout[i])))
			;
		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
			operation_timeout[i])
			nand_dbg_print(NAND_DBG_WARN,
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
236
		iowrite32(reset_complete[i] | operation_timeout[i],
237 238 239 240 241
			denali->flash_reg + intr_status_addresses[i]);

	return PASS;
}

242 243 244
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
245
 */
246
static void nand_onfi_timing_set(struct denali_nand_info *denali,
247
								uint16_t mode)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
		nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

334 335 336 337 338 339 340 341
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
342 343 344 345 346 347
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
348 349 350
	/* we needn't to do a reset here because driver has already
	 * reset all the banks before
	 * */
351 352 353 354 355
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
356 357
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
358 359 360
			break;
	}

361
	nand_onfi_timing_set(denali, i);
362 363 364 365 366 367 368 369 370

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

371 372
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
373
{
374
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
375
		/* Set timing register values according to datasheet */
376 377 378 379 380 381 382
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
383 384 385 386 387 388 389 390 391 392 393
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
394
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
395 396
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
397
		iowrite32(tmp,
398
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
399
#if SUPPORT_15BITECC
400
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
401
#elif SUPPORT_8BITECC
402
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
403 404 405 406
#endif
	}
}

407 408
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
409 410 411
{
	uint32_t main_size, spare_size;

412
	switch (device_id) {
413 414
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
415 416 417
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
418 419 420 421
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
422
		iowrite32(main_size,
423
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
424
		iowrite32(spare_size,
425
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
426
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
427
#if SUPPORT_15BITECC
428
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
429
#elif SUPPORT_8BITECC
430
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
431 432 433 434 435 436
#endif
		break;
	default:
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
437
			device_id);
438 439 440 441
	}
}

/* determines how many NAND chips are connected to the controller. Note for
442
   Intel CE4100 devices we don't support more than one device.
443 444 445 446 447 448 449 450 451 452
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[LLD_MAX_FLASH_BANKS];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
453 454
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

		nand_dbg_print(NAND_DBG_DEBUG,
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

470
	if (denali->platform == INTEL_CE4100) {
471 472
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
473 474
		 * Multichip support is not enabled.
		 */
475
		if (denali->total_used_banks != 1) {
476 477 478 479 480 481 482 483 484 485 486
			printk(KERN_ERR "Sorry, Intel CE4100 only supports "
					"a single NAND device.\n");
			BUG();
		}
	}
	nand_dbg_print(NAND_DBG_DEBUG,
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
487 488 489 490 491 492
	/* For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 * */
493 494 495
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
496
			denali->fwblks =
497 498
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			      MIN_MAX_BANK_1__MIN_VALUE) *
499
			     denali->blksperchip)
500 501 502
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
			    MIN_BLK_ADDR_1__VALUE);
503 504 505 506
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
507 508
}

509
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
510 511
{
	uint16_t status = PASS;
512 513
	uint32_t id_bytes[5], addr;
	uint8_t i, maf_id, device_id;
514 515 516 517

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

518 519 520 521 522 523 524 525 526 527 528 529
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
530 531 532 533 534

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
535
	} else if (maf_id == 0xEC) { /* Samsung NAND */
536
		get_samsung_nand_para(denali, device_id);
537
	} else if (maf_id == 0x98) { /* Toshiba NAND */
538
		get_toshiba_nand_para(denali);
539 540
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
560
	 * with a specific ONFI mode, we apply those changes here.
561 562
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
563
		nand_onfi_timing_set(denali, onfi_timing_mode);
564 565 566 567

	return status;
}

568
static void denali_set_intr_modes(struct denali_nand_info *denali,
569 570 571 572 573 574
					uint16_t INT_ENABLE)
{
	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
575
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
576
	else
577
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
578 579 580 581 582 583 584
}

/* validation function to verify that the controlling software is making
   a valid request
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
585
	return (flash_bank >= 0 && flash_bank < 4);
586 587 588 589 590 591 592
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;

	/* Disable global interrupts */
593
	denali_set_intr_modes(denali, false);
594 595 596 597

