denali.c 45.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32 33
/*
 * We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
42 43 44

#define DENALI_NAND_NAME    "denali-nand"

45 46 47 48
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
49 50 51 52 53 54 55 56 57 58
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
59

60 61 62 63
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
64
#define CHIP_SELECT_INVALID	-1
65 66 67

#define SUPPORT_8BITECC		1

68 69 70 71
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
72 73
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

74 75
/*
 * this macro allows us to convert from an MTD structure to our own
76 77 78 79
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
87
#define PIPELINE_ACCESS		0x2000
88 89 90 91 92 93 94 95 96

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

97 98 99 100
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
101 102 103 104
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
105 106 107 108
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
109 110
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

111 112 113 114
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
115
 * abstracts this common operation.
116
 */
117 118
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
119
{
120 121
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
122 123 124 125 126 127
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
128
	iowrite32(address, denali->flash_mem);
129 130 131
	*pdata = ioread32(denali->flash_mem + 0x10);
}

132 133 134 135
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
136 137 138 139 140 141 142 143 144 145 146 147 148
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
149
	uint32_t cmd;
150 151 152 153

	/* initialize the data buffer to store status */
	reset_buf(denali);

154 155 156 157 158
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
159 160 161 162 163
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
164
	uint32_t irq_status;
165
	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
166 167 168

	clear_interrupts(denali);

169
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
170 171

	irq_status = wait_for_irq(denali, irq_mask);
172

173
	if (irq_status & INTR_STATUS__TIME_OUT)
174
		dev_err(denali->dev, "reset bank failed.\n");
175 176 177
}

/* Reset the flash controller */
178
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
179
{
180
	int i;
181

182
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
183
		__FILE__, __LINE__, __func__);
184

185
	for (i = 0; i < denali->max_banks; i++)
186 187
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
188

189
	for (i = 0; i < denali->max_banks; i++) {
190
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
191
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
192
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
193
			cpu_relax();
194 195
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
196
			dev_dbg(denali->dev,
197 198 199
			"NAND Reset operation timed out on bank %d\n", i);
	}

200
	for (i = 0; i < denali->max_banks; i++)
201
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
202
			  denali->flash_reg + INTR_STATUS(i));
203 204 205 206

	return PASS;
}

207 208
/*
 * this routine calculates the ONFI timing values for a given mode and
209 210
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
211
 */
212
static void nand_onfi_timing_set(struct denali_nand_info *denali,
213
								uint16_t mode)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

234
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
235
		__FILE__, __LINE__, __func__);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

255 256
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
257 258 259 260 261 262 263 264 265

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

266
	while (acc_clks * CLK_X - Trea[mode] < 3)
267 268
		acc_clks++;

269
	if (data_invalid - acc_clks * CLK_X < 2)
270
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
271
			 __FILE__, __LINE__);
272 273 274 275 276 277 278 279 280 281

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
282
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
283 284 285 286 287 288 289 290 291
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292 293
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
294 295
		acc_clks = 6;

296 297 298 299 300 301 302 303
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
304 305 306 307 308 309
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
310 311 312

	/*
	 * we needn't to do a reset here because driver has already
313
	 * reset all the banks before
314
	 */
315 316 317 318 319
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
320 321
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
322 323 324
			break;
	}

325
	nand_onfi_timing_set(denali, i);
326

327 328 329 330
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
331 332 333 334 335 336
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

337 338
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
339
{
340
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
341
		/* Set timing register values according to datasheet */
342 343 344 345 346 347 348
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
349 350 351 352 353 354 355
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

356 357 358 359
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
360 361
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
362
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
363 364
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365
		iowrite32(tmp,
366
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
367
#if SUPPORT_15BITECC
368
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
369
#elif SUPPORT_8BITECC
370
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
371 372 373 374
#endif
	}
}

375 376
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
377 378 379
{
	uint32_t main_size, spare_size;

380
	switch (device_id) {
381 382
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
383 384 385
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
386 387 388 389
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
390
		iowrite32(main_size,
391
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
392
		iowrite32(spare_size,
393
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
394
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
395
#if SUPPORT_15BITECC
396
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
397
#elif SUPPORT_8BITECC
398
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
399 400 401
#endif
		break;
	default:
402
		dev_warn(denali->dev,
403 404 405
			 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
			 "Will use default parameter values instead.\n",
			 device_id);
406 407 408
	}
}

