denali.c 43.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
			INTR__ECC_TRANSACTION_DONE | \
			INTR__ECC_ERR | \
			INTR__PROGRAM_FAIL | \
			INTR__LOAD_COMP | \
			INTR__PROGRAM_COMP | \
			INTR__TIME_OUT | \
			INTR__ERASE_FAIL | \
			INTR__RST_COMP | \
			INTR__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64

65 66 67 68
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
69 70
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

71 72
/*
 * this macro allows us to convert from an MTD structure to our own
73 74
 * device context (denali) structure.
 */
75 76 77 78
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
79

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86 87 88 89 90
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

91 92 93 94
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
95 96 97 98
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
99 100 101 102
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
103 104
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

105 106 107 108
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
109
 * abstracts this common operation.
110
 */
111 112
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
113
{
114 115
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
116 117 118 119 120 121
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
122
	iowrite32(address, denali->flash_mem);
123 124 125
	*pdata = ioread32(denali->flash_mem + 0x10);
}

126 127 128 129
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
130 131 132 133 134 135 136 137 138 139 140 141 142
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
143
	uint32_t cmd;
144 145 146 147

	/* initialize the data buffer to store status */
	reset_buf(denali);

148 149 150 151 152
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
153 154 155 156 157
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
158
	uint32_t irq_status;
159
	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
160 161 162

	clear_interrupts(denali);

163
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
164 165

	irq_status = wait_for_irq(denali, irq_mask);
166

167
	if (irq_status & INTR__TIME_OUT)
168
		dev_err(denali->dev, "reset bank failed.\n");
169 170 171
}

/* Reset the flash controller */
172
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
173
{
174
	int i;
175

176
	for (i = 0; i < denali->max_banks; i++)
177
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
178
		denali->flash_reg + INTR_STATUS(i));
179

180
	for (i = 0; i < denali->max_banks; i++) {
181
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
182
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
183
			(INTR__RST_COMP | INTR__TIME_OUT)))
184
			cpu_relax();
185
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
186
			INTR__TIME_OUT)
187
			dev_dbg(denali->dev,
188 189 190
			"NAND Reset operation timed out on bank %d\n", i);
	}

191
	for (i = 0; i < denali->max_banks; i++)
192
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
193
			  denali->flash_reg + INTR_STATUS(i));
194 195 196 197

	return PASS;
}

198 199
/*
 * this routine calculates the ONFI timing values for a given mode and
200 201
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
202
 */
203
static void nand_onfi_timing_set(struct denali_nand_info *denali,
204
								uint16_t mode)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

243 244
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
245 246 247 248 249 250 251 252 253

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

254
	while (acc_clks * CLK_X - Trea[mode] < 3)
255 256
		acc_clks++;

257
	if (data_invalid - acc_clks * CLK_X < 2)
258
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259
			 __FILE__, __LINE__);
260 261 262 263 264 265 266 267 268 269

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
270
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
271 272 273 274 275 276 277 278 279
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
280 281
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
282 283
		acc_clks = 6;

284 285 286 287 288 289 290 291
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
292 293 294 295 296 297
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
298 299 300

	/*
	 * we needn't to do a reset here because driver has already
301
	 * reset all the banks before
302
	 */
303 304 305 306 307
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
308 309
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
310 311 312
			break;
	}

313
	nand_onfi_timing_set(denali, i);
314

315 316 317 318
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
319 320 321 322 323 324
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

325 326
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
327
{
328
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
329
		/* Set timing register values according to datasheet */
330 331 332 333 334 335 336
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
337 338 339 340 341
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
342 343 344 345
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
346
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
347
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
348
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
349 350
}

351 352
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
353
{
354
	switch (device_id) {
355 356
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
357 358 359 360
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
361 362
		break;
	default:
363
		dev_warn(denali->dev,
364
			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
365 366
			 "Will use default parameter values instead.\n",
			 device_id);
367 368 369
	}
}

370 371
/*
 * determines how many NAND chips are connected to the controller. Note for
372
 * Intel CE4100 devices we don't support more than one device.
373 374 375
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
376
	uint32_t id[denali->max_banks];
377 378 379
	int i;

	denali->total_used_banks = 1;
380
	for (i = 0; i < denali->max_banks; i++) {
381 382
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
383
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
384

385
		dev_dbg(denali->dev,
386 387 388 389 390 391 392 393 394 395 396 397 398
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

