denali.c 45.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64 65 66

#define SUPPORT_8BITECC		1

67 68 69 70
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
71 72
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

73 74
/*
 * this macro allows us to convert from an MTD structure to our own
75 76
 * device context (denali) structure.
 */
77 78 79 80
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
81

82 83 84 85
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
86 87 88
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
89
#define PIPELINE_ACCESS		0x2000
90 91 92 93 94 95 96 97 98

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

99 100 101 102
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
103 104 105 106
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
107 108 109 110
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
111 112
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

113 114 115 116
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
117
 * abstracts this common operation.
118
 */
119 120
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
121
{
122 123
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
124 125 126 127 128 129
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
130
	iowrite32(address, denali->flash_mem);
131 132 133
	*pdata = ioread32(denali->flash_mem + 0x10);
}

134 135 136 137
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
138 139 140 141 142 143 144 145 146 147 148 149 150
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
151
	uint32_t cmd;
152 153 154 155

	/* initialize the data buffer to store status */
	reset_buf(denali);

156 157 158 159 160
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
161 162 163 164 165
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
166
	uint32_t irq_status;
167
	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
168 169 170

	clear_interrupts(denali);

171
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
172 173

	irq_status = wait_for_irq(denali, irq_mask);
174

175
	if (irq_status & INTR_STATUS__TIME_OUT)
176
		dev_err(denali->dev, "reset bank failed.\n");
177 178 179
}

/* Reset the flash controller */
180
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
181
{
182
	int i;
183

184
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
185
		__FILE__, __LINE__, __func__);
186

187
	for (i = 0; i < denali->max_banks; i++)
188 189
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
190

191
	for (i = 0; i < denali->max_banks; i++) {
192
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
193
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
194
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195
			cpu_relax();
196 197
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
198
			dev_dbg(denali->dev,
199 200 201
			"NAND Reset operation timed out on bank %d\n", i);
	}

202
	for (i = 0; i < denali->max_banks; i++)
203
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
204
			  denali->flash_reg + INTR_STATUS(i));
205 206 207 208

	return PASS;
}

209 210
/*
 * this routine calculates the ONFI timing values for a given mode and
211 212
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
213
 */
214
static void nand_onfi_timing_set(struct denali_nand_info *denali,
215
								uint16_t mode)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

236
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
237
		__FILE__, __LINE__, __func__);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

257 258
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
259 260 261 262 263 264 265 266 267

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

268
	while (acc_clks * CLK_X - Trea[mode] < 3)
269 270
		acc_clks++;

271
	if (data_invalid - acc_clks * CLK_X < 2)
272
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
273
			 __FILE__, __LINE__);
274 275 276 277 278 279 280 281 282 283

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
284
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
285 286 287 288 289 290 291 292 293
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
294 295
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
296 297
		acc_clks = 6;

298 299 300 301 302 303 304 305
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
306 307 308 309 310 311
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
312 313 314

	/*
	 * we needn't to do a reset here because driver has already
315
	 * reset all the banks before
316
	 */
317 318 319 320 321
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
322 323
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
324 325 326
			break;
	}

327
	nand_onfi_timing_set(denali, i);
328

329 330 331 332
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
333 334 335 336 337 338
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

339 340
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
341
{
342
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
343
		/* Set timing register values according to datasheet */
344 345 346 347 348 349 350
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
351 352 353 354 355 356 357
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

358 359 360 361
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
362 363
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
364
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365 366
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
367
		iowrite32(tmp,
368
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
369
#if SUPPORT_15BITECC
370
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
371
#elif SUPPORT_8BITECC
372
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
373 374 375 376
#endif
	}
}

377 378
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
379 380 381
{
	uint32_t main_size, spare_size;

382
	switch (device_id) {
383 384
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
385 386 387
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
388 389 390 391
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
392
		iowrite32(main_size,
393
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
394
		iowrite32(spare_size,
395
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
396
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
397
#if SUPPORT_15BITECC
398
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
399
#elif SUPPORT_8BITECC
400
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
401 402 403
#endif
		break;
	default:
404
		dev_warn(denali->dev,
405
			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
406 407
			 "Will use default parameter values instead.\n",
			 device_id);
408 409 410
	}
}

