denali.c 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
22
#include <linux/dma-mapping.h>
23 24
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
25
#include <linux/slab.h>
26 27 28 29 30 31 32 33
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

34
/* We define a module parameter that allows the user to override
35 36 37 38 39 40
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
41 42
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
43 44 45 46 47

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
58

59
/* indicates whether or not the internal value for the flash bank is
60
 * valid or not */
61
#define CHIP_SELECT_INVALID	-1
62 63 64

#define SUPPORT_8BITECC		1

65
/* This macro divides two integers and rounds fractional values up
66 67 68 69 70 71 72 73 74
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
75
 * configuration options. */
76 77 78 79 80 81 82 83 84 85 86 87
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

88
/* this is a helper macro that allows us to
89 90 91 92 93 94 95 96 97 98 99 100
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
101 102 103 104
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
105 106
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

107 108 109 110 111
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
112
*/
113 114
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
115
{
116 117
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
118 119 120 121 122 123
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
124
	iowrite32(address, denali->flash_mem);
125 126 127
	*pdata = ioread32(denali->flash_mem + 0x10);
}

128
/* We need to buffer some data for some of the NAND core routines.
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

149 150 151 152 153
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
154 155 156 157 158 159
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
160 161
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;
162 163 164

	clear_interrupts(denali);

165
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
166 167

	irq_status = wait_for_irq(denali, irq_mask);
168

169
	if (irq_status & INTR_STATUS__TIME_OUT)
170
		dev_err(denali->dev, "reset bank failed.\n");
171 172 173
}

/* Reset the flash controller */
174
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
175 176 177
{
	uint32_t i;

178
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
179 180
		       __FILE__, __LINE__, __func__);

181
	for (i = 0 ; i < denali->max_banks; i++)
182 183
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
184

185
	for (i = 0 ; i < denali->max_banks; i++) {
186
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
187
		while (!(ioread32(denali->flash_reg +
188 189
				INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
190
			cpu_relax();
191 192
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
193
			dev_dbg(denali->dev,
194 195 196
			"NAND Reset operation timed out on bank %d\n", i);
	}

197
	for (i = 0; i < denali->max_banks; i++)
198 199
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			denali->flash_reg + INTR_STATUS(i));
200 201 202 203

	return PASS;
}

204 205 206
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
207
 */
208
static void nand_onfi_timing_set(struct denali_nand_info *denali,
209
								uint16_t mode)
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

231
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
268
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

296 297 298 299 300 301 302 303
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
304 305 306 307 308 309
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
310 311 312
	/* we needn't to do a reset here because driver has already
	 * reset all the banks before
	 * */
313 314 315 316 317
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
318 319
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
320 321 322
			break;
	}

323
	nand_onfi_timing_set(denali, i);
324 325 326 327 328 329 330 331 332

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

333 334
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
335
{
336
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
337
		/* Set timing register values according to datasheet */
338 339 340 341 342 343 344
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
345 346 347 348 349 350 351 352 353 354 355
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
356
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
357 358
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
359
		iowrite32(tmp,
360
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
361
#if SUPPORT_15BITECC
362
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
363
#elif SUPPORT_8BITECC
364
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
365 366 367 368
#endif
	}
}

369 370
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
371 372 373
{
	uint32_t main_size, spare_size;

374
	switch (device_id) {
375 376
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
377 378 379
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
380 381 382 383
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
384
		iowrite32(main_size,
385
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
386
		iowrite32(spare_size,
387
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
388
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
389
#if SUPPORT_15BITECC
390
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
391
#elif SUPPORT_8BITECC
392
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
393 394 395
#endif
		break;
	default:
396
		dev_warn(denali->dev,
397 398
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
399
			device_id);
400 401 402 403
	}
}

/* determines how many NAND chips are connected to the controller. Note for
404
 * Intel CE4100 devices we don't support more than one device.
405 406 407
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
408
	uint32_t id[denali->max_banks];
409 410 411
	int i;

	denali->total_used_banks = 1;
412
	for (i = 0; i < denali->max_banks; i++) {
413 414
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
415 416
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
417

