denali.c 46.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32
/* We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
41 42 43 44 45

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
46 47 48 49 50 51 52 53 54 55
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
56

57
/* indicates whether or not the internal value for the flash bank is
58
 * valid or not */
59
#define CHIP_SELECT_INVALID	-1
60 61 62

#define SUPPORT_8BITECC		1

63
/* This macro divides two integers and rounds fractional values up
64 65 66 67 68 69 70 71 72
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
73
 * configuration options. */
74 75 76
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
77
#define PIPELINE_ACCESS		0x2000
78 79 80 81 82 83 84 85 86

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

87
/* this is a helper macro that allows us to
88 89 90 91 92
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
93 94 95 96
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
97 98
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

99 100 101 102 103
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
104
*/
105 106
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
107
{
108 109
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
110 111 112 113 114 115
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
116
	iowrite32(address, denali->flash_mem);
117 118 119
	*pdata = ioread32(denali->flash_mem + 0x10);
}

120
/* We need to buffer some data for some of the NAND core routines.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

140 141 142 143 144
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
145 146 147 148 149 150
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
151 152
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;
153 154 155

	clear_interrupts(denali);

156
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
157 158

	irq_status = wait_for_irq(denali, irq_mask);
159

160
	if (irq_status & INTR_STATUS__TIME_OUT)
161
		dev_err(denali->dev, "reset bank failed.\n");
162 163 164
}

/* Reset the flash controller */
165
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
166 167 168
{
	uint32_t i;

169
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
170 171
		       __FILE__, __LINE__, __func__);

172
	for (i = 0 ; i < denali->max_banks; i++)
173 174
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
175

176
	for (i = 0 ; i < denali->max_banks; i++) {
177
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
178
		while (!(ioread32(denali->flash_reg +
179 180
				INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
181
			cpu_relax();
182 183
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
184
			dev_dbg(denali->dev,
185 186 187
			"NAND Reset operation timed out on bank %d\n", i);
	}

188
	for (i = 0; i < denali->max_banks; i++)
189 190
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			denali->flash_reg + INTR_STATUS(i));
191 192 193 194

	return PASS;
}

195 196 197
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
198
 */
199
static void nand_onfi_timing_set(struct denali_nand_info *denali,
200
								uint16_t mode)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

222
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
259
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

287 288 289 290 291 292 293 294
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
295 296 297 298 299 300
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
301 302 303
	/* we needn't to do a reset here because driver has already
	 * reset all the banks before
	 * */
304 305 306 307 308
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
309 310
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
311 312 313
			break;
	}

314
	nand_onfi_timing_set(denali, i);
315 316 317 318 319 320 321 322 323

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

324 325
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
326
{
327
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
328
		/* Set timing register values according to datasheet */
329 330 331 332 333 334 335
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
336 337 338 339 340 341 342 343 344 345 346
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
347
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
348 349
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
350
		iowrite32(tmp,
351
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
352
#if SUPPORT_15BITECC
353
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
354
#elif SUPPORT_8BITECC
355
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
356 357 358 359
#endif
	}
}

360 361
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
362 363 364
{
	uint32_t main_size, spare_size;

365
	switch (device_id) {
366 367
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
368 369 370
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371 372 373 374
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
375
		iowrite32(main_size,
376
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
377
		iowrite32(spare_size,
378
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
379
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
380
#if SUPPORT_15BITECC
381
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
382
#elif SUPPORT_8BITECC
383
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
384 385 386
#endif
		break;
	default:
387
		dev_warn(denali->dev,
388 389
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
390
			device_id);
391 392 393 394
	}
}

/* determines how many NAND chips are connected to the controller. Note for
395
 * Intel CE4100 devices we don't support more than one device.
396 397 398
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
399
	uint32_t id[denali->max_banks];
400 401 402
	int i;

	denali->total_used_banks = 1;
403
	for (i = 0; i < denali->max_banks; i++) {
404 405
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
406 407
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
408

409
		dev_dbg(denali->dev,
410 411 412 413 414 415 416 417 418 419 420 421 422
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

423
	if (denali->platform == INTEL_CE4100) {
424 425
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
426 427
		 * Multichip support is not enabled.
		 */
428
		if (denali->total_used_banks != 1) {
429
			dev_err(denali->dev,
430
					"Sorry, Intel CE4100 only supports "
431 432 433 434
					"a single NAND device.\n");
			BUG();
		}
	}
435
	dev_dbg(denali->dev,
436 437 438
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

439 440 441 442 443 444 445 446 447 448 449
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