411 412
/*
 * determines how many NAND chips are connected to the controller. Note for
413
 * Intel CE4100 devices we don't support more than one device.
414 415 416
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
417
	uint32_t id[denali->max_banks];
418 419 420
	int i;

	denali->total_used_banks = 1;
421
	for (i = 0; i < denali->max_banks; i++) {
422 423
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
424
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
425

426
		dev_dbg(denali->dev,
427 428 429 430 431 432 433 434 435 436 437 438 439
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

440
	if (denali->platform == INTEL_CE4100) {
441 442
		/*
		 * Platform limitations of the CE4100 device limit
443
		 * users to a single chip solution for NAND.
444 445
		 * Multichip support is not enabled.
		 */
446
		if (denali->total_used_banks != 1) {
447
			dev_err(denali->dev,
448
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
449 450 451
			BUG();
		}
	}
452
	dev_dbg(denali->dev,
453 454 455
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

456 457 458 459 460 461 462
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
463 464 465 466 467 468
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
469

470 471 472 473
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
474 475
}

476
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
477 478
{
	uint16_t status = PASS;
479
	uint32_t id_bytes[8], addr;
480 481
	uint8_t maf_id, device_id;
	int i;
482

483
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
484
			__FILE__, __LINE__, __func__);
485

486 487 488 489 490
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
491 492 493
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
494
	for (i = 0; i < 8; i++)
495 496 497
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
498 499 500 501 502

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
503
	} else if (maf_id == 0xEC) { /* Samsung NAND */
504
		get_samsung_nand_para(denali, device_id);
505
	} else if (maf_id == 0x98) { /* Toshiba NAND */
506
		get_toshiba_nand_para(denali);
507 508
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
509 510
	}

511
	dev_info(denali->dev,
512
			"Dump timing register values:\n"
513 514
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
515 516 517
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
518
			ioread32(denali->flash_reg + RE_2_RE),
519 520 521 522 523 524 525 526
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

527 528
	/*
	 * If the user specified to override the default timings
529
	 * with a specific ONFI mode, we apply those changes here.
530 531
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
532
		nand_onfi_timing_set(denali, onfi_timing_mode);
533 534 535 536

	return status;
}

537
static void denali_set_intr_modes(struct denali_nand_info *denali,
538 539
					uint16_t INT_ENABLE)
{
540
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
541
		__FILE__, __LINE__, __func__);
542 543

	if (INT_ENABLE)
544
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
545
	else
546
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
547 548
}

549 550
/*
 * validation function to verify that the controlling software is making
551
 * a valid request
552 553 554
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
555
	return flash_bank >= 0 && flash_bank < 4;
556 557 558 559
}

static void denali_irq_init(struct denali_nand_info *denali)
{
560
	uint32_t int_mask;
561
	int i;
562 563

	/* Disable global interrupts */
564
	denali_set_intr_modes(denali, false);
565 566 567 568

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
569
	for (i = 0; i < denali->max_banks; ++i)
570
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
571 572 573 574 575 576

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
577
	denali_set_intr_modes(denali, false);
578 579
}

580 581
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
582
{
583 584
	int i;

585
	for (i = 0; i < denali->max_banks; ++i)
586
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
587 588
}

589 590
/*
 * This function only returns when an interrupt that this driver cares about
591
 * occurs. This is to reduce the overhead of servicing interrupts
592 593 594
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
595
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
596 597 598
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
599 600
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
601
{
602
	uint32_t intr_status_reg;
603

604
	intr_status_reg = INTR_STATUS(denali->flash_bank);
605

606
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
607 608 609 610
}

static void clear_interrupts(struct denali_nand_info *denali)
{
611 612
	uint32_t status;

613 614 615
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
616
	clear_interrupt(denali, status);
617 618 619 620 621 622 623

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
624
	uint32_t intr_status_reg;
625

626
	intr_status_reg = INTR_STATUS(denali->flash_bank);
627 628 629 630

	return ioread32(denali->flash_reg + intr_status_reg);
}

631 632 633
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
634 635 636 637
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
638
	uint32_t irq_status;
639 640 641 642
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

643
	/* check to see if a valid NAND chip has been selected. */
644
	if (is_flash_bank_valid(denali->flash_bank)) {
645 646 647 648
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
649 650
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
651 652 653
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
654 655 656 657
			/*
			 * store the status in the device context for someone
			 * to read
			 */
658 659 660 661 662 663 664 665 666 667 668 669 670 671
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
672 673
	unsigned long comp_res;
	uint32_t intr_status;
674 675
	unsigned long timeout = msecs_to_jiffies(1000);