418
		dev_dbg(denali->dev,
419 420 421 422 423 424 425 426 427 428 429 430 431
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

432
	if (denali->platform == INTEL_CE4100) {
433 434
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
435 436
		 * Multichip support is not enabled.
		 */
437
		if (denali->total_used_banks != 1) {
438
			dev_err(denali->dev,
439
					"Sorry, Intel CE4100 only supports "
440 441 442 443
					"a single NAND device.\n");
			BUG();
		}
	}
444
	dev_dbg(denali->dev,
445 446 447
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

448 449 450 451 452 453 454 455 456 457 458
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

459 460
static void detect_partition_feature(struct denali_nand_info *denali)
{
461 462 463 464 465 466
	/* For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 * */
467
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
468 469
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
470
			denali->fwblks =
471 472
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
473
			     denali->blksperchip)
474
			    +
475 476
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
477 478 479 480
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
481 482
}

483
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
484 485
{
	uint16_t status = PASS;
486 487
	uint32_t id_bytes[5], addr;
	uint8_t i, maf_id, device_id;
488

489
	dev_dbg(denali->dev,
490 491
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
492

493 494 495 496 497 498 499 500 501 502 503 504
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
505 506 507 508 509

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
510
	} else if (maf_id == 0xEC) { /* Samsung NAND */
511
		get_samsung_nand_para(denali, device_id);
512
	} else if (maf_id == 0x98) { /* Toshiba NAND */
513
		get_toshiba_nand_para(denali);
514 515
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
516 517
	}

518
	dev_info(denali->dev,
519 520 521
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
522 523 524
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
525
			ioread32(denali->flash_reg + RE_2_RE),
526 527 528 529 530 531 532 533 534 535 536
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
537
	 * with a specific ONFI mode, we apply those changes here.
538 539
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
540
		nand_onfi_timing_set(denali, onfi_timing_mode);
541 542 543 544

	return status;
}

545
static void denali_set_intr_modes(struct denali_nand_info *denali,
546 547
					uint16_t INT_ENABLE)
{
548
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
549 550 551
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
552
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
553
	else
554
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
555 556 557
}

/* validation function to verify that the controlling software is making
558
 * a valid request
559 560 561
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
562
	return (flash_bank >= 0 && flash_bank < 4);
563 564 565 566 567
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;
568
	int i;
569 570

	/* Disable global interrupts */
571
	denali_set_intr_modes(denali, false);
572 573 574 575

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
576
	for (i = 0; i < denali->max_banks; ++i)
577
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
578 579 580 581 582 583

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
584
	denali_set_intr_modes(denali, false);
585 586 587
	free_irq(irqnum, denali);
}

588 589
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
590
{
591 592
	int i;

593
	for (i = 0; i < denali->max_banks; ++i)
594
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
595 596 597
}

/* This function only returns when an interrupt that this driver cares about
598
 * occurs. This is to reduce the overhead of servicing interrupts
599 600 601
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
602
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
603 604 605
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
606 607
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
608 609 610
{
	uint32_t intr_status_reg = 0;

611
	intr_status_reg = INTR_STATUS(denali->flash_bank);
612

613
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
614 615 616 617 618 619 620 621
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
622
	clear_interrupt(denali, status);
623 624 625 626 627 628 629 630 631

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

632
	intr_status_reg = INTR_STATUS(denali->flash_bank);
633 634 635 636

	return ioread32(denali->flash_reg + intr_status_reg);
}

637 638 639
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
640 641 642 643 644 645 646 647 648
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

649 650
	/* check to see if a valid NAND chip has
	 * been selected.
651
	 */
652
	if (is_flash_bank_valid(denali->flash_bank)) {
653
		/* check to see if controller generated
654
		 * the interrupt, since this is a shared interrupt */
655 656
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

681
	do {
682 683
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
684 685 686
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