399
	if (denali->platform == INTEL_CE4100) {
400 401
		/*
		 * Platform limitations of the CE4100 device limit
402
		 * users to a single chip solution for NAND.
403 404
		 * Multichip support is not enabled.
		 */
405
		if (denali->total_used_banks != 1) {
406
			dev_err(denali->dev,
407
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
408 409 410
			BUG();
		}
	}
411
	dev_dbg(denali->dev,
412 413 414
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

415 416 417 418 419 420 421
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
422 423 424 425 426 427
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
428

429 430 431 432
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
433 434
}

435
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
436 437
{
	uint16_t status = PASS;
438
	uint32_t id_bytes[8], addr;
439 440
	uint8_t maf_id, device_id;
	int i;
441

442 443 444 445 446
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
447 448 449
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
450
	for (i = 0; i < 8; i++)
451 452 453
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
454 455 456 457 458

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
459
	} else if (maf_id == 0xEC) { /* Samsung NAND */
460
		get_samsung_nand_para(denali, device_id);
461
	} else if (maf_id == 0x98) { /* Toshiba NAND */
462
		get_toshiba_nand_para(denali);
463 464
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
465 466
	}

467
	dev_info(denali->dev,
468
			"Dump timing register values:\n"
469 470
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
471 472 473
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
474
			ioread32(denali->flash_reg + RE_2_RE),
475 476 477 478 479 480 481 482
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

483 484
	/*
	 * If the user specified to override the default timings
485
	 * with a specific ONFI mode, we apply those changes here.
486 487
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
488
		nand_onfi_timing_set(denali, onfi_timing_mode);
489 490 491 492

	return status;
}

493
static void denali_set_intr_modes(struct denali_nand_info *denali,
494 495 496
					uint16_t INT_ENABLE)
{
	if (INT_ENABLE)
497
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
498
	else
499
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
500 501
}

502 503
/*
 * validation function to verify that the controlling software is making
504
 * a valid request
505 506 507
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
508
	return flash_bank >= 0 && flash_bank < 4;
509 510 511 512
}

static void denali_irq_init(struct denali_nand_info *denali)
{
513
	uint32_t int_mask;
514
	int i;
515 516

	/* Disable global interrupts */
517
	denali_set_intr_modes(denali, false);
518 519 520 521

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
522
	for (i = 0; i < denali->max_banks; ++i)
523
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
524 525 526 527 528 529

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
530
	denali_set_intr_modes(denali, false);
531 532
}

533 534
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
535
{
536 537
	int i;

538
	for (i = 0; i < denali->max_banks; ++i)
539
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
540 541
}

542 543
/*
 * This function only returns when an interrupt that this driver cares about
544
 * occurs. This is to reduce the overhead of servicing interrupts
545 546 547
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
548
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
549 550 551
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
552 553
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
554
{
555
	uint32_t intr_status_reg;
556

557
	intr_status_reg = INTR_STATUS(denali->flash_bank);
558

559
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
560 561 562 563
}

static void clear_interrupts(struct denali_nand_info *denali)
{
564 565
	uint32_t status;

566 567 568
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
569
	clear_interrupt(denali, status);
570 571 572 573 574 575 576

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
577
	uint32_t intr_status_reg;
578

579
	intr_status_reg = INTR_STATUS(denali->flash_bank);
580 581 582 583

	return ioread32(denali->flash_reg + intr_status_reg);
}

584 585 586
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
587 588 589 590
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
591
	uint32_t irq_status;
592 593 594 595
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

596
	/* check to see if a valid NAND chip has been selected. */
597
	if (is_flash_bank_valid(denali->flash_bank)) {
598 599 600 601
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
602 603
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
604 605 606
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
607 608 609 610
			/*
			 * store the status in the device context for someone
			 * to read
			 */
611 612 613 614 615 616 617 618 619 620 621 622 623
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
624 625
	unsigned long comp_res;
	uint32_t intr_status;
626 627
	unsigned long timeout = msecs_to_jiffies(1000);

628
	do {
629 630
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
631 632 633
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

634
		if (intr_status & irq_mask) {
635 636 637 638 639
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
640 641 642 643 644 645

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
646 647
	} while (comp_res != 0);

648
	if (comp_res == 0) {
649
		/* timeout */
650
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
651
				intr_status, irq_mask);
652 653 654 655 656 657

		intr_status = 0;
	}
	return intr_status;
}

658 659 660 661
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
662
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
663 664
				bool transfer_spare)
{
665
	int ecc_en_flag, transfer_spare_flag;
666 667 668 669 670 671