676
	do {
677 678
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
679 680 681
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

682
		if (intr_status & irq_mask) {
683 684 685 686 687
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
688 689 690 691 692 693

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
694 695
	} while (comp_res != 0);

696
	if (comp_res == 0) {
697
		/* timeout */
698
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
699
				intr_status, irq_mask);
700 701 702 703 704 705

		intr_status = 0;
	}
	return intr_status;
}

706 707 708 709
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
710
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
711 712
				bool transfer_spare)
{
713
	int ecc_en_flag, transfer_spare_flag;
714 715 716 717 718 719

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
720
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
721
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
722 723
}

724 725
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
726
 * controller's user guide for more information (section 4.2.3.6).
727
 */
728
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
729 730
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
731 732
{
	int status = PASS;
733 734
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
735

736
	if (op == DENALI_READ)
737
		irq_mask = INTR_STATUS__LOAD_COMP;
738 739 740 741
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
742 743 744

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

745
	clear_interrupts(denali);
746 747 748

	addr = BANK(denali->flash_bank) | denali->page;

749
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
750
		cmd = MODE_01 | addr;
751
		iowrite32(cmd, denali->flash_mem);
752
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
753
		/* read spare area */
754
		cmd = MODE_10 | addr;
755
		index_addr(denali, cmd, access_type);
756

757
		cmd = MODE_01 | addr;
758
		iowrite32(cmd, denali->flash_mem);
759
	} else if (op == DENALI_READ) {
760
		/* setup page read request for access type */
761
		cmd = MODE_10 | addr;
762
		index_addr(denali, cmd, access_type);
763

764 765 766 767
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
768
		 */
769
		if (access_type == SPARE_ACCESS) {
770
			cmd = MODE_01 | addr;
771
			iowrite32(cmd, denali->flash_mem);
772
		} else {
773
			index_addr(denali, cmd,
774
					PIPELINE_ACCESS | op | page_count);
775

776 777
			/*
			 * wait for command to be accepted
778
			 * can always use status0 bit as the
779 780
			 * mask is identical for each bank.
			 */
781 782
			irq_status = wait_for_irq(denali, irq_mask);

783
			if (irq_status == 0) {
784
				dev_err(denali->dev,
785 786
					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
					cmd, denali->page, addr);
787
				status = FAIL;
788
			} else {
789
				cmd = MODE_01 | addr;
790
				iowrite32(cmd, denali->flash_mem);
791 792 793 794 795 796 797
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
798
static int write_data_to_flash_mem(struct denali_nand_info *denali,
799
				   const uint8_t *buf, int len)
800
{
801 802
	uint32_t *buf32;
	int i;
803

804 805 806 807
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
808 809 810 811 812
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
813
		iowrite32(*buf32++, denali->flash_mem + 0x10);
814
	return i * 4; /* intent is to return the number of bytes read */
815 816 817
}

/* helper function that simply reads a buffer from the flash */
818
static int read_data_from_flash_mem(struct denali_nand_info *denali,
819
				    uint8_t *buf, int len)
820
{
821 822
	uint32_t *buf32;
	int i;
823

824 825 826 827 828
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
829 830 831 832 833 834 835
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
836
	return i * 4; /* intent is to return the number of bytes read */
837 838 839 840 841 842
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
843
	uint32_t irq_status;
844 845
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
846 847 848 849
	int status = 0;

	denali->page = page;

850
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
851
							DENALI_WRITE) == PASS) {
852 853 854 855 856
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

857
		if (irq_status == 0) {
858
			dev_err(denali->dev, "OOB write failed\n");
859 860
			status = -EIO;
		}
861
	} else {
862
		dev_err(denali->dev, "unable to send pipeline command\n");
863
		status = -EIO;
864 865 866 867 868 869 870 871
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
872 873
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;
874 875 876

	denali->page = page;

877
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
878
							DENALI_READ) == PASS) {
879
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
880

881 882 883 884 885
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
886 887 888
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
889
			dev_err(denali->dev, "page on OOB timeout %d\n",
890
					denali->page);
891