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
598 599 600 601
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
602 603 604 605 606 607

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
608
	denali_set_intr_modes(denali, false);
609 610 611
	free_irq(irqnum, denali);
}

612 613
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
614
{
615 616 617 618
	iowrite32(int_mask, denali->flash_reg + INTR_EN0);
	iowrite32(int_mask, denali->flash_reg + INTR_EN1);
	iowrite32(int_mask, denali->flash_reg + INTR_EN2);
	iowrite32(int_mask, denali->flash_reg + INTR_EN3);
619 620 621
}

/* This function only returns when an interrupt that this driver cares about
622
 * occurs. This is to reduce the overhead of servicing interrupts
623 624 625
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
626
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
627 628 629
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
630 631
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
632 633 634 635 636
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

637
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
638 639 640 641 642 643 644 645
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
646
	clear_interrupt(denali, status);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

#if DEBUG_DENALI
	denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
	denali->idx %= 32;
#endif

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	return ioread32(denali->flash_reg + intr_status_reg);
}

#if DEBUG_DENALI
static void print_irq_log(struct denali_nand_info *denali)
{
	int i = 0;

671
	printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
672
	for (i = 0; i < 32; i++)
673
		printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
674 675 676
}
#endif

677 678 679
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
680 681 682 683 684 685 686 687 688
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

689 690
	/* check to see if a valid NAND chip has
	 * been selected.
691
	 */
692
	if (is_flash_bank_valid(denali->flash_bank)) {
693
		/* check to see if controller generated
694
		 * the interrupt, since this is a shared interrupt */
695 696
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
697
#if DEBUG_DENALI
698 699
			denali->irq_debug_array[denali->idx++] =
				0x10000000 | irq_status;
700 701
			denali->idx %= 32;

702
			printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
#endif
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

728
	do {
729
#if DEBUG_DENALI
730
		printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
731
#endif
732 733
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
734 735 736 737
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

#if DEBUG_DENALI
738 739
		denali->irq_debug_array[denali->idx++] =
			0x20000000 | (irq_mask << 16) | intr_status;
740 741 742
		denali->idx %= 32;
#endif

743
		if (intr_status & irq_mask) {
744 745 746
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
747 748 749
			if (retry)
				printk(KERN_INFO "status on retry = 0x%x\n",
						intr_status);
750 751 752
#endif
			/* our interrupt was detected */
			break;
753
		} else {
754 755
			/* these are not the interrupts you are looking for -
			 * need to wait again */
756 757 758
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
			print_irq_log(denali);
759 760 761 762
			printk(KERN_INFO "received irq nobody cared:"
					" irq_status = 0x%x, irq_mask = 0x%x,"
					" timeout = %ld\n", intr_status,
					irq_mask, comp_res);
763 764 765 766 767
#endif
			retry = true;
		}
	} while (comp_res != 0);

768
	if (comp_res == 0) {
769
		/* timeout */
770 771
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
772 773 774 775 776 777

		intr_status = 0;
	}
	return intr_status;
}

778
/* This helper function setups the registers for ECC and whether or not
779
   the spare area will be transfered. */
780
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
781 782
				bool transfer_spare)
{
783
	int ecc_en_flag = 0, transfer_spare_flag = 0;
784 785 786 787 788 789

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
790 791
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
792
			denali->flash_reg + TRANSFER_SPARE_REG);
793 794
}

795 796
/* sends a pipeline command operation to the controller. See the Denali NAND
   controller's user guide for more information (section 4.2.3.6).
797
 */
798 799 800 801 802
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
803 804
{
	int status = PASS;
805
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
806 807
		 irq_mask = 0;

808 809 810 811 812 813
	if (op == DENALI_READ)
		irq_mask = INTR_STATUS0__LOAD_COMP;
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
814 815 816 817 818

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

#if DEBUG_DENALI
	spin_lock_irq(&denali->irq_lock);
819 820 821
	denali->irq_debug_array[denali->idx++] =
		0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
		(access_type << 4);
822 823 824 825 826 827
	denali->idx %= 32;
	spin_unlock_irq(&denali->irq_lock);
#endif