409 410
/*
 * determines how many NAND chips are connected to the controller. Note for
411
 * Intel CE4100 devices we don't support more than one device.
412 413 414
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
415
	uint32_t id[denali->max_banks];
416 417 418
	int i;

	denali->total_used_banks = 1;
419
	for (i = 0; i < denali->max_banks; i++) {
420 421
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
422
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
423

424
		dev_dbg(denali->dev,
425 426 427 428 429 430 431 432 433 434 435 436 437
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

438
	if (denali->platform == INTEL_CE4100) {
439 440
		/*
		 * Platform limitations of the CE4100 device limit
441
		 * users to a single chip solution for NAND.
442 443
		 * Multichip support is not enabled.
		 */
444
		if (denali->total_used_banks != 1) {
445
			dev_err(denali->dev,
446
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
447 448 449
			BUG();
		}
	}
450
	dev_dbg(denali->dev,
451 452 453
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

454 455 456 457 458 459 460
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
461 462 463 464 465 466
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
467

468 469 470 471
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
472 473
}

474 475
static void detect_partition_feature(struct denali_nand_info *denali)
{
476 477
	/*
	 * For MRST platform, denali->fwblks represent the
478 479 480 481
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
482
	 */
483
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
484 485
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
486
			denali->fwblks =
487 488
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
489
			     denali->blksperchip)
490
			    +
491 492
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
493
		} else {
494
			denali->fwblks = SPECTRA_START_BLOCK;
495 496
		}
	} else {
497
		denali->fwblks = SPECTRA_START_BLOCK;
498
	}
499 500
}

501
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
502 503
{
	uint16_t status = PASS;
504
	uint32_t id_bytes[8], addr;
505 506
	uint8_t maf_id, device_id;
	int i;
507

508
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
509
			__FILE__, __LINE__, __func__);
510

511 512 513 514 515
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
516 517 518
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
519
	for (i = 0; i < 8; i++)
520 521 522
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
523 524 525 526 527

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
528
	} else if (maf_id == 0xEC) { /* Samsung NAND */
529
		get_samsung_nand_para(denali, device_id);
530
	} else if (maf_id == 0x98) { /* Toshiba NAND */
531
		get_toshiba_nand_para(denali);
532 533
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
534 535
	}

536
	dev_info(denali->dev,
537
			"Dump timing register values:\n"
538 539
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
540 541 542
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
543
			ioread32(denali->flash_reg + RE_2_RE),
544 545 546 547 548 549 550 551 552 553
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

554 555
	/*
	 * If the user specified to override the default timings
556
	 * with a specific ONFI mode, we apply those changes here.
557 558
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
559
		nand_onfi_timing_set(denali, onfi_timing_mode);
560 561 562 563

	return status;
}

564
static void denali_set_intr_modes(struct denali_nand_info *denali,
565 566
					uint16_t INT_ENABLE)
{
567
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
568
		__FILE__, __LINE__, __func__);
569 570

	if (INT_ENABLE)
571
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
572
	else
573
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
574 575
}

576 577
/*
 * validation function to verify that the controlling software is making
578
 * a valid request
579 580 581
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
582
	return flash_bank >= 0 && flash_bank < 4;
583 584 585 586
}

static void denali_irq_init(struct denali_nand_info *denali)
{
587
	uint32_t int_mask;
588
	int i;
589 590

	/* Disable global interrupts */
591
	denali_set_intr_modes(denali, false);
592 593 594 595

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
596
	for (i = 0; i < denali->max_banks; ++i)
597
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
598 599 600 601 602 603

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
604
	denali_set_intr_modes(denali, false);
605 606 607
	free_irq(irqnum, denali);
}

608 609
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
610
{
611 612
	int i;

613
	for (i = 0; i < denali->max_banks; ++i)
614
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
615 616
}

617 618
/*
 * This function only returns when an interrupt that this driver cares about
619
 * occurs. This is to reduce the overhead of servicing interrupts
620 621 622
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
623
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
624 625 626
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
627 628
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
629
{
630
	uint32_t intr_status_reg;
631

