denali.c 46.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32 33
/*
 * We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44

#define DENALI_NAND_NAME    "denali-nand"

45 46 47 48
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
49 50 51 52 53 54 55 56 57 58
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
59

60 61 62 63
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
64
#define CHIP_SELECT_INVALID	-1
65 66 67

#define SUPPORT_8BITECC		1

68 69 70 71
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
72 73
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

74 75
/*
 * this macro allows us to convert from an MTD structure to our own
76 77 78 79
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
87
#define PIPELINE_ACCESS		0x2000
88 89 90 91 92 93 94 95 96

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

97 98 99 100
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
101 102 103 104
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
105 106 107 108
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
109 110
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

111 112 113 114
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
115
 * abstracts this common operation.
116
 */
117 118
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
119
{
120 121
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
122 123 124 125 126 127
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
128
	iowrite32(address, denali->flash_mem);
129 130 131
	*pdata = ioread32(denali->flash_mem + 0x10);
}

132 133 134 135
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
136 137 138 139 140 141 142 143 144 145 146 147 148
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
149
	uint32_t cmd;
150 151 152 153

	/* initialize the data buffer to store status */
	reset_buf(denali);

154 155 156 157 158
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
159 160 161 162 163
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
164
	uint32_t irq_status;
165 166
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;
167 168 169

	clear_interrupts(denali);

170
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
171 172

	irq_status = wait_for_irq(denali, irq_mask);
173

174
	if (irq_status & INTR_STATUS__TIME_OUT)
175
		dev_err(denali->dev, "reset bank failed.\n");
176 177 178
}

/* Reset the flash controller */
179
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
180 181 182
{
	uint32_t i;

183
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
184 185
		       __FILE__, __LINE__, __func__);

186
	for (i = 0 ; i < denali->max_banks; i++)
187 188
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
189

190
	for (i = 0 ; i < denali->max_banks; i++) {
191
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
192
		while (!(ioread32(denali->flash_reg +
193 194
				INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195
			cpu_relax();
196 197
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
198
			dev_dbg(denali->dev,
199 200 201
			"NAND Reset operation timed out on bank %d\n", i);
	}

202
	for (i = 0; i < denali->max_banks; i++)
203 204
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			denali->flash_reg + INTR_STATUS(i));
205 206 207 208

	return PASS;
}

209 210
/*
 * this routine calculates the ONFI timing values for a given mode and
211 212
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
213
 */
214
static void nand_onfi_timing_set(struct denali_nand_info *denali,
215
								uint16_t mode)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

237
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
274
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

302 303 304 305 306 307 308 309
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
310 311 312 313 314 315
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
316 317 318

	/*
	 * we needn't to do a reset here because driver has already
319
	 * reset all the banks before
320
	 */
321 322 323 324 325
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
326 327
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
328 329 330
			break;
	}

331
	nand_onfi_timing_set(denali, i);
332

333 334 335 336
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
337 338 339 340 341 342
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

343 344
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
345
{
346
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
347
		/* Set timing register values according to datasheet */
348 349 350 351 352 353 354
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
355 356 357 358 359 360 361
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

362 363 364 365
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
366 367
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
368
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
369 370
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371
		iowrite32(tmp,
372
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
373
#if SUPPORT_15BITECC
374
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
375
#elif SUPPORT_8BITECC
376
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
377 378 379 380
#endif
	}
}

381 382
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
383 384 385
{
	uint32_t main_size, spare_size;

386
	switch (device_id) {
387 388
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
389 390 391
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
392 393 394 395
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
396
		iowrite32(main_size,
397
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
398
		iowrite32(spare_size,
399
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
400
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
401
#if SUPPORT_15BITECC
402
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
403
#elif SUPPORT_8BITECC
404
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
405 406 407
#endif
		break;
	default:
408
		dev_warn(denali->dev,
409 410
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
411
			device_id);
412 413 414
	}
}

415 416
/*
 * determines how many NAND chips are connected to the controller. Note for
417
 * Intel CE4100 devices we don't support more than one device.
418 419 420
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
421
	uint32_t id[denali->max_banks];
422 423 424
	int i;

	denali->total_used_banks = 1;
425
	for (i = 0; i < denali->max_banks; i++) {
426 427
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
428
		index_addr_read_data(denali,
429
				MODE_11 | (i << 24) | 2, &id[i]);
430