	/* clear interrupts */
828
	clear_interrupts(denali);
829 830 831

	addr = BANK(denali->flash_bank) | denali->page;

832
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
833
		cmd = MODE_01 | addr;
834
		iowrite32(cmd, denali->flash_mem);
835
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
836
		/* read spare area */
837
		cmd = MODE_10 | addr;
838 839
		index_addr(denali, (uint32_t)cmd, access_type);

840
		cmd = MODE_01 | addr;
841
		iowrite32(cmd, denali->flash_mem);
842
	} else if (op == DENALI_READ) {
843
		/* setup page read request for access type */
844
		cmd = MODE_10 | addr;
845 846 847
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
848
		   use the pipeline commands in Spare area only mode. So we
849 850
		   don't.
		 */
851
		if (access_type == SPARE_ACCESS) {
852
			cmd = MODE_01 | addr;
853
			iowrite32(cmd, denali->flash_mem);
854
		} else {
855 856
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
857 858

			/* wait for command to be accepted
859 860
			 * can always use status0 bit as the
			 * mask is identical for each
861 862 863
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

864
			if (irq_status == 0) {
865
				printk(KERN_ERR "cmd, page, addr on timeout "
866 867
					"(0x%x, 0x%x, 0x%x)\n", cmd,
					denali->page, addr);
868
				status = FAIL;
869
			} else {
870
				cmd = MODE_01 | addr;
871
				iowrite32(cmd, denali->flash_mem);
872 873 874 875 876 877 878
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
879 880 881
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
882 883 884
{
	uint32_t i = 0, *buf32;

885 886
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
887 888 889 890 891
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
892
		iowrite32(*buf32++, denali->flash_mem + 0x10);
893
	return i*4; /* intent is to return the number of bytes read */
894 895 896
}

/* helper function that simply reads a buffer from the flash */
897 898 899
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
900 901 902 903 904
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
905 906 907
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
908 909 910 911 912 913 914 915 916
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
917
	return i*4; /* intent is to return the number of bytes read */
918 919 920 921 922 923 924
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
925
	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
926 927 928 929 930
						INTR_STATUS0__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

931
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
932
							DENALI_WRITE) == PASS) {
933 934 935 936
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
937 938
		denali->irq_debug_array[denali->idx++] =
			0x80000000 | mtd->oobsize;
939 940 941 942
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif

943

944 945 946
		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

947
		if (irq_status == 0) {
948 949 950
			printk(KERN_ERR "OOB write failed\n");
			status = -EIO;
		}
951
	} else {
952
		printk(KERN_ERR "unable to send pipeline command\n");
953
		status = -EIO;
954 955 956 957 958 959 960 961
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
962 963
	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
			 irq_status = 0, addr = 0x0, cmd = 0x0;
964 965 966 967

	denali->page = page;

#if DEBUG_DENALI
968
	printk(KERN_INFO "read_oob %d\n", page);
969
#endif
970
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
971
							DENALI_READ) == PASS) {
972
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
973

974
		/* wait for command to be accepted
975 976 977 978 979
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
980 981
			printk(KERN_ERR "page on OOB timeout %d\n",
					denali->page);
982 983 984 985 986

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
987
		 * if you are in MAIN_ACCESS.
988 989
		 */
		addr = BANK(denali->flash_bank) | denali->page;
990
		cmd = MODE_10 | addr;
991 992 993 994
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
995 996
		denali->irq_debug_array[denali->idx++] =
			0x60000000 | mtd->oobsize;
997 998 999 1000 1001 1002
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif
	}
}

1003
/* this function examines buffers to see if they contain data that
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
1019 1020
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
1021 1022
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

1023
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
1024
					uint32_t irq_status)
1025 1026 1027
{
	bool check_erased_page = false;

1028
	if (irq_status & INTR_STATUS0__ECC_ERR) {
1029 1030 1031 1032
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
1033
		denali_set_intr_modes(denali, false);
1034