687
		if (intr_status & irq_mask) {
688 689 690 691
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
692
		} else {
693 694
			/* these are not the interrupts you are looking for -
			 * need to wait again */
695 696 697 698 699
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

700
	if (comp_res == 0) {
701
		/* timeout */
702 703
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
704 705 706 707 708 709

		intr_status = 0;
	}
	return intr_status;
}

710
/* This helper function setups the registers for ECC and whether or not
L
Lucas De Marchi 已提交
711
 * the spare area will be transferred. */
712
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
713 714
				bool transfer_spare)
{
715
	int ecc_en_flag = 0, transfer_spare_flag = 0;
716 717 718 719 720 721

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
722 723
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
724
			denali->flash_reg + TRANSFER_SPARE_REG);
725 726
}

727
/* sends a pipeline command operation to the controller. See the Denali NAND
728
 * controller's user guide for more information (section 4.2.3.6).
729
 */
730 731 732 733 734
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
735 736
{
	int status = PASS;
737
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
738 739
		 irq_mask = 0;

740
	if (op == DENALI_READ)
741
		irq_mask = INTR_STATUS__LOAD_COMP;
742 743 744 745
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
746 747 748 749

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	/* clear interrupts */
750
	clear_interrupts(denali);
751 752 753

	addr = BANK(denali->flash_bank) | denali->page;

754
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
755
		cmd = MODE_01 | addr;
756
		iowrite32(cmd, denali->flash_mem);
757
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
758
		/* read spare area */
759
		cmd = MODE_10 | addr;
760 761
		index_addr(denali, (uint32_t)cmd, access_type);

762
		cmd = MODE_01 | addr;
763
		iowrite32(cmd, denali->flash_mem);
764
	} else if (op == DENALI_READ) {
765
		/* setup page read request for access type */
766
		cmd = MODE_10 | addr;
767 768 769
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
770
		   use the pipeline commands in Spare area only mode. So we
771 772
		   don't.
		 */
773
		if (access_type == SPARE_ACCESS) {
774
			cmd = MODE_01 | addr;
775
			iowrite32(cmd, denali->flash_mem);
776
		} else {
777 778
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
779 780

			/* wait for command to be accepted
781 782
			 * can always use status0 bit as the
			 * mask is identical for each
783 784 785
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

786
			if (irq_status == 0) {
787
				dev_err(denali->dev,
788 789 790
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
791
				status = FAIL;
792
			} else {
793
				cmd = MODE_01 | addr;
794
				iowrite32(cmd, denali->flash_mem);
795 796 797 798 799 800 801
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
802 803 804
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
805 806 807
{
	uint32_t i = 0, *buf32;

808 809
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
810 811 812 813 814
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
815
		iowrite32(*buf32++, denali->flash_mem + 0x10);
816
	return i*4; /* intent is to return the number of bytes read */
817 818 819
}

/* helper function that simply reads a buffer from the flash */
820 821 822
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
823 824 825 826 827
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
828 829 830
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
831 832 833 834 835 836 837 838 839
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
840
	return i*4; /* intent is to return the number of bytes read */
841 842 843 844 845 846 847
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
848 849
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
850 851 852 853
	int status = 0;

	denali->page = page;

854
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
855
							DENALI_WRITE) == PASS) {
856 857 858 859 860
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

861
		if (irq_status == 0) {
862
			dev_err(denali->dev, "OOB write failed\n");
863 864
			status = -EIO;
		}
865
	} else {
866
		dev_err(denali->dev, "unable to send pipeline command\n");
867
		status = -EIO;
868 869 870 871 872 873 874 875
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
876
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
877
			 irq_status = 0, addr = 0x0, cmd = 0x0;
878 879 880

	denali->page = page;

881
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
882
							DENALI_READ) == PASS) {
883
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
884

885
		/* wait for command to be accepted
886 887 888 889 890
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
891
			dev_err(denali->dev, "page on OOB timeout %d\n",
892
					denali->page);
893 894 895 896 897