450 451
static void detect_partition_feature(struct denali_nand_info *denali)
{
452 453 454 455 456 457
	/* For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 * */
458
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
459 460
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
461
			denali->fwblks =
462 463
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
464
			     denali->blksperchip)
465
			    +
466 467
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
468 469 470 471
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
472 473
}

474
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
475 476
{
	uint16_t status = PASS;
477
	uint32_t id_bytes[8], addr;
478
	uint8_t i, maf_id, device_id;
479

480
	dev_dbg(denali->dev,
481 482
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
483

484 485 486 487 488 489 490 491
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
492
	for (i = 0; i < 8; i++)
493 494 495
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
496 497 498 499 500

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
501
	} else if (maf_id == 0xEC) { /* Samsung NAND */
502
		get_samsung_nand_para(denali, device_id);
503
	} else if (maf_id == 0x98) { /* Toshiba NAND */
504
		get_toshiba_nand_para(denali);
505 506
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
507 508
	}

509
	dev_info(denali->dev,
510 511 512
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
513 514 515
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
516
			ioread32(denali->flash_reg + RE_2_RE),
517 518 519 520 521 522 523 524 525 526 527
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
528
	 * with a specific ONFI mode, we apply those changes here.
529 530
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
531
		nand_onfi_timing_set(denali, onfi_timing_mode);
532 533 534 535

	return status;
}

536
static void denali_set_intr_modes(struct denali_nand_info *denali,
537 538
					uint16_t INT_ENABLE)
{
539
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
540 541 542
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
543
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
544
	else
545
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
546 547 548
}

/* validation function to verify that the controlling software is making
549
 * a valid request
550 551 552
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
553
	return (flash_bank >= 0 && flash_bank < 4);
554 555 556 557 558
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;
559
	int i;
560 561

	/* Disable global interrupts */
562
	denali_set_intr_modes(denali, false);
563 564 565 566

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
567
	for (i = 0; i < denali->max_banks; ++i)
568
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
569 570 571 572 573 574

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
575
	denali_set_intr_modes(denali, false);
576 577 578
	free_irq(irqnum, denali);
}

579 580
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
581
{
582 583
	int i;

584
	for (i = 0; i < denali->max_banks; ++i)
585
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
586 587 588
}

/* This function only returns when an interrupt that this driver cares about
589
 * occurs. This is to reduce the overhead of servicing interrupts
590 591 592
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
593
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
594 595 596
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
597 598
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
599 600 601
{
	uint32_t intr_status_reg = 0;

602
	intr_status_reg = INTR_STATUS(denali->flash_bank);
603

604
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
605 606 607 608 609 610 611 612
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
613
	clear_interrupt(denali, status);
614 615 616 617 618 619 620 621 622

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

623
	intr_status_reg = INTR_STATUS(denali->flash_bank);
624 625 626 627

	return ioread32(denali->flash_reg + intr_status_reg);
}

628 629 630
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
631 632 633 634 635 636 637 638 639
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

640 641
	/* check to see if a valid NAND chip has
	 * been selected.
642
	 */
643
	if (is_flash_bank_valid(denali->flash_bank)) {
644
		/* check to see if controller generated
645
		 * the interrupt, since this is a shared interrupt */
646 647
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

672
	do {
673 674
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
675 676 677
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

678
		if (intr_status & irq_mask) {
679 680 681 682
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
683
		} else {
684 685
			/* these are not the interrupts you are looking for -
			 * need to wait again */
686 687 688 689 690
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

691
	if (comp_res == 0) {
692
		/* timeout */
693
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
694
				intr_status, irq_mask);
695 696 697 698 699 700

		intr_status = 0;
	}
	return intr_status;
}

701
/* This helper function setups the registers for ECC and whether or not
L
Lucas De Marchi 已提交
702
 * the spare area will be transferred. */
703
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
704 705
				bool transfer_spare)
{
706
	int ecc_en_flag = 0, transfer_spare_flag = 0;
707 708 709 710 711 712

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
713 714
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
715
			denali->flash_reg + TRANSFER_SPARE_REG);
716 717
}

718
/* sends a pipeline command operation to the controller. See the Denali NAND
719
 * controller's user guide for more information (section 4.2.3.6).
720
 */
721 722 723 724 725
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
726 727
{
	int status = PASS;
728
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
729 730
		 irq_mask = 0;

731
	if (op == DENALI_READ)
732
		irq_mask = INTR_STATUS__LOAD_COMP;
733 734 735 736
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
737 738 739 740

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	/* clear interrupts */
741
	clear_interrupts(denali);
742 743 744

	addr = BANK(denali->flash_bank) | denali->page;