431
		dev_dbg(denali->dev,
432 433 434 435 436 437 438 439 440 441 442 443 444
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

445
	if (denali->platform == INTEL_CE4100) {
446 447
		/*
		 * Platform limitations of the CE4100 device limit
448
		 * users to a single chip solution for NAND.
449 450
		 * Multichip support is not enabled.
		 */
451
		if (denali->total_used_banks != 1) {
452
			dev_err(denali->dev,
453
					"Sorry, Intel CE4100 only supports "
454 455 456 457
					"a single NAND device.\n");
			BUG();
		}
	}
458
	dev_dbg(denali->dev,
459 460 461
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

462 463 464 465 466 467 468 469 470 471 472
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

473 474
static void detect_partition_feature(struct denali_nand_info *denali)
{
475 476
	/*
	 * For MRST platform, denali->fwblks represent the
477 478 479 480
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
481
	 */
482
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
483 484
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
485
			denali->fwblks =
486 487
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
488
			     denali->blksperchip)
489
			    +
490 491
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
492 493 494 495
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
496 497
}

498
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
499 500
{
	uint16_t status = PASS;
501
	uint32_t id_bytes[8], addr;
502
	uint8_t i, maf_id, device_id;
503

504
	dev_dbg(denali->dev,
505 506
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
507

508 509 510 511 512
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
513 514 515
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
516
	for (i = 0; i < 8; i++)
517 518 519
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
520 521 522 523 524

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
525
	} else if (maf_id == 0xEC) { /* Samsung NAND */
526
		get_samsung_nand_para(denali, device_id);
527
	} else if (maf_id == 0x98) { /* Toshiba NAND */
528
		get_toshiba_nand_para(denali);
529 530
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
531 532
	}

533
	dev_info(denali->dev,
534 535 536
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
537 538 539
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
540
			ioread32(denali->flash_reg + RE_2_RE),
541 542 543 544 545 546 547 548 549 550
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

551 552
	/*
	 * If the user specified to override the default timings
553
	 * with a specific ONFI mode, we apply those changes here.
554 555
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
556
		nand_onfi_timing_set(denali, onfi_timing_mode);
557 558 559 560

	return status;
}

561
static void denali_set_intr_modes(struct denali_nand_info *denali,
562 563
					uint16_t INT_ENABLE)
{
564
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
565 566 567
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
568
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
569
	else
570
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
571 572
}

573 574
/*
 * validation function to verify that the controlling software is making
575
 * a valid request
576 577 578
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
579
	return (flash_bank >= 0 && flash_bank < 4);
580 581 582 583
}

static void denali_irq_init(struct denali_nand_info *denali)
{
584
	uint32_t int_mask;
585
	int i;
586 587

	/* Disable global interrupts */
588
	denali_set_intr_modes(denali, false);
589 590 591 592

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
593
	for (i = 0; i < denali->max_banks; ++i)
594
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
595 596 597 598 599 600

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
601
	denali_set_intr_modes(denali, false);
602 603 604
	free_irq(irqnum, denali);
}

605 606
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
607
{
608 609
	int i;

610
	for (i = 0; i < denali->max_banks; ++i)
611
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
612 613
}

614 615
/*
 * This function only returns when an interrupt that this driver cares about
616
 * occurs. This is to reduce the overhead of servicing interrupts
617 618 619
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
620
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
621 622 623
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
624 625
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
626
{
627
	uint32_t intr_status_reg;
628

629
	intr_status_reg = INTR_STATUS(denali->flash_bank);
630

631
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
632 633 634 635
}

static void clear_interrupts(struct denali_nand_info *denali)
{
636 637
	uint32_t status;

638 639 640
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
641
	clear_interrupt(denali, status);
642 643 644 645 646 647 648

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
649
	uint32_t intr_status_reg;
650

651
	intr_status_reg = INTR_STATUS(denali->flash_bank);
652 653 654 655

	return ioread32(denali->flash_reg + intr_status_reg);
}

656 657 658
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
659 660 661 662
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
663
	uint32_t irq_status;
664 665 666 667
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