892 893
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
894 895 896
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
897
		 * if you are in MAIN_ACCESS.
898 899
		 */
		addr = BANK(denali->flash_bank) | denali->page;
900
		cmd = MODE_10 | addr;
901
		index_addr(denali, cmd, MAIN_ACCESS);
902 903 904
	}
}

905 906
/*
 * this function examines buffers to see if they contain data that
907 908
 * indicate that the buffer is part of an erased region of flash.
 */
909
static bool is_erased(uint8_t *buf, int len)
910
{
911
	int i;
912

913 914 915 916 917 918 919 920 921 922
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
923 924
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
925 926
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

927
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
928
		       uint32_t irq_status, unsigned int *max_bitflips)
929 930
{
	bool check_erased_page = false;
931
	unsigned int bitflips = 0;
932

933
	if (irq_status & INTR_STATUS__ECC_ERR) {
934
		/* read the ECC errors. we'll ignore them for now */
935 936
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
937
		denali_set_intr_modes(denali, false);
938

939
		do {
940
			err_address = ioread32(denali->flash_reg +
941 942 943 944
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

945
			err_correction_info = ioread32(denali->flash_reg +
946
						ERR_CORRECTION_INFO);
947
			err_correction_value =
948 949 950
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

951
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
952 953
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
954
				 * means error happened in OOB, so we ignore
955 956 957 958
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
959
				 */
960
				if (err_byte < ECC_SECTOR_SIZE) {
961 962
					struct mtd_info *mtd =
						nand_to_mtd(&denali->nand);
963
					int offset;
964

965 966 967 968 969
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
970 971
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
972
					mtd->ecc_stats.corrected++;
973
					bitflips++;
974
				}
975
			} else {
976 977
				/*
				 * if the error is not correctable, need to
978 979
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
980
				 */
981 982 983
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
984 985
		/*
		 * Once handle all ecc errors, controller will triger
986 987
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
988
		 */
989
		while (!(read_interrupt_status(denali) &
990
				INTR_STATUS__ECC_TRANSACTION_DONE))
991 992 993
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
994
	}
995
	*max_bitflips = bitflips;
996 997 998 999
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1000
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1001
{
1002
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1003 1004 1005 1006
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1007
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1008
{
1009
	uint32_t mode;
1010
	const int page_count = 1;
1011
	uint32_t addr = denali->buf.dma_buf;
1012 1013 1014 1015 1016 1017 1018 1019 1020

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1021
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1022 1023

	/* 3. set memory low address bits 23:8 */
1024
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1025

1026
	/* 4. interrupt when complete, burst len = 64 bytes */
1027 1028 1029
	index_addr(denali, mode | 0x14000, 0x2400);
}

1030 1031 1032 1033
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1034
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1035 1036 1037 1038
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1039
	size_t size = mtd->writesize + mtd->oobsize;
1040
	uint32_t irq_status;
1041 1042
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1043

1044 1045
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1046 1047 1048 1049 1050 1051 1052 1053
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1054
	if (raw_xfer) {
1055
		/* transfer the data to the spare area */
1056 1057 1058
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1059 1060
	}

1061
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1062 1063

	clear_interrupts(denali);
1064
	denali_enable_dma(denali, true);
1065

1066
	denali_setup_dma(denali, DENALI_WRITE);
1067 1068 1069 1070

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1071
	if (irq_status == 0) {
1072 1073
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1074
		denali->status = NAND_STATUS_FAIL;
1075 1076
	}

1077
	denali_enable_dma(denali, false);
1078
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1079 1080

	return 0;
1081 1082 1083 1084
}

/* NAND core entry points */

1085 1086
/*
 * this is the callback that the NAND core calls to write a page. Since
1087 1088
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1089
 */
1090
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1091
				const uint8_t *buf, int oob_required, int page)
1092
{
1093 1094 1095 1096
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1097
	return write_page(mtd, chip, buf, false);
1098 1099
}

1100 1101
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1102
 * raw access is similar to ECC page writes, so all the work is done in the
1103
 * write_page() function above.
1104
 */
1105
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1106 1107
				 const uint8_t *buf, int oob_required,
				 int page)
1108
{
1109 1110 1111 1112
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1113
	return write_page(mtd, chip, buf, true);
1114 1115
}

1116
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1117 1118
			    int page)
{
1119
	return write_oob_data(mtd, chip->oob_poi, page);
1120 1121
}