1035
		do {
1036
			err_address = ioread32(denali->flash_reg +
1037 1038 1039 1040
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

1041
			err_correction_info = ioread32(denali->flash_reg +
1042
						ERR_CORRECTION_INFO);
1043
			err_correction_value =
1044 1045 1046
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

1047
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
				/* If err_byte is larger than ECC_SECTOR_SIZE,
				 * means error happend in OOB, so we ignore
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 * */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
1062 1063 1064 1065
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
				}
1066
			} else {
1067
				/* if the error is not correctable, need to
1068 1069 1070
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
1071 1072 1073
				check_erased_page = true;
			}

1074
#if DEBUG_DENALI
1075 1076 1077 1078
			printk(KERN_INFO "Detected ECC error in page %d:"
					" err_addr = 0x%08x, info to fix is"
					" 0x%08x\n", denali->page, err_address,
					err_correction_info);
1079 1080
#endif
		} while (!ECC_LAST_ERR(err_correction_info));
1081 1082 1083 1084 1085 1086 1087 1088 1089
		/* Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 * */
		while (!(read_interrupt_status(denali) &
				INTR_STATUS0__ECC_TRANSACTION_DONE))
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1090 1091 1092 1093 1094
	}
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1095
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1096 1097 1098
{
	uint32_t reg_val = 0x0;

1099 1100
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1101

1102
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1103 1104 1105 1106
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1107
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1130
/* writes a page. user specifies type, and this function handles the
1131
   configuration details. */
1132
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1133 1134 1135 1136 1137 1138 1139 1140 1141
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1142
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
						INTR_STATUS0__PROGRAM_FAIL;

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1155
	if (raw_xfer) {
1156
		/* transfer the data to the spare area */
1157 1158 1159
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1160 1161 1162 1163 1164
	}

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);

	clear_interrupts(denali);
1165
	denali_enable_dma(denali, true);
1166

1167
	denali_setup_dma(denali, DENALI_WRITE);
1168 1169 1170 1171

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1172
	if (irq_status == 0) {
1173 1174
		printk(KERN_ERR "timeout on write_page"
				" (type = %d)\n", raw_xfer);
1175
		denali->status =
1176 1177
			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
			NAND_STATUS_FAIL : PASS;
1178 1179
	}

1180
	denali_enable_dma(denali, false);
1181 1182 1183 1184 1185
	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}

/* NAND core entry points */

1186 1187
/* this is the callback that the NAND core calls to write a page. Since
   writing a page with ECC or without is similar, all the work is done
1188
   by write_page above.   */
1189
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1190 1191 1192
				const uint8_t *buf)
{
	/* for regular page writes, we let HW handle all the ECC
1193
	 * data written to the device. */
1194 1195 1196
	write_page(mtd, chip, buf, false);
}

1197
/* This is the callback that the NAND core calls to write a page without ECC.
1198
   raw access is similiar to ECC page writes, so all the work is done in the
1199
   write_page() function above.
1200
 */
1201
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1202 1203
					const uint8_t *buf)
{
1204
	/* for raw page writes, we want to disable ECC and simply write
1205 1206 1207 1208
	   whatever data is in the buffer. */
	write_page(mtd, chip, buf, true);
}

1209
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1210 1211
			    int page)
{
1212
	return write_oob_data(mtd, chip->oob_poi, page);
1213 1214
}

1215
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1216 1217 1218 1219
			   int page, int sndcmd)
{
	read_oob_data(mtd, chip->oob_poi, page);

1220 1221
	return 0; /* notify NAND core to send command to
			   NAND device. */
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1234
	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1235 1236 1237 1238 1239
			    INTR_STATUS0__ECC_ERR;
	bool check_erased_page = false;

	setup_ecc_for_xfer(denali, true, false);

1240
	denali_enable_dma(denali, true);
1241 1242 1243
	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1244
	denali_setup_dma(denali, DENALI_READ);
1245 1246 1247 1248 1249 1250 1251