745
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
746
		cmd = MODE_01 | addr;
747
		iowrite32(cmd, denali->flash_mem);
748
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
749
		/* read spare area */
750
		cmd = MODE_10 | addr;
751 752
		index_addr(denali, (uint32_t)cmd, access_type);

753
		cmd = MODE_01 | addr;
754
		iowrite32(cmd, denali->flash_mem);
755
	} else if (op == DENALI_READ) {
756
		/* setup page read request for access type */
757
		cmd = MODE_10 | addr;
758 759 760
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
761
		   use the pipeline commands in Spare area only mode. So we
762 763
		   don't.
		 */
764
		if (access_type == SPARE_ACCESS) {
765
			cmd = MODE_01 | addr;
766
			iowrite32(cmd, denali->flash_mem);
767
		} else {
768
			index_addr(denali, (uint32_t)cmd,
769
					PIPELINE_ACCESS | op | page_count);
770 771

			/* wait for command to be accepted
772 773
			 * can always use status0 bit as the
			 * mask is identical for each
774 775 776
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

777
			if (irq_status == 0) {
778
				dev_err(denali->dev,
779 780 781
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
782
				status = FAIL;
783
			} else {
784
				cmd = MODE_01 | addr;
785
				iowrite32(cmd, denali->flash_mem);
786 787 788 789 790 791 792
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
793 794 795
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
796 797 798
{
	uint32_t i = 0, *buf32;

799 800
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
801 802 803 804 805
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
806
		iowrite32(*buf32++, denali->flash_mem + 0x10);
807
	return i*4; /* intent is to return the number of bytes read */
808 809 810
}

/* helper function that simply reads a buffer from the flash */
811 812 813
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
814 815 816 817 818
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
819 820 821
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
822 823 824 825 826 827 828 829 830
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
831
	return i*4; /* intent is to return the number of bytes read */
832 833 834 835 836 837 838
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
839 840
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
841 842 843 844
	int status = 0;

	denali->page = page;

845
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
846
							DENALI_WRITE) == PASS) {
847 848 849 850 851
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

852
		if (irq_status == 0) {
853
			dev_err(denali->dev, "OOB write failed\n");
854 855
			status = -EIO;
		}
856
	} else {
857
		dev_err(denali->dev, "unable to send pipeline command\n");
858
		status = -EIO;
859 860 861 862 863 864 865 866
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
867
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
868
			 irq_status = 0, addr = 0x0, cmd = 0x0;
869 870 871

	denali->page = page;

872
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
873
							DENALI_READ) == PASS) {
874
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
875

876
		/* wait for command to be accepted
877 878 879 880 881
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
882
			dev_err(denali->dev, "page on OOB timeout %d\n",
883
					denali->page);
884 885 886 887 888

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
889
		 * if you are in MAIN_ACCESS.
890 891
		 */
		addr = BANK(denali->flash_bank) | denali->page;
892
		cmd = MODE_10 | addr;
893 894 895 896
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
	}
}

897
/* this function examines buffers to see if they contain data that
898 899
 * indicate that the buffer is part of an erased region of flash.
 */
900
static bool is_erased(uint8_t *buf, int len)
901 902 903 904 905 906 907 908 909 910 911 912
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
913 914
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
915 916
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

917
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
918
		       uint32_t irq_status, unsigned int *max_bitflips)
919 920
{
	bool check_erased_page = false;
921
	unsigned int bitflips = 0;
922

923
	if (irq_status & INTR_STATUS__ECC_ERR) {
924 925 926 927
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
928
		denali_set_intr_modes(denali, false);
929

930
		do {
931
			err_address = ioread32(denali->flash_reg +
932 933 934 935
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

936
			err_correction_info = ioread32(denali->flash_reg +
937
						ERR_CORRECTION_INFO);
938
			err_correction_value =
939 940 941
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

942
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
943
				/* If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
944
				 * means error happened in OOB, so we ignore
945 946 947 948 949 950 951 952 953 954 955 956
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 * */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
957 958 959
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
960
					bitflips++;
961
				}
962
			} else {
963
				/* if the error is not correctable, need to
964 965 966
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
967 968 969
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
970 971 972 973 974
		/* Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 * */
		while (!(read_interrupt_status(denali) &
975
				INTR_STATUS__ECC_TRANSACTION_DONE))
976 977 978
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
979
	}
980
	*max_bitflips = bitflips;
981 982 983 984
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
985
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
986 987 988
{
	uint32_t reg_val = 0x0;