632
	intr_status_reg = INTR_STATUS(denali->flash_bank);
633

634
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
635 636 637 638
}

static void clear_interrupts(struct denali_nand_info *denali)
{
639 640
	uint32_t status;

641 642 643
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
644
	clear_interrupt(denali, status);
645 646 647 648 649 650 651

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
652
	uint32_t intr_status_reg;
653

654
	intr_status_reg = INTR_STATUS(denali->flash_bank);
655 656 657 658

	return ioread32(denali->flash_reg + intr_status_reg);
}

659 660 661
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
662 663 664 665
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
666
	uint32_t irq_status;
667 668 669 670
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

671
	/* check to see if a valid NAND chip has been selected. */
672
	if (is_flash_bank_valid(denali->flash_bank)) {
673 674 675 676
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
677 678
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
679 680 681
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
682 683 684 685
			/*
			 * store the status in the device context for someone
			 * to read
			 */
686 687 688 689 690 691 692 693 694 695 696 697 698 699
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
700 701
	unsigned long comp_res;
	uint32_t intr_status;
702 703
	unsigned long timeout = msecs_to_jiffies(1000);

704
	do {
705 706
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
707 708 709
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

710
		if (intr_status & irq_mask) {
711 712 713 714 715
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
716 717 718 719 720 721

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
722 723
	} while (comp_res != 0);

724
	if (comp_res == 0) {
725
		/* timeout */
726
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
727
				intr_status, irq_mask);
728 729 730 731 732 733

		intr_status = 0;
	}
	return intr_status;
}

734 735 736 737
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
738
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
739 740
				bool transfer_spare)
{
741
	int ecc_en_flag, transfer_spare_flag;
742 743 744 745 746 747

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
748
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
749
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
750 751
}

752 753
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
754
 * controller's user guide for more information (section 4.2.3.6).
755
 */
756
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
757 758
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
759 760
{
	int status = PASS;
761 762
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
763

764
	if (op == DENALI_READ)
765
		irq_mask = INTR_STATUS__LOAD_COMP;
766 767 768 769
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
770 771 772

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

773
	clear_interrupts(denali);
774 775 776

	addr = BANK(denali->flash_bank) | denali->page;

777
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
778
		cmd = MODE_01 | addr;
779
		iowrite32(cmd, denali->flash_mem);
780
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
781
		/* read spare area */
782
		cmd = MODE_10 | addr;
783
		index_addr(denali, cmd, access_type);
784

785
		cmd = MODE_01 | addr;
786
		iowrite32(cmd, denali->flash_mem);
787
	} else if (op == DENALI_READ) {
788
		/* setup page read request for access type */
789
		cmd = MODE_10 | addr;
790
		index_addr(denali, cmd, access_type);
791

792 793 794 795
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
796
		 */
797
		if (access_type == SPARE_ACCESS) {
798
			cmd = MODE_01 | addr;
799
			iowrite32(cmd, denali->flash_mem);
800
		} else {
801
			index_addr(denali, cmd,
802
					PIPELINE_ACCESS | op | page_count);
803

804 805
			/*
			 * wait for command to be accepted
806
			 * can always use status0 bit as the
807 808
			 * mask is identical for each bank.
			 */
809 810
			irq_status = wait_for_irq(denali, irq_mask);

811
			if (irq_status == 0) {
812
				dev_err(denali->dev,
813 814
					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
					cmd, denali->page, addr);
815
				status = FAIL;
816
			} else {
817
				cmd = MODE_01 | addr;
818
				iowrite32(cmd, denali->flash_mem);
819 820 821 822 823 824 825
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
826
static int write_data_to_flash_mem(struct denali_nand_info *denali,
827
				   const uint8_t *buf, int len)
828
{
829 830
	uint32_t *buf32;
	int i;
831

832 833 834 835
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
836 837 838 839 840
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
841
		iowrite32(*buf32++, denali->flash_mem + 0x10);
842
	return i * 4; /* intent is to return the number of bytes read */
843 844 845
}

/* helper function that simply reads a buffer from the flash */
846
static int read_data_from_flash_mem(struct denali_nand_info *denali,
847
				    uint8_t *buf, int len)
848
{
849 850
	uint32_t *buf32;
	int i;
851