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);
1252

1253
	check_erased_page = handle_ecc(denali, buf, irq_status);
1254
	denali_enable_dma(denali, false);
1255

1256
	if (check_erased_page) {
1257 1258 1259
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1260
		if (check_erased_page) {
1261 1262 1263 1264
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1265
		}
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	}
	return 0;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1281

1282
	setup_ecc_for_xfer(denali, false, true);
1283
	denali_enable_dma(denali, true);
1284 1285 1286 1287

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1288
	denali_setup_dma(denali, DENALI_READ);
1289 1290 1291 1292 1293 1294

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

1295
	denali_enable_dma(denali, false);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

#if DEBUG_DENALI
1312
	printk(KERN_INFO "read byte -> 0x%02x\n", result);
1313 1314 1315 1316 1317 1318 1319 1320
#endif
	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
1321
	printk(KERN_INFO "denali select chip %d\n", chip);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
#endif
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

#if DEBUG_DENALI
1335
	printk(KERN_INFO "waitfunc %d\n", status);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#endif
	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

#if DEBUG_DENALI
1347
	printk(KERN_INFO "erase page: %d\n", page);
1348 1349
#endif
	/* clear interrupts */
1350
	clear_interrupts(denali);
1351 1352 1353 1354 1355 1356

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1357
	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1358 1359
					INTR_STATUS0__ERASE_FAIL);

1360 1361
	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
						NAND_STATUS_FAIL : PASS;
1362 1363
}

1364
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1365 1366 1367
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1368 1369
	uint32_t addr, id;
	int i;
1370 1371

#if DEBUG_DENALI
1372
	printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
1373
#endif
1374
	switch (cmd) {
1375 1376 1377 1378 1379 1380 1381
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
		reset_buf(denali);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
		for (i = 0; i < 5; i++) {
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		printk(KERN_ERR ": unsupported command"
				" received 0x%x\n", cmd);
		break;
1410 1411 1412 1413
	}
}

/* stubs for ECC functions not used by the NAND core */
1414
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1415 1416 1417 1418 1419 1420 1421
				uint8_t *ecc_code)
{
	printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
	BUG();
	return -EIO;
}

1422
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
	printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
	printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1440 1441 1442 1443 1444 1445 1446
	/* tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 * */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1447
	denali_irq_init(denali);
1448
	denali_nand_reset(denali);
1449 1450
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1451
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1452

1453 1454
	iowrite32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1455 1456

	/* Should set value for these registers when init */
1457 1458
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1459 1460
}

1461 1462 1463 1464 1465 1466 1467
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 * */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1468 1469
};

1470 1471 1472
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1498
/* initialize driver data structures */
1499 1500 1501 1502 1503
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1504
	/* the completion object will be used to notify
1505 1506 1507 1508
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1509
	 * with any element that might be access shared
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1538
		goto failed_alloc_memery;
1539 1540 1541
	}

	if (id->driver_data == INTEL_CE4100) {
1542 1543 1544
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1545
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1546 1547
			printk(KERN_ERR "Intel CE4100 only supports"
					" ONFI timing mode 1 or below\n");
1548
			ret = -EINVAL;
1549
			goto failed_enable_dev;
1550 1551 1552 1553 1554 1555 1556 1557 1558
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
1559
		csr_len = pci_resource_len(dev, 0);
1560 1561 1562 1563 1564 1565
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
			nand_dbg_print(NAND_DBG_WARN,
1566 1567 1568
				       "Spectra: No second"
					   " BAR for PCI device;"
					   " assuming %08Lx\n",
1569 1570 1571 1572 1573 1574 1575
				       (uint64_t)csr_base);
		}
	}

	/* Is 32-bit DMA supported? */
	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));

1576
	if (ret) {
1577
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1578
		goto failed_enable_dev;
1579
	}
1580 1581 1582 1583
	denali->buf.dma_buf =
		pci_map_single(dev, denali->buf.buf,
						DENALI_BUF_SIZE,
						PCI_DMA_BIDIRECTIONAL);
1584