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
672
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
673
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
674 675
}

676 677
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
678
 * controller's user guide for more information (section 4.2.3.6).
679
 */
680
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
681 682
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
683 684
{
	int status = PASS;
685
	uint32_t addr, cmd;
686 687 688

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

689
	clear_interrupts(denali);
690 691 692

	addr = BANK(denali->flash_bank) | denali->page;

693
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
694
		cmd = MODE_01 | addr;
695
		iowrite32(cmd, denali->flash_mem);
696
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
697
		/* read spare area */
698
		cmd = MODE_10 | addr;
699
		index_addr(denali, cmd, access_type);
700

701
		cmd = MODE_01 | addr;
702
		iowrite32(cmd, denali->flash_mem);
703
	} else if (op == DENALI_READ) {
704
		/* setup page read request for access type */
705
		cmd = MODE_10 | addr;
706
		index_addr(denali, cmd, access_type);
707

708 709
		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
710 711 712 713 714
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
715
static int write_data_to_flash_mem(struct denali_nand_info *denali,
716
				   const uint8_t *buf, int len)
717
{
718 719
	uint32_t *buf32;
	int i;
720

721 722 723 724
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
725 726 727 728 729
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
730
		iowrite32(*buf32++, denali->flash_mem + 0x10);
731
	return i * 4; /* intent is to return the number of bytes read */
732 733 734
}

/* helper function that simply reads a buffer from the flash */
735
static int read_data_from_flash_mem(struct denali_nand_info *denali,
736
				    uint8_t *buf, int len)
737
{
738 739
	uint32_t *buf32;
	int i;
740

741 742 743 744 745
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
746 747 748 749 750 751 752
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
753
	return i * 4; /* intent is to return the number of bytes read */
754 755 756 757 758 759
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
760
	uint32_t irq_status;
761
	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
762 763 764 765
	int status = 0;

	denali->page = page;

766
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
767
							DENALI_WRITE) == PASS) {
768 769 770 771 772
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

773
		if (irq_status == 0) {
774
			dev_err(denali->dev, "OOB write failed\n");
775 776
			status = -EIO;
		}
777
	} else {
778
		dev_err(denali->dev, "unable to send pipeline command\n");
779
		status = -EIO;
780 781 782 783 784 785 786 787
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
788
	uint32_t irq_mask = INTR__LOAD_COMP;
789
	uint32_t irq_status, addr, cmd;
790 791 792

	denali->page = page;

793
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
794
							DENALI_READ) == PASS) {
795
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
796

797 798 799 800 801
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
802 803 804
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
805
			dev_err(denali->dev, "page on OOB timeout %d\n",
806
					denali->page);
807

808 809
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
810 811 812
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
813
		 * if you are in MAIN_ACCESS.
814 815
		 */
		addr = BANK(denali->flash_bank) | denali->page;
816
		cmd = MODE_10 | addr;
817
		index_addr(denali, cmd, MAIN_ACCESS);
818 819 820
	}
}

821 822
/*
 * this function examines buffers to see if they contain data that
823 824
 * indicate that the buffer is part of an erased region of flash.
 */
825
static bool is_erased(uint8_t *buf, int len)
826
{
827
	int i;
828

829 830 831 832 833 834 835 836 837 838
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
839
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
840
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
841 842
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

843 844
static int handle_ecc(struct mtd_info *mtd, struct denali_nand_info *denali,
		      uint8_t *buf, bool *check_erased_page)
845
{
846
	unsigned int bitflips = 0;
847 848 849 850 851
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/* read the ECC errors. we'll ignore them for now */
	denali_set_intr_modes(denali, false);

	do {
		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
		err_sector = ECC_SECTOR(err_addr);
		err_byte = ECC_BYTE(err_addr);

		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
		err_device = ECC_ERR_DEVICE(err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
			/*
			 * if the error is not correctable, need to look at the
			 * page to see if it is an erased page. if so, then
			 * it's not a real ECC error
			 */
			*check_erased_page = true;
		} else if (err_byte < ECC_SECTOR_SIZE) {
			/*
			 * If err_byte is larger than ECC_SECTOR_SIZE, means error
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

			offset = (err_sector * ECC_SECTOR_SIZE + err_byte) *
						denali->devnum + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!ECC_LAST_ERR(err_cor_info));