668
	/* check to see if a valid NAND chip has been selected. */
669
	if (is_flash_bank_valid(denali->flash_bank)) {
670 671 672 673
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
674 675
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
676 677 678
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
679 680 681 682
			/*
			 * store the status in the device context for someone
			 * to read
			 */
683 684 685 686 687 688 689 690 691 692 693 694 695 696
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
697 698
	unsigned long comp_res;
	uint32_t intr_status;
699 700 701
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

702
	do {
703 704
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
705 706 707
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

708
		if (intr_status & irq_mask) {
709 710 711 712
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
713
		} else {
714 715 716 717
			/*
			 * these are not the interrupts you are looking for -
			 * need to wait again
			 */
718 719 720 721 722
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

723
	if (comp_res == 0) {
724
		/* timeout */
725
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
726
				intr_status, irq_mask);
727 728 729 730 731 732

		intr_status = 0;
	}
	return intr_status;
}

733 734 735 736
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
737
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
738 739
				bool transfer_spare)
{
740
	int ecc_en_flag, transfer_spare_flag;
741 742 743 744 745 746

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
747 748
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
749
			denali->flash_reg + TRANSFER_SPARE_REG);
750 751
}

752 753
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
754
 * controller's user guide for more information (section 4.2.3.6).
755
 */
756 757 758 759 760
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
761 762
{
	int status = PASS;
763 764
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
765

766
	if (op == DENALI_READ)
767
		irq_mask = INTR_STATUS__LOAD_COMP;
768 769 770 771
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
772 773 774

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

775
	clear_interrupts(denali);
776 777 778

	addr = BANK(denali->flash_bank) | denali->page;

779
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
780
		cmd = MODE_01 | addr;
781
		iowrite32(cmd, denali->flash_mem);
782
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
783
		/* read spare area */
784
		cmd = MODE_10 | addr;
785
		index_addr(denali, cmd, access_type);
786

787
		cmd = MODE_01 | addr;
788
		iowrite32(cmd, denali->flash_mem);
789
	} else if (op == DENALI_READ) {
790
		/* setup page read request for access type */
791
		cmd = MODE_10 | addr;
792
		index_addr(denali, cmd, access_type);
793

794 795 796 797
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
798
		 */
799
		if (access_type == SPARE_ACCESS) {
800
			cmd = MODE_01 | addr;
801
			iowrite32(cmd, denali->flash_mem);
802
		} else {
803
			index_addr(denali, cmd,
804
					PIPELINE_ACCESS | op | page_count);
805

806 807
			/*
			 * wait for command to be accepted
808
			 * can always use status0 bit as the
809 810
			 * mask is identical for each bank.
			 */
811 812
			irq_status = wait_for_irq(denali, irq_mask);

813
			if (irq_status == 0) {
814
				dev_err(denali->dev,
815 816 817
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
818
				status = FAIL;
819
			} else {
820
				cmd = MODE_01 | addr;
821
				iowrite32(cmd, denali->flash_mem);
822 823 824 825 826 827 828
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
829 830 831
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
832
{
833
	uint32_t i, *buf32;
834

835 836 837 838
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
839 840 841 842 843
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
844
		iowrite32(*buf32++, denali->flash_mem + 0x10);
845
	return i*4; /* intent is to return the number of bytes read */
846 847 848
}

/* helper function that simply reads a buffer from the flash */
849 850 851
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
852
{
853
	uint32_t i, *buf32;
854

855 856 857 858 859
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
860 861 862 863 864 865 866
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
867
	return i*4; /* intent is to return the number of bytes read */
868 869 870 871 872 873
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
874
	uint32_t irq_status;
875 876
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
877 878 879 880
	int status = 0;

	denali->page = page;

881
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
882
							DENALI_WRITE) == PASS) {
883 884 885 886 887
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

888
		if (irq_status == 0) {
889
			dev_err(denali->dev, "OOB write failed\n");
890 891
			status = -EIO;
		}
892
	} else {
893
		dev_err(denali->dev, "unable to send pipeline command\n");
894
		status = -EIO;
895 896 897 898 899 900 901 902
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
903 904
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;
905 906 907

	denali->page = page;

908
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
909
							DENALI_READ) == PASS) {
910
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
911