1122
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1123
			   int page)
1124 1125 1126
{
	read_oob_data(mtd, chip->oob_poi, page);

1127
	return 0;
1128 1129 1130
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1131
			    uint8_t *buf, int oob_required, int page)
1132
{
1133
	unsigned int max_bitflips;
1134 1135 1136
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
1137
	size_t size = mtd->writesize + mtd->oobsize;
1138

1139
	uint32_t irq_status;
1140 1141
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1142 1143
	bool check_erased_page = false;

1144
	if (page != denali->page) {
1145 1146 1147
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1148 1149 1150
		BUG();
	}

1151 1152
	setup_ecc_for_xfer(denali, true, false);

1153
	denali_enable_dma(denali, true);
1154
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1155 1156

	clear_interrupts(denali);
1157
	denali_setup_dma(denali, DENALI_READ);
1158 1159 1160 1161

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1162
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1163 1164

	memcpy(buf, denali->buf.buf, mtd->writesize);
1165

1166
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1167
	denali_enable_dma(denali, false);
1168

1169
	if (check_erased_page) {
1170
		read_oob_data(mtd, chip->oob_poi, denali->page);
1171 1172

		/* check ECC failures that may have occurred on erased pages */
1173
		if (check_erased_page) {
1174 1175 1176 1177
			if (!is_erased(buf, mtd->writesize))
				mtd->ecc_stats.failed++;
			if (!is_erased(buf, mtd->oobsize))
				mtd->ecc_stats.failed++;
1178
		}
1179
	}
1180
	return max_bitflips;
1181 1182 1183
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1184
				uint8_t *buf, int oob_required, int page)
1185 1186 1187
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1188
	size_t size = mtd->writesize + mtd->oobsize;
1189
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1190

1191
	if (page != denali->page) {
1192 1193 1194
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1195 1196 1197
		BUG();
	}

1198
	setup_ecc_for_xfer(denali, false, true);
1199
	denali_enable_dma(denali, true);
1200

1201
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1202 1203

	clear_interrupts(denali);
1204
	denali_setup_dma(denali, DENALI_READ);
1205 1206

	/* wait for operation to complete */
1207
	wait_for_irq(denali, irq_mask);
1208

1209
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1210

1211
	denali_enable_dma(denali, false);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1243

1244 1245 1246 1247 1248
	denali->status = 0;

	return status;
}

1249
static int denali_erase(struct mtd_info *mtd, int page)
1250 1251 1252
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1253
	uint32_t cmd, irq_status;
1254

1255
	clear_interrupts(denali);
1256 1257 1258

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1259
	index_addr(denali, cmd, 0x1);
1260 1261

	/* wait for erase to complete or failure to occur */
1262 1263
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1264

1265
	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1266 1267
}

1268
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1269 1270 1271
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1272 1273
	uint32_t addr, id;
	int i;
1274

1275
	switch (cmd) {
1276 1277 1278 1279 1280 1281
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1282
	case NAND_CMD_PARAM:
1283
		reset_buf(denali);
1284 1285
		/*
		 * sometimes ManufactureId read from register is not right
1286 1287
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1288
		 */
1289 1290
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1291
		index_addr(denali, addr | 1, col);
1292
		for (i = 0; i < 8; i++) {
1293
			index_addr_read_data(denali, addr | 2, &id);
1294
			write_byte_to_buf(denali, id);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1308
		pr_err(": unsupported command received 0x%x\n", cmd);
1309
		break;
1310 1311 1312 1313 1314 1315 1316
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1317 1318
	/*
	 * tell driver how many bit controller will skip before
1319 1320 1321
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1322
	 */
1323 1324
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1325
	detect_max_banks(denali);
1326
	denali_nand_reset(denali);
1327 1328
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1329
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1330

1331
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1332 1333

	/* Should set value for these registers when init */
1334 1335
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1336 1337
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1338 1339
}

1340 1341
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1342 1343
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1344
 */
1345 1346
#define ECC_8BITS	14
#define ECC_15BITS	26
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1406
/* initialize driver data structures */
1407
static void denali_drv_init(struct denali_nand_info *denali)
1408
{
1409 1410 1411 1412
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1413 1414
	init_completion(&denali->complete);

1415 1416 1417 1418
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1419 1420 1421 1422 1423 1424 1425 1426 1427
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1428
int denali_init(struct denali_nand_info *denali)
1429
{
1430
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1431
	int ret;
1432