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
898
		 * if you are in MAIN_ACCESS.
899 900
		 */
		addr = BANK(denali->flash_bank) | denali->page;
901
		cmd = MODE_10 | addr;
902 903 904 905
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
	}
}

906
/* this function examines buffers to see if they contain data that
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
922 923
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
924 925
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

926
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
927
		       uint32_t irq_status, unsigned int *max_bitflips)
928 929
{
	bool check_erased_page = false;
930
	unsigned int bitflips = 0;
931

932
	if (irq_status & INTR_STATUS__ECC_ERR) {
933 934 935 936
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
937
		denali_set_intr_modes(denali, false);
938

939
		do {
940
			err_address = ioread32(denali->flash_reg +
941 942 943 944
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

945
			err_correction_info = ioread32(denali->flash_reg +
946
						ERR_CORRECTION_INFO);
947
			err_correction_value =
948 949 950
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

951
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
952
				/* If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
953
				 * means error happened in OOB, so we ignore
954 955 956 957 958 959 960 961 962 963 964 965
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 * */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
966 967 968
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
969
					bitflips++;
970
				}
971
			} else {
972
				/* if the error is not correctable, need to
973 974 975
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
976 977 978
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
979 980 981 982 983
		/* Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 * */
		while (!(read_interrupt_status(denali) &
984
				INTR_STATUS__ECC_TRANSACTION_DONE))
985 986 987
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
988
	}
989
	*max_bitflips = bitflips;
990 991 992 993
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
994
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
995 996 997
{
	uint32_t reg_val = 0x0;

998 999
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1000

1001
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1002 1003 1004 1005
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1006
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1029
/* writes a page. user specifies type, and this function handles the
1030
 * configuration details. */
1031
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1032 1033 1034 1035 1036 1037 1038 1039
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1040 1041
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1053
	if (raw_xfer) {
1054
		/* transfer the data to the spare area */
1055 1056 1057
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1058 1059
	}

1060
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1061 1062

	clear_interrupts(denali);
1063
	denali_enable_dma(denali, true);
1064

1065
	denali_setup_dma(denali, DENALI_WRITE);
1066 1067 1068 1069

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1070
	if (irq_status == 0) {
1071
		dev_err(denali->dev,
1072 1073
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1074
		denali->status =
1075
			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1076
			NAND_STATUS_FAIL : PASS;
1077 1078
	}

1079
	denali_enable_dma(denali, false);
1080
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1081 1082

	return 0;
1083 1084 1085 1086
}

/* NAND core entry points */

1087
/* this is the callback that the NAND core calls to write a page. Since
1088 1089 1090
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 * */
1091
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1092
				const uint8_t *buf, int oob_required)
1093 1094
{
	/* for regular page writes, we let HW handle all the ECC
1095
	 * data written to the device. */
1096
	return write_page(mtd, chip, buf, false);
1097 1098
}

1099
/* This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1100
 * raw access is similar to ECC page writes, so all the work is done in the
1101
 * write_page() function above.
1102
 */
1103
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1104
					const uint8_t *buf, int oob_required)
1105
{
1106
	/* for raw page writes, we want to disable ECC and simply write
1107
	   whatever data is in the buffer. */
1108
	return write_page(mtd, chip, buf, true);
1109 1110
}

1111
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1112 1113
			    int page)
{
1114
	return write_oob_data(mtd, chip->oob_poi, page);
1115 1116
}

1117
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1118
			   int page)
1119 1120 1121
{
	read_oob_data(mtd, chip->oob_poi, page);

1122
	return 0;
1123 1124 1125
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1126
			    uint8_t *buf, int oob_required, int page)
1127
{
1128
	unsigned int max_bitflips;
1129 1130 1131 1132 1133 1134
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1135 1136
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1137 1138
	bool check_erased_page = false;

1139
	if (page != denali->page) {
1140
		dev_err(denali->dev, "IN %s: page %d is not"
1141 1142 1143 1144 1145
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1146 1147
	setup_ecc_for_xfer(denali, true, false);