912 913 914 915 916
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
917 918 919
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
920
			dev_err(denali->dev, "page on OOB timeout %d\n",
921
					denali->page);
922

923 924
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
925 926 927
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
928
		 * if you are in MAIN_ACCESS.
929 930
		 */
		addr = BANK(denali->flash_bank) | denali->page;
931
		cmd = MODE_10 | addr;
932
		index_addr(denali, cmd, MAIN_ACCESS);
933 934 935
	}
}

936 937
/*
 * this function examines buffers to see if they contain data that
938 939
 * indicate that the buffer is part of an erased region of flash.
 */
940
static bool is_erased(uint8_t *buf, int len)
941
{
942
	int i;
943 944 945 946 947 948 949 950 951 952
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
953 954
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
955 956
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

957
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
958
		       uint32_t irq_status, unsigned int *max_bitflips)
959 960
{
	bool check_erased_page = false;
961
	unsigned int bitflips = 0;
962

963
	if (irq_status & INTR_STATUS__ECC_ERR) {
964
		/* read the ECC errors. we'll ignore them for now */
965 966
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
967
		denali_set_intr_modes(denali, false);
968

969
		do {
970
			err_address = ioread32(denali->flash_reg +
971 972 973 974
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

975
			err_correction_info = ioread32(denali->flash_reg +
976
						ERR_CORRECTION_INFO);
977
			err_correction_value =
978 979 980
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

981
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
982 983
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
984
				 * means error happened in OOB, so we ignore
985 986 987 988
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
989
				 */
990 991 992 993 994 995 996
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
997 998 999
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
1000
					bitflips++;
1001
				}
1002
			} else {
1003 1004
				/*
				 * if the error is not correctable, need to
1005 1006
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
1007
				 */
1008 1009 1010
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
1011 1012
		/*
		 * Once handle all ecc errors, controller will triger
1013 1014
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
1015
		 */
1016
		while (!(read_interrupt_status(denali) &
1017
				INTR_STATUS__ECC_TRANSACTION_DONE))
1018 1019 1020
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1021
	}
1022
	*max_bitflips = bitflips;
1023 1024 1025 1026
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1027
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1028
{
1029
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1030 1031 1032 1033
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1034
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1035
{
1036
	uint32_t mode;
1037
	const int page_count = 1;
1038
	uint32_t addr = denali->buf.dma_buf;
1039 1040 1041 1042 1043 1044 1045 1046 1047

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1048
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1049 1050

	/* 3. set memory low address bits 23:8 */
1051
	index_addr(denali, mode | ((addr & 0xff) << 8), 0x2300);
1052

1053
	/* 4. interrupt when complete, burst len = 64 bytes */
1054 1055 1056
	index_addr(denali, mode | 0x14000, 0x2400);
}

1057 1058 1059 1060
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1061
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1062 1063 1064 1065 1066 1067 1068
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1069
	uint32_t irq_status;
1070 1071
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1072

1073 1074
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1075 1076 1077 1078 1079 1080 1081 1082
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1083
	if (raw_xfer) {
1084
		/* transfer the data to the spare area */
1085 1086 1087
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1088 1089
	}

1090
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1091 1092

	clear_interrupts(denali);
1093
	denali_enable_dma(denali, true);
1094

1095
	denali_setup_dma(denali, DENALI_WRITE);
1096 1097 1098 1099

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1100
	if (irq_status == 0) {
1101
		dev_err(denali->dev,
1102 1103
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1104
		denali->status = NAND_STATUS_FAIL;
1105 1106
	}

1107
	denali_enable_dma(denali, false);
1108
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1109 1110

	return 0;
1111 1112 1113 1114
}

/* NAND core entry points */

1115 1116
/*
 * this is the callback that the NAND core calls to write a page. Since
1117 1118
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1119
 */
1120
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1121
				const uint8_t *buf, int oob_required)
1122
{
1123 1124 1125 1126
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1127
	return write_page(mtd, chip, buf, false);
1128 1129
}

1130 1131
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1132
 * raw access is similar to ECC page writes, so all the work is done in the
1133
 * write_page() function above.
1134
 */
1135
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1136
					const uint8_t *buf, int oob_required)
1137
{
1138 1139 1140 1141
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1142
	return write_page(mtd, chip, buf, true);
1143 1144
}