852 853 854 855 856
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
857 858 859 860 861 862 863
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
864
	return i * 4; /* intent is to return the number of bytes read */
865 866 867 868 869 870
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
871
	uint32_t irq_status;
872 873
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
874 875 876 877
	int status = 0;

	denali->page = page;

878
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
879
							DENALI_WRITE) == PASS) {
880 881 882 883 884
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

885
		if (irq_status == 0) {
886
			dev_err(denali->dev, "OOB write failed\n");
887 888
			status = -EIO;
		}
889
	} else {
890
		dev_err(denali->dev, "unable to send pipeline command\n");
891
		status = -EIO;
892 893 894 895 896 897 898 899
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
900 901
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;
902 903 904

	denali->page = page;

905
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
906
							DENALI_READ) == PASS) {
907
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
908

909 910 911 912 913
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
914 915 916
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
917
			dev_err(denali->dev, "page on OOB timeout %d\n",
918
					denali->page);
919

920 921
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
922 923 924
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
925
		 * if you are in MAIN_ACCESS.
926 927
		 */
		addr = BANK(denali->flash_bank) | denali->page;
928
		cmd = MODE_10 | addr;
929
		index_addr(denali, cmd, MAIN_ACCESS);
930 931 932
	}
}

933 934
/*
 * this function examines buffers to see if they contain data that
935 936
 * indicate that the buffer is part of an erased region of flash.
 */
937
static bool is_erased(uint8_t *buf, int len)
938
{
939
	int i;
940

941 942 943 944 945 946 947 948 949 950
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
951 952
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
953 954
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

955
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
956
		       uint32_t irq_status, unsigned int *max_bitflips)
957 958
{
	bool check_erased_page = false;
959
	unsigned int bitflips = 0;
960

961
	if (irq_status & INTR_STATUS__ECC_ERR) {
962
		/* read the ECC errors. we'll ignore them for now */
963 964
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
965
		denali_set_intr_modes(denali, false);
966

967
		do {
968
			err_address = ioread32(denali->flash_reg +
969 970 971 972
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

973
			err_correction_info = ioread32(denali->flash_reg +
974
						ERR_CORRECTION_INFO);
975
			err_correction_value =
976 977 978
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

979
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
980 981
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
982
				 * means error happened in OOB, so we ignore
983 984 985 986
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
987
				 */
988 989
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
990

991 992 993 994 995
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
996 997 998
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
999
					bitflips++;
1000
				}
1001
			} else {
1002 1003
				/*
				 * if the error is not correctable, need to
1004 1005
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
1006
				 */
1007 1008 1009
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
1010 1011
		/*
		 * Once handle all ecc errors, controller will triger
1012 1013
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
1014
		 */
1015
		while (!(read_interrupt_status(denali) &
1016
				INTR_STATUS__ECC_TRANSACTION_DONE))
1017 1018 1019
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1020
	}
1021
	*max_bitflips = bitflips;
1022 1023 1024 1025
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1026
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1027
{
1028
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1029 1030 1031 1032
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1033
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1034
{
1035
	uint32_t mode;
1036
	const int page_count = 1;
1037
	uint32_t addr = denali->buf.dma_buf;
1038 1039 1040 1041 1042 1043 1044 1045 1046

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1047
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1048 1049

	/* 3. set memory low address bits 23:8 */
1050
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1051

1052
	/* 4. interrupt when complete, burst len = 64 bytes */
1053 1054 1055
	index_addr(denali, mode | 0x14000, 0x2400);
}

1056 1057 1058 1059
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1060
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1061 1062 1063 1064 1065
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1066
	uint32_t irq_status;
1067 1068
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1069

1070 1071
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1072 1073 1074 1075 1076 1077 1078 1079
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1080
	if (raw_xfer) {
1081
		/* transfer the data to the spare area */
1082 1083 1084
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1085 1086
	}

1087
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1088 1089

	clear_interrupts(denali);
1090
	denali_enable_dma(denali, true);
1091

1092
	denali_setup_dma(denali, DENALI_WRITE);
1093 1094 1095 1096

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1097
	if (irq_status == 0) {
1098 1099
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1100
		denali->status = NAND_STATUS_FAIL;
1101 1102
	}