1148
	denali_enable_dma(denali, true);
1149
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1150 1151

	clear_interrupts(denali);
1152
	denali_setup_dma(denali, DENALI_READ);
1153 1154 1155 1156

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1157
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1158 1159

	memcpy(buf, denali->buf.buf, mtd->writesize);
1160

1161
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1162
	denali_enable_dma(denali, false);
1163

1164
	if (check_erased_page) {
1165 1166 1167
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1168
		if (check_erased_page) {
1169 1170 1171 1172
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1173
		}
1174
	}
1175
	return max_bitflips;
1176 1177 1178
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1179
				uint8_t *buf, int oob_required, int page)
1180 1181 1182 1183 1184 1185 1186
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1187
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1188

1189
	if (page != denali->page) {
1190
		dev_err(denali->dev, "IN %s: page %d is not"
1191 1192 1193 1194 1195
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1196
	setup_ecc_for_xfer(denali, false, true);
1197
	denali_enable_dma(denali, true);
1198

1199
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1200 1201

	clear_interrupts(denali);
1202
	denali_setup_dma(denali, DENALI_READ);
1203 1204 1205 1206

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1207
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1208

1209
	denali_enable_dma(denali, false);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

	/* clear interrupts */
1253
	clear_interrupts(denali);
1254 1255 1256 1257 1258 1259

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1260 1261
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1262

1263
	denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1264
						NAND_STATUS_FAIL : PASS;
1265 1266
}

1267
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1268 1269 1270
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1271 1272
	uint32_t addr, id;
	int i;
1273

1274
	switch (cmd) {
1275 1276 1277 1278 1279 1280
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1281
	case NAND_CMD_PARAM:
1282
		reset_buf(denali);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
		for (i = 0; i < 5; i++) {
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		printk(KERN_ERR ": unsupported command"
				" received 0x%x\n", cmd);
		break;
1311 1312 1313 1314
	}
}

/* stubs for ECC functions not used by the NAND core */
1315
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1316 1317
				uint8_t *ecc_code)
{
1318
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1319
	dev_err(denali->dev,
1320
			"denali_ecc_calculate called unexpectedly\n");
1321 1322 1323 1324
	BUG();
	return -EIO;
}

1325
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1326 1327
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1328
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1329
	dev_err(denali->dev,
1330
			"denali_ecc_correct called unexpectedly\n");
1331 1332 1333 1334 1335 1336
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1337
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1338
	dev_err(denali->dev,
1339
			"denali_ecc_hwctl called unexpectedly\n");
1340 1341 1342 1343 1344 1345 1346
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1347 1348 1349 1350 1351 1352 1353
	/* tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 * */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1354
	detect_max_banks(denali);
1355
	denali_nand_reset(denali);
1356 1357
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1358
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1359

1360
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1361 1362

	/* Should set value for these registers when init */
1363 1364
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1365 1366
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1367 1368
}

1369 1370 1371 1372 1373 1374 1375
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 * */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1376 1377
};

1378 1379 1380
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1406
/* initialize driver data structures */
1407 1408 1409 1410 1411
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1412
	/* the completion object will be used to notify
1413 1414 1415 1416
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1417
	 * with any element that might be access shared
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1443
		goto failed_alloc_memery;
1444 1445 1446
	}

	if (id->driver_data == INTEL_CE4100) {
1447 1448 1449
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1450
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1451 1452
			printk(KERN_ERR "Intel CE4100 only supports"
					" ONFI timing mode 1 or below\n");
1453
			ret = -EINVAL;
1454
			goto failed_enable_dev;
1455 1456 1457 1458 1459 1460 1461 1462 1463
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
1464
		csr_len = pci_resource_len(dev, 0);
1465 1466 1467 1468 1469 1470 1471 1472 1473
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
		}
	}

	/* Is 32-bit DMA supported? */
1474
	ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
1475
	if (ret) {
1476
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1477
		goto failed_enable_dev;
1478
	}
1479 1480 1481
	denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
					     DENALI_BUF_SIZE,
					     DMA_BIDIRECTIONAL);
1482