1145
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1146 1147
			    int page)
{
1148
	return write_oob_data(mtd, chip->oob_poi, page);
1149 1150
}

1151
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1152
			   int page)
1153 1154 1155
{
	read_oob_data(mtd, chip->oob_poi, page);

1156
	return 0;
1157 1158 1159
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1160
			    uint8_t *buf, int oob_required, int page)
1161
{
1162
	unsigned int max_bitflips;
1163 1164 1165 1166 1167
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1168
	uint32_t irq_status;
1169 1170
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1171 1172
	bool check_erased_page = false;

1173
	if (page != denali->page) {
1174
		dev_err(denali->dev, "IN %s: page %d is not"
1175 1176 1177 1178 1179
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1180 1181
	setup_ecc_for_xfer(denali, true, false);

1182
	denali_enable_dma(denali, true);
1183
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1184 1185

	clear_interrupts(denali);
1186
	denali_setup_dma(denali, DENALI_READ);
1187 1188 1189 1190

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1191
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1192 1193

	memcpy(buf, denali->buf.buf, mtd->writesize);
1194

1195
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1196
	denali_enable_dma(denali, false);
1197

1198
	if (check_erased_page) {
1199 1200 1201
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1202
		if (check_erased_page) {
1203 1204 1205 1206
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1207
		}
1208
	}
1209
	return max_bitflips;
1210 1211 1212
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1213
				uint8_t *buf, int oob_required, int page)
1214 1215 1216 1217 1218 1219
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1220
	uint32_t irq_status;
1221
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1222

1223
	if (page != denali->page) {
1224
		dev_err(denali->dev, "IN %s: page %d is not"
1225 1226 1227 1228 1229
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1230
	setup_ecc_for_xfer(denali, false, true);
1231
	denali_enable_dma(denali, true);
1232

1233
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1234 1235

	clear_interrupts(denali);
1236
	denali_setup_dma(denali, DENALI_READ);
1237 1238 1239 1240

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1241
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1242

1243
	denali_enable_dma(denali, false);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

1280
static int denali_erase(struct mtd_info *mtd, int page)
1281 1282 1283
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1284
	uint32_t cmd, irq_status;
1285

1286
	clear_interrupts(denali);
1287 1288 1289

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1290
	index_addr(denali, cmd, 0x1);
1291 1292

	/* wait for erase to complete or failure to occur */
1293 1294
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1295

1296
	return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
1297 1298
}

1299
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1300 1301 1302
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1303 1304
	uint32_t addr, id;
	int i;
1305

1306
	switch (cmd) {
1307 1308 1309 1310 1311 1312
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1313
	case NAND_CMD_PARAM:
1314
		reset_buf(denali);
1315 1316
		/*
		 * sometimes ManufactureId read from register is not right
1317 1318
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1319
		 */
1320 1321 1322
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
		index_addr(denali, addr | 1, 0);
1323
		for (i = 0; i < 8; i++) {
1324
			index_addr_read_data(denali,
1325
						addr | 2,
1326 1327
						&id);
			write_byte_to_buf(denali, id);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1341
		pr_err(": unsupported command received 0x%x\n", cmd);
1342
		break;
1343 1344 1345 1346
	}
}

/* stubs for ECC functions not used by the NAND core */
1347
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1348 1349
				uint8_t *ecc_code)
{
1350
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1351
	dev_err(denali->dev,
1352
			"denali_ecc_calculate called unexpectedly\n");
1353 1354 1355 1356
	BUG();
	return -EIO;
}

1357
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1358 1359
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1360
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1361
	dev_err(denali->dev,
1362
			"denali_ecc_correct called unexpectedly\n");
1363 1364 1365 1366 1367 1368
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1369
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1370
	dev_err(denali->dev,
1371
			"denali_ecc_hwctl called unexpectedly\n");
1372 1373 1374 1375 1376 1377 1378
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1379 1380
	/*
	 * tell driver how many bit controller will skip before
1381 1382 1383
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1384
	 */
1385 1386
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1387
	detect_max_banks(denali);
1388
	denali_nand_reset(denali);
1389 1390
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1391
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1392

1393
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1394 1395

	/* Should set value for these registers when init */
1396 1397
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1398 1399
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1400 1401
}