1585
	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1586
		printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
1587
		goto failed_enable_dev;
1588 1589 1590 1591 1592 1593 1594 1595
	}

	pci_set_master(dev);
	denali->dev = dev;

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1596
		goto failed_dma_map;
1597 1598 1599 1600 1601 1602
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
1603
		goto failed_req_regions;
1604 1605 1606 1607 1608 1609 1610 1611
	}
	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
		       (uint64_t)csr_base, denali->flash_reg, csr_len);

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		ret = -ENOMEM;
1612
		goto failed_remap_reg;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	}

	nand_dbg_print(NAND_DBG_WARN,
		"Spectra: Remapped flash base address: "
		"0x%p, len: %ld\n",
		denali->flash_mem, csr_len);

	denali_hw_init(denali);
	denali_drv_init(denali);

	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
1628
		goto failed_remap_mem;
1629 1630 1631
	}

	/* now that our ISR is registered, we can enable interrupts */
1632
	denali_set_intr_modes(denali, true);
1633 1634 1635

	pci_set_drvdata(dev, denali);

1636
	denali_nand_timing_set(denali);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->mtd.name = "Denali NAND";
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1660
	/* scan for NAND devices attached to the controller
1661
	 * this is the first stage in a two step process to register
1662
	 * with the nand subsystem */
1663
	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
1664
		ret = -ENXIO;
1665
		goto failed_req_irq;
1666
	}
1667

1668 1669 1670 1671 1672 1673 1674
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
	 */
	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
1675
		goto failed_req_irq;
1676 1677
	}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	/* support for multi nand
	 * MTD known nothing about multi nand,
	 * so we should tell it the real pagesize
	 * and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1697 1698 1699
	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1700 1701 1702 1703 1704 1705 1706 1707 1708

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	/* Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
	if (denali->nand.cellinfo & 0xc &&
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1720
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1721 1722 1723 1724 1725
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
		printk(KERN_ERR "Your NAND chip OOB is not large enough to"
				" contain 8bit ECC correction codes");
1726
		goto failed_req_irq;
1727 1728 1729
	} else {
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1730
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1731 1732
	}

1733
	denali->nand.ecc.bytes *= denali->devnum;
1734 1735 1736 1737 1738 1739 1740 1741
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1742 1743 1744 1745 1746 1747 1748 1749 1750
	/* Let driver know the total blocks number and
	 * how many blocks contained by each nand chip.
	 * blksperchip will help driver to know how many
	 * blocks is taken by FW.
	 * */
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1751 1752 1753
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1754 1755 1756 1757 1758
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1759
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1760 1761 1762 1763 1764 1765 1766 1767
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

1768
	if (nand_scan_tail(&denali->mtd)) {
1769
		ret = -ENXIO;
1770
		goto failed_req_irq;
1771 1772 1773 1774
	}

	ret = add_mtd_device(&denali->mtd);
	if (ret) {
1775 1776
		printk(KERN_ERR "Spectra: Failed to register"
				" MTD device: %d\n", ret);
1777
		goto failed_req_irq;
1778 1779 1780
	}
	return 0;

1781
failed_req_irq:
1782
	denali_irq_cleanup(dev->irq, denali);
1783
failed_remap_mem:
1784
	iounmap(denali->flash_mem);
1785 1786 1787
failed_remap_reg:
	iounmap(denali->flash_reg);
failed_req_regions:
1788
	pci_release_regions(dev);
1789
failed_dma_map:
1790
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1791
							PCI_DMA_BIDIRECTIONAL);
1792 1793 1794
failed_enable_dev:
	pci_disable_device(dev);
failed_alloc_memery:
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	nand_release(&denali->mtd);
	del_mtd_device(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
1816
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
							PCI_DMA_BIDIRECTIONAL);
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

static int __devinit denali_init(void)
{
1833 1834
	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
			__DATE__, __TIME__);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	return pci_register_driver(&denali_pci_driver);
}

/* Free memory */
static void __devexit denali_exit(void)
{
	pci_unregister_driver(&denali_pci_driver);
}

module_init(denali_init);
module_exit(denali_exit);