989 990
	if (en)
		reg_val = DMA_ENABLE__FLAG;
991

992
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
993 994 995 996
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
997
static void denali_setup_dma(struct denali_nand_info *denali, int op)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1020
/* writes a page. user specifies type, and this function handles the
1021
 * configuration details. */
1022
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1023 1024 1025 1026 1027 1028 1029 1030
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1031 1032
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1044
	if (raw_xfer) {
1045
		/* transfer the data to the spare area */
1046 1047 1048
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1049 1050
	}

1051
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1052 1053

	clear_interrupts(denali);
1054
	denali_enable_dma(denali, true);
1055

1056
	denali_setup_dma(denali, DENALI_WRITE);
1057 1058 1059 1060

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1061
	if (irq_status == 0) {
1062
		dev_err(denali->dev,
1063 1064
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1065
		denali->status = NAND_STATUS_FAIL;
1066 1067
	}

1068
	denali_enable_dma(denali, false);
1069
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1070 1071

	return 0;
1072 1073 1074 1075
}

/* NAND core entry points */

1076
/* this is the callback that the NAND core calls to write a page. Since
1077 1078 1079
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 * */
1080
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1081
				const uint8_t *buf, int oob_required)
1082 1083
{
	/* for regular page writes, we let HW handle all the ECC
1084
	 * data written to the device. */
1085
	return write_page(mtd, chip, buf, false);
1086 1087
}

1088
/* This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1089
 * raw access is similar to ECC page writes, so all the work is done in the
1090
 * write_page() function above.
1091
 */
1092
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1093
					const uint8_t *buf, int oob_required)
1094
{
1095
	/* for raw page writes, we want to disable ECC and simply write
1096
	   whatever data is in the buffer. */
1097
	return write_page(mtd, chip, buf, true);
1098 1099
}

1100
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1101 1102
			    int page)
{
1103
	return write_oob_data(mtd, chip->oob_poi, page);
1104 1105
}

1106
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1107
			   int page)
1108 1109 1110
{
	read_oob_data(mtd, chip->oob_poi, page);

1111
	return 0;
1112 1113 1114
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1115
			    uint8_t *buf, int oob_required, int page)
1116
{
1117
	unsigned int max_bitflips;
1118 1119 1120 1121 1122 1123
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1124 1125
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1126 1127
	bool check_erased_page = false;

1128
	if (page != denali->page) {
1129
		dev_err(denali->dev, "IN %s: page %d is not"
1130 1131 1132 1133 1134
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1135 1136
	setup_ecc_for_xfer(denali, true, false);

1137
	denali_enable_dma(denali, true);
1138
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1139 1140

	clear_interrupts(denali);
1141
	denali_setup_dma(denali, DENALI_READ);
1142 1143 1144 1145

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1146
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1147 1148

	memcpy(buf, denali->buf.buf, mtd->writesize);
1149

1150
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1151
	denali_enable_dma(denali, false);
1152

1153
	if (check_erased_page) {
1154 1155 1156
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1157
		if (check_erased_page) {
1158 1159 1160 1161
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1162
		}
1163
	}
1164
	return max_bitflips;
1165 1166 1167
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1168
				uint8_t *buf, int oob_required, int page)
1169 1170 1171 1172 1173 1174 1175
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1176
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1177

1178
	if (page != denali->page) {
1179
		dev_err(denali->dev, "IN %s: page %d is not"
1180 1181 1182 1183 1184
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1185
	setup_ecc_for_xfer(denali, false, true);
1186
	denali_enable_dma(denali, true);
1187

1188
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1189 1190

	clear_interrupts(denali);
1191
	denali_setup_dma(denali, DENALI_READ);
1192 1193 1194 1195

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1196
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1197

1198
	denali_enable_dma(denali, false);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

1235
static int denali_erase(struct mtd_info *mtd, int page)
1236 1237 1238 1239 1240 1241
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

	/* clear interrupts */
1242
	clear_interrupts(denali);
1243 1244 1245 1246 1247 1248

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1249 1250
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1251

1252
	return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
1253 1254
}

1255
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1256 1257 1258
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1259 1260
	uint32_t addr, id;
	int i;
1261

1262
	switch (cmd) {
1263 1264 1265 1266 1267 1268
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1269
	case NAND_CMD_PARAM:
1270
		reset_buf(denali);
1271 1272 1273 1274 1275 1276 1277
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
1278
		for (i = 0; i < 8; i++) {
1279 1280 1281 1282
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1296
		pr_err(": unsupported command received 0x%x\n", cmd);
1297
		break;
1298 1299 1300 1301
	}
}

/* stubs for ECC functions not used by the NAND core */
1302
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1303 1304
				uint8_t *ecc_code)
{
1305
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1306
	dev_err(denali->dev,
1307
			"denali_ecc_calculate called unexpectedly\n");
1308 1309 1310 1311
	BUG();
	return -EIO;
}