1402 1403
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1404 1405
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1406
 */
1407 1408 1409
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1410 1411
};

1412 1413 1414
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1440
/* initialize driver data structures */
1441
static void denali_drv_init(struct denali_nand_info *denali)
1442 1443 1444 1445
{
	denali->idx = 0;

	/* setup interrupt handler */
1446 1447 1448 1449
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1450 1451
	init_completion(&denali->complete);

1452 1453 1454 1455
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1456 1457 1458 1459 1460 1461 1462 1463 1464
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1465
int denali_init(struct denali_nand_info *denali)
1466
{
1467
	int ret;
1468

1469
	if (denali->platform == INTEL_CE4100) {
1470 1471
		/*
		 * Due to a silicon limitation, we can only support
1472 1473
		 * ONFI timing mode 1 and below.
		 */
1474
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1475 1476
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1477 1478 1479
		}
	}

1480 1481 1482 1483 1484
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1485

1486
	denali->mtd.dev.parent = denali->dev;
1487 1488 1489
	denali_hw_init(denali);
	denali_drv_init(denali);

1490 1491 1492 1493
	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
1494
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1495
			DENALI_NAND_NAME, denali)) {
1496 1497
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1498 1499 1500
	}

	/* now that our ISR is registered, we can enable interrupts */
1501
	denali_set_intr_modes(denali, true);
1502
	denali->mtd.name = "denali-nand";
1503 1504 1505 1506 1507 1508 1509 1510 1511
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1512 1513
	/*
	 * scan for NAND devices attached to the controller
1514
	 * this is the first stage in a two step process to register
1515 1516
	 * with the nand subsystem
	 */
1517
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1518
		ret = -ENXIO;
1519
		goto failed_req_irq;
1520
	}
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1545
		goto failed_req_irq;
1546 1547
	}

1548 1549 1550 1551
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1567 1568
	/*
	 * second stage of the NAND scan
1569
	 * this stage requires information regarding ECC and
1570 1571
	 * bad block management.
	 */
1572 1573 1574 1575 1576 1577

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1578
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1579
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1580 1581
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1582 1583
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1584 1585 1586
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1587
	if (!nand_is_slc(&denali->nand) &&
1588 1589 1590 1591
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1592
		denali->nand.ecc.strength = 15;
1593 1594
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1595
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1596 1597 1598
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
1599 1600
		pr_err("Your NAND chip OOB is not large enough to \
				contain 8bit ECC correction codes");
1601
		goto failed_req_irq;
1602
	} else {
M
Mike Dunn 已提交
1603
		denali->nand.ecc.strength = 8;
1604 1605
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1606
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1607 1608
	}

1609
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1610
	denali->nand.ecc.strength *= denali->devnum;
1611 1612 1613 1614 1615 1616 1617 1618
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1619 1620 1621 1622 1623
	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
1624 1625 1626 1627
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1628 1629
	/*
	 * These functions are required by the NAND core framework, otherwise,
1630
	 * the NAND core will assert. However, we don't need them, so we'll stub
1631 1632
	 * them out.
	 */
1633 1634 1635 1636 1637
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1638
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1639 1640 1641 1642 1643 1644
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1645
	denali->nand.erase = denali_erase;
1646

1647
	if (nand_scan_tail(&denali->mtd)) {
1648
		ret = -ENXIO;
1649
		goto failed_req_irq;
1650 1651
	}

1652
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1653
	if (ret) {
1654
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1655
				ret);
1656
		goto failed_req_irq;
1657 1658 1659
	}
	return 0;

1660
failed_req_irq:
1661 1662
	denali_irq_cleanup(denali->irq, denali);

1663 1664
	return ret;
}
1665
EXPORT_SYMBOL(denali_init);
1666 1667

/* driver exit point */
1668
void denali_remove(struct denali_nand_info *denali)
1669
{
1670
	denali_irq_cleanup(denali->irq, denali);
1671 1672
	dma_unmap_single(denali->dev, denali->buf.dma_buf,
			denali->mtd.writesize + denali->mtd.oobsize,
1673
			DMA_BIDIRECTIONAL);
1674
}
1675
EXPORT_SYMBOL(denali_remove);