1103
	denali_enable_dma(denali, false);
1104
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1105 1106

	return 0;
1107 1108 1109 1110
}

/* NAND core entry points */

1111 1112
/*
 * this is the callback that the NAND core calls to write a page. Since
1113 1114
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1115
 */
1116
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1117
				const uint8_t *buf, int oob_required, int page)
1118
{
1119 1120 1121 1122
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1123
	return write_page(mtd, chip, buf, false);
1124 1125
}

1126 1127
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1128
 * raw access is similar to ECC page writes, so all the work is done in the
1129
 * write_page() function above.
1130
 */
1131
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1132 1133
				 const uint8_t *buf, int oob_required,
				 int page)
1134
{
1135 1136 1137 1138
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1139
	return write_page(mtd, chip, buf, true);
1140 1141
}

1142
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1143 1144
			    int page)
{
1145
	return write_oob_data(mtd, chip->oob_poi, page);
1146 1147
}

1148
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1149
			   int page)
1150 1151 1152
{
	read_oob_data(mtd, chip->oob_poi, page);

1153
	return 0;
1154 1155 1156
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1157
			    uint8_t *buf, int oob_required, int page)
1158
{
1159
	unsigned int max_bitflips;
1160 1161 1162 1163 1164
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

1165
	uint32_t irq_status;
1166 1167
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1168 1169
	bool check_erased_page = false;

1170
	if (page != denali->page) {
1171 1172 1173
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1174 1175 1176
		BUG();
	}

1177 1178
	setup_ecc_for_xfer(denali, true, false);

1179
	denali_enable_dma(denali, true);
1180
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1181 1182

	clear_interrupts(denali);
1183
	denali_setup_dma(denali, DENALI_READ);
1184 1185 1186 1187

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1188
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1189 1190

	memcpy(buf, denali->buf.buf, mtd->writesize);
1191

1192
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1193
	denali_enable_dma(denali, false);
1194

1195
	if (check_erased_page) {
1196 1197 1198
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1199
		if (check_erased_page) {
1200 1201 1202 1203
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1204
		}
1205
	}
1206
	return max_bitflips;
1207 1208 1209
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1210
				uint8_t *buf, int oob_required, int page)
1211 1212 1213 1214
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1215
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1216

1217
	if (page != denali->page) {
1218 1219 1220
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1221 1222 1223
		BUG();
	}

1224
	setup_ecc_for_xfer(denali, false, true);
1225
	denali_enable_dma(denali, true);
1226

1227
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1228 1229

	clear_interrupts(denali);
1230
	denali_setup_dma(denali, DENALI_READ);
1231 1232

	/* wait for operation to complete */
1233
	wait_for_irq(denali, irq_mask);
1234

1235
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1236

1237
	denali_enable_dma(denali, false);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1269

1270 1271 1272 1273 1274
	denali->status = 0;

	return status;
}

1275
static int denali_erase(struct mtd_info *mtd, int page)
1276 1277 1278
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1279
	uint32_t cmd, irq_status;
1280

1281
	clear_interrupts(denali);
1282 1283 1284

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1285
	index_addr(denali, cmd, 0x1);
1286 1287

	/* wait for erase to complete or failure to occur */
1288 1289
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1290

1291
	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1292 1293
}

1294
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1295 1296 1297
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1298 1299
	uint32_t addr, id;
	int i;
1300

1301
	switch (cmd) {
1302 1303 1304 1305 1306 1307
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1308
	case NAND_CMD_PARAM:
1309
		reset_buf(denali);
1310 1311
		/*
		 * sometimes ManufactureId read from register is not right
1312 1313
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1314
		 */
1315 1316
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1317
		index_addr(denali, addr | 1, col);
1318
		for (i = 0; i < 8; i++) {
1319
			index_addr_read_data(denali, addr | 2, &id);
1320
			write_byte_to_buf(denali, id);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1334
		pr_err(": unsupported command received 0x%x\n", cmd);
1335
		break;
1336 1337 1338 1339 1340 1341 1342
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1343 1344
	/*
	 * tell driver how many bit controller will skip before
1345 1346 1347
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1348
	 */
1349 1350
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1351
	detect_max_banks(denali);
1352
	denali_nand_reset(denali);
1353 1354
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1355
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1356