1483
	if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
1484
		dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1485
		goto failed_enable_dev;
1486 1487 1488
	}

	pci_set_master(dev);
1489
	denali->dev = &dev->dev;
1490
	denali->mtd.dev.parent = &dev->dev;
1491 1492 1493 1494

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1495
		goto failed_dma_map;
1496 1497 1498 1499 1500 1501
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
1502
		goto failed_req_regions;
1503 1504 1505 1506 1507 1508
	}

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		ret = -ENOMEM;
1509
		goto failed_remap_reg;
1510 1511 1512 1513 1514
	}

	denali_hw_init(denali);
	denali_drv_init(denali);

1515 1516
	/* denali_isr register is done after all the hardware
	 * initilization is finished*/
1517 1518 1519 1520
	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
1521
		goto failed_remap_mem;
1522 1523 1524
	}

	/* now that our ISR is registered, we can enable interrupts */
1525
	denali_set_intr_modes(denali, true);
1526 1527 1528

	pci_set_drvdata(dev, denali);

1529
	denali->mtd.name = "denali-nand";
1530 1531 1532 1533 1534 1535 1536 1537 1538
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1539
	/* scan for NAND devices attached to the controller
1540
	 * this is the first stage in a two step process to register
1541
	 * with the nand subsystem */
1542
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1543
		ret = -ENXIO;
1544
		goto failed_req_irq;
1545
	}
1546

1547 1548 1549 1550 1551 1552 1553
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
	 */
	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
1554
		goto failed_req_irq;
1555 1556
	}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	/* support for multi nand
	 * MTD known nothing about multi nand,
	 * so we should tell it the real pagesize
	 * and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1576 1577 1578
	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1579 1580 1581 1582 1583 1584

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1585
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1586
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1587 1588
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1589 1590 1591 1592 1593 1594 1595 1596 1597
	/* Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
	if (denali->nand.cellinfo & 0xc &&
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1598
		denali->nand.ecc.strength = 15;
1599 1600
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1601
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1602 1603 1604 1605 1606
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
		printk(KERN_ERR "Your NAND chip OOB is not large enough to"
				" contain 8bit ECC correction codes");
1607
		goto failed_req_irq;
1608
	} else {
M
Mike Dunn 已提交
1609
		denali->nand.ecc.strength = 8;
1610 1611
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1612
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1613 1614
	}

1615
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1616
	denali->nand.ecc.strength *= denali->devnum;
1617 1618 1619 1620 1621 1622 1623 1624
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1625 1626 1627 1628 1629 1630 1631 1632 1633
	/* Let driver know the total blocks number and
	 * how many blocks contained by each nand chip.
	 * blksperchip will help driver to know how many
	 * blocks is taken by FW.
	 * */
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1634 1635 1636
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1637 1638 1639 1640 1641
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1642
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1643 1644 1645 1646 1647 1648 1649 1650
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

1651
	if (nand_scan_tail(&denali->mtd)) {
1652
		ret = -ENXIO;
1653
		goto failed_req_irq;
1654 1655
	}

1656
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1657
	if (ret) {
1658 1659
		dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
				ret);
1660
		goto failed_req_irq;
1661 1662 1663
	}
	return 0;

1664
failed_req_irq:
1665
	denali_irq_cleanup(dev->irq, denali);
1666
failed_remap_mem:
1667
	iounmap(denali->flash_mem);
1668 1669 1670
failed_remap_reg:
	iounmap(denali->flash_reg);
failed_req_regions:
1671
	pci_release_regions(dev);
1672
failed_dma_map:
1673 1674
	dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
			 DMA_BIDIRECTIONAL);
1675 1676 1677
failed_enable_dev:
	pci_disable_device(dev);
failed_alloc_memery:
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_release(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
1695 1696
	dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
			 DMA_BIDIRECTIONAL);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

A
Axel Lin 已提交
1710
module_pci_driver(denali_pci_driver);