1312
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1313 1314
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1315
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1316
	dev_err(denali->dev,
1317
			"denali_ecc_correct called unexpectedly\n");
1318 1319 1320 1321 1322 1323
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1324
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1325
	dev_err(denali->dev,
1326
			"denali_ecc_hwctl called unexpectedly\n");
1327 1328 1329 1330 1331 1332 1333
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1334 1335 1336 1337 1338 1339 1340
	/* tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 * */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1341
	detect_max_banks(denali);
1342
	denali_nand_reset(denali);
1343 1344
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1345
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1346

1347
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1348 1349

	/* Should set value for these registers when init */
1350 1351
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1352 1353
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 * */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1363 1364
};

1365 1366 1367
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1393
/* initialize driver data structures */
1394
static void denali_drv_init(struct denali_nand_info *denali)
1395 1396 1397 1398
{
	denali->idx = 0;

	/* setup interrupt handler */
1399
	/* the completion object will be used to notify
1400 1401 1402 1403
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1404
	 * with any element that might be access shared
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1415
int denali_init(struct denali_nand_info *denali)
1416
{
1417
	int ret;
1418

1419
	if (denali->platform == INTEL_CE4100) {
1420 1421 1422
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1423
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1424 1425
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1426 1427 1428
		}
	}

1429 1430 1431 1432 1433
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1434

1435
	denali->mtd.dev.parent = denali->dev;
1436 1437 1438
	denali_hw_init(denali);
	denali_drv_init(denali);

1439 1440
	/* denali_isr register is done after all the hardware
	 * initilization is finished*/
1441
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1442
			DENALI_NAND_NAME, denali)) {
1443 1444
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1445 1446 1447
	}

	/* now that our ISR is registered, we can enable interrupts */
1448
	denali_set_intr_modes(denali, true);
1449
	denali->mtd.name = "denali-nand";
1450 1451 1452 1453 1454 1455 1456 1457 1458
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1459
	/* scan for NAND devices attached to the controller
1460
	 * this is the first stage in a two step process to register
1461
	 * with the nand subsystem */
1462
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1463
		ret = -ENXIO;
1464
		goto failed_req_irq;
1465
	}
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1490
		goto failed_req_irq;
1491 1492
	}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	/* support for multi nand
	 * MTD known nothing about multi nand,
	 * so we should tell it the real pagesize
	 * and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1512 1513 1514
	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1515 1516 1517 1518 1519 1520

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1521
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1522
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1523 1524
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1525 1526 1527 1528
	/* Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1529
	if (!nand_is_slc(&denali->nand) &&
1530 1531 1532 1533
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1534
		denali->nand.ecc.strength = 15;
1535 1536
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1537
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1538 1539 1540
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
1541 1542
		pr_err("Your NAND chip OOB is not large enough to \
				contain 8bit ECC correction codes");
1543
		goto failed_req_irq;
1544
	} else {
M
Mike Dunn 已提交
1545
		denali->nand.ecc.strength = 8;
1546 1547
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1548
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1549 1550
	}

1551
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1552
	denali->nand.ecc.strength *= denali->devnum;
1553 1554 1555 1556 1557 1558 1559 1560
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1561 1562 1563 1564 1565 1566 1567 1568 1569
	/* Let driver know the total blocks number and
	 * how many blocks contained by each nand chip.
	 * blksperchip will help driver to know how many
	 * blocks is taken by FW.
	 * */
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1570 1571 1572
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1573 1574 1575 1576 1577
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1578
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1579 1580 1581 1582 1583 1584
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1585
	denali->nand.erase = denali_erase;
1586

1587
	if (nand_scan_tail(&denali->mtd)) {
1588
		ret = -ENXIO;
1589
		goto failed_req_irq;
1590 1591
	}

1592
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1593
	if (ret) {
1594
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1595
				ret);
1596
		goto failed_req_irq;
1597 1598 1599
	}
	return 0;

1600
failed_req_irq:
1601 1602
	denali_irq_cleanup(denali->irq, denali);

1603 1604
	return ret;
}
1605
EXPORT_SYMBOL(denali_init);
1606 1607

/* driver exit point */
1608
void denali_remove(struct denali_nand_info *denali)
1609
{
1610
	denali_irq_cleanup(denali->irq, denali);
1611 1612
	dma_unmap_single(denali->dev, denali->buf.dma_buf,
			denali->mtd.writesize + denali->mtd.oobsize,
1613
			DMA_BIDIRECTIONAL);
1614
}
1615
EXPORT_SYMBOL(denali_remove);