1433
	if (denali->platform == INTEL_CE4100) {
1434 1435
		/*
		 * Due to a silicon limitation, we can only support
1436 1437
		 * ONFI timing mode 1 and below.
		 */
1438
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1439 1440
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1441 1442 1443
		}
	}

1444 1445 1446 1447 1448
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1449

1450
	mtd->dev.parent = denali->dev;
1451 1452 1453
	denali_hw_init(denali);
	denali_drv_init(denali);

1454 1455 1456 1457
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1458
		dev_err(denali->dev, "Unable to request IRQ\n");
1459
		return ret;
1460 1461 1462
	}

	/* now that our ISR is registered, we can enable interrupts */
1463
	denali_set_intr_modes(denali, true);
1464
	mtd->name = "denali-nand";
1465 1466 1467 1468 1469 1470 1471

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1472 1473
	/*
	 * scan for NAND devices attached to the controller
1474
	 * this is the first stage in a two step process to register
1475 1476
	 * with the nand subsystem
	 */
1477
	if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
1478
		ret = -ENXIO;
1479
		goto failed_req_irq;
1480
	}
1481

1482 1483 1484
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1485
			     mtd->writesize + mtd->oobsize,
1486 1487 1488 1489 1490 1491 1492 1493 1494
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
1495
		dev_err(denali->dev, "No usable DMA configuration\n");
1496 1497 1498 1499
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1500
			     mtd->writesize + mtd->oobsize,
1501 1502
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1503
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1504
		ret = -EIO;
1505
		goto failed_req_irq;
1506 1507
	}

1508 1509 1510 1511
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1512 1513 1514 1515 1516 1517 1518 1519 1520
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
1521 1522 1523 1524
	mtd->writesize <<= (denali->devnum - 1);
	mtd->oobsize <<= (denali->devnum - 1);
	mtd->erasesize <<= (denali->devnum - 1);
	mtd->size = denali->nand.numchips * denali->nand.chipsize;
1525 1526
	denali->bbtskipbytes *= denali->devnum;

1527 1528
	/*
	 * second stage of the NAND scan
1529
	 * this stage requires information regarding ECC and
1530 1531
	 * bad block management.
	 */
1532 1533 1534 1535 1536 1537

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1538
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1539
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1540 1541
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1542 1543 1544
	/* no subpage writes on denali */
	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;

1545 1546
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1547 1548 1549
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1550
	if (!nand_is_slc(&denali->nand) &&
1551 1552
			(mtd->oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (mtd->writesize /
1553 1554
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1555
		denali->nand.ecc.strength = 15;
1556
		denali->nand.ecc.bytes = ECC_15BITS;
1557
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1558 1559
	} else if (mtd->oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (mtd->writesize /
1560
			ECC_SECTOR_SIZE))) {
1561
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1562
		goto failed_req_irq;
1563
	} else {
M
Mike Dunn 已提交
1564
		denali->nand.ecc.strength = 8;
1565
		denali->nand.ecc.bytes = ECC_8BITS;
1566
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1567 1568
	}

1569
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1570
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1571
	denali->nand.ecc.strength *= denali->devnum;
1572

1573
	/* override the default read operations */
1574
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1575 1576 1577 1578 1579 1580
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1581
	denali->nand.erase = denali_erase;
1582

1583
	if (nand_scan_tail(mtd)) {
1584
		ret = -ENXIO;
1585
		goto failed_req_irq;
1586 1587
	}

1588
	ret = mtd_device_register(mtd, NULL, 0);
1589
	if (ret) {
1590
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1591
		goto failed_req_irq;
1592 1593 1594
	}
	return 0;

1595
failed_req_irq:
1596 1597
	denali_irq_cleanup(denali->irq, denali);

1598 1599
	return ret;
}
1600
EXPORT_SYMBOL(denali_init);
1601 1602

/* driver exit point */
1603
void denali_remove(struct denali_nand_info *denali)
1604
{
1605
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1606 1607 1608 1609 1610
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1611
	int bufsize = mtd->writesize + mtd->oobsize;
1612

1613
	nand_release(mtd);
1614
	denali_irq_cleanup(denali->irq, denali);
1615
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1616
			 DMA_BIDIRECTIONAL);
1617
}
1618
EXPORT_SYMBOL(denali_remove);