1357
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1358 1359

	/* Should set value for these registers when init */
1360 1361
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1362 1363
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1364 1365
}

1366 1367
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1368 1369
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1370
 */
1371 1372 1373
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1374 1375
};

1376 1377 1378
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1404
/* initialize driver data structures */
1405
static void denali_drv_init(struct denali_nand_info *denali)
1406 1407 1408 1409
{
	denali->idx = 0;

	/* setup interrupt handler */
1410 1411 1412 1413
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1414 1415
	init_completion(&denali->complete);

1416 1417 1418 1419
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1420 1421 1422 1423 1424 1425 1426 1427 1428
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1429
int denali_init(struct denali_nand_info *denali)
1430
{
1431
	int ret;
1432

1433
	if (denali->platform == INTEL_CE4100) {
1434 1435
		/*
		 * Due to a silicon limitation, we can only support
1436 1437
		 * ONFI timing mode 1 and below.
		 */
1438
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1439 1440
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1441 1442 1443
		}
	}

1444 1445 1446 1447 1448
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1449

1450
	denali->mtd.dev.parent = denali->dev;
1451 1452 1453
	denali_hw_init(denali);
	denali_drv_init(denali);

1454 1455 1456 1457
	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
1458
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1459
			DENALI_NAND_NAME, denali)) {
1460 1461
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1462 1463 1464
	}

	/* now that our ISR is registered, we can enable interrupts */
1465
	denali_set_intr_modes(denali, true);
1466
	denali->mtd.name = "denali-nand";
1467 1468 1469 1470 1471 1472 1473 1474
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1475 1476
	/*
	 * scan for NAND devices attached to the controller
1477
	 * this is the first stage in a two step process to register
1478 1479
	 * with the nand subsystem
	 */
1480
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1481
		ret = -ENXIO;
1482
		goto failed_req_irq;
1483
	}
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1508
		goto failed_req_irq;
1509 1510
	}

1511 1512 1513 1514
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1530 1531
	/*
	 * second stage of the NAND scan
1532
	 * this stage requires information regarding ECC and
1533 1534
	 * bad block management.
	 */
1535 1536 1537 1538 1539 1540

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1541
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1542
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1543 1544
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1545 1546 1547
	/* no subpage writes on denali */
	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;

1548 1549
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1550 1551 1552
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1553
	if (!nand_is_slc(&denali->nand) &&
1554 1555 1556 1557
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1558
		denali->nand.ecc.strength = 15;
1559 1560
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1561
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1562 1563 1564
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
1565
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1566
		goto failed_req_irq;
1567
	} else {
M
Mike Dunn 已提交
1568
		denali->nand.ecc.strength = 8;
1569 1570
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1571
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1572 1573
	}

1574
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1575
	denali->nand.ecc.strength *= denali->devnum;
1576 1577 1578 1579 1580 1581 1582 1583
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1584 1585 1586 1587 1588
	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
1589
	denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
1590 1591
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1592
	/* override the default read operations */
1593
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1594 1595 1596 1597 1598 1599
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1600
	denali->nand.erase = denali_erase;
1601

1602
	if (nand_scan_tail(&denali->mtd)) {
1603
		ret = -ENXIO;
1604
		goto failed_req_irq;
1605 1606
	}

1607
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1608
	if (ret) {
1609
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1610
				ret);
1611
		goto failed_req_irq;
1612 1613 1614
	}
	return 0;

1615
failed_req_irq:
1616 1617
	denali_irq_cleanup(denali->irq, denali);

1618 1619
	return ret;
}
1620
EXPORT_SYMBOL(denali_init);
1621 1622

/* driver exit point */
1623
void denali_remove(struct denali_nand_info *denali)
1624
{
1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
	int bufsize = denali->mtd.writesize + denali->mtd.oobsize;

	nand_release(&denali->mtd);
1633
	denali_irq_cleanup(denali->irq, denali);
1634
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1635
			 DMA_BIDIRECTIONAL);
1636
}
1637
EXPORT_SYMBOL(denali_remove);