	/*
	 * Once handle all ecc errors, controller will trigger a
	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
	 * a while for this interrupt
	 */
	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
		cpu_relax();
	clear_interrupts(denali);
	denali_set_intr_modes(denali, true);

	return max_bitflips;
913 914 915
}

/* programs the controller to either enable/disable DMA transfers */
916
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
917
{
918
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
919 920 921 922
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
923
static void denali_setup_dma(struct denali_nand_info *denali, int op)
924
{
925
	uint32_t mode;
926
	const int page_count = 1;
927
	uint32_t addr = denali->buf.dma_buf;
928 929 930 931 932 933 934 935 936

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
937
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
938 939

	/* 3. set memory low address bits 23:8 */
940
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
941

942
	/* 4. interrupt when complete, burst len = 64 bytes */
943 944 945
	index_addr(denali, mode | 0x14000, 0x2400);
}

946 947 948 949
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
950
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
951 952 953 954
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
955
	size_t size = mtd->writesize + mtd->oobsize;
956
	uint32_t irq_status;
957
	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
958

959 960
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
961 962 963 964 965 966 967 968
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

969
	if (raw_xfer) {
970
		/* transfer the data to the spare area */
971 972 973
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
974 975
	}

976
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
977 978

	clear_interrupts(denali);
979
	denali_enable_dma(denali, true);
980

981
	denali_setup_dma(denali, DENALI_WRITE);
982 983 984 985

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

986
	if (irq_status == 0) {
987 988
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
989
		denali->status = NAND_STATUS_FAIL;
990 991
	}

992
	denali_enable_dma(denali, false);
993
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
994 995

	return 0;
996 997 998 999
}

/* NAND core entry points */

1000 1001
/*
 * this is the callback that the NAND core calls to write a page. Since
1002 1003
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1004
 */
1005
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1006
				const uint8_t *buf, int oob_required, int page)
1007
{
1008 1009 1010 1011
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1012
	return write_page(mtd, chip, buf, false);
1013 1014
}

1015 1016
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1017
 * raw access is similar to ECC page writes, so all the work is done in the
1018
 * write_page() function above.
1019
 */
1020
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1021 1022
				 const uint8_t *buf, int oob_required,
				 int page)
1023
{
1024 1025 1026 1027
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1028
	return write_page(mtd, chip, buf, true);
1029 1030
}

1031
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1032 1033
			    int page)
{
1034
	return write_oob_data(mtd, chip->oob_poi, page);
1035 1036
}

1037
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1038
			   int page)
1039 1040 1041
{
	read_oob_data(mtd, chip->oob_poi, page);

1042
	return 0;
1043 1044 1045
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1046
			    uint8_t *buf, int oob_required, int page)
1047
{
1048
	unsigned int max_bitflips = 0;
1049 1050 1051
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
1052
	size_t size = mtd->writesize + mtd->oobsize;
1053

1054
	uint32_t irq_status;
1055
	uint32_t irq_mask = INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1056 1057
	bool check_erased_page = false;

1058
	if (page != denali->page) {
1059 1060 1061
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1062 1063 1064
		BUG();
	}

1065 1066
	setup_ecc_for_xfer(denali, true, false);

1067
	denali_enable_dma(denali, true);
1068
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1069 1070

	clear_interrupts(denali);
1071
	denali_setup_dma(denali, DENALI_READ);
1072 1073 1074 1075

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1076
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1077 1078

	memcpy(buf, denali->buf.buf, mtd->writesize);
1079

1080 1081
	if (irq_status & INTR__ECC_ERR)
		max_bitflips = handle_ecc(mtd, denali, buf, &check_erased_page);
1082
	denali_enable_dma(denali, false);
1083

1084
	if (check_erased_page) {
1085
		read_oob_data(mtd, chip->oob_poi, denali->page);
1086 1087

		/* check ECC failures that may have occurred on erased pages */
1088
		if (check_erased_page) {
1089 1090 1091 1092
			if (!is_erased(buf, mtd->writesize))
				mtd->ecc_stats.failed++;
			if (!is_erased(buf, mtd->oobsize))
				mtd->ecc_stats.failed++;
1093
		}
1094
	}
1095
	return max_bitflips;
1096 1097 1098
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1099
				uint8_t *buf, int oob_required, int page)
1100 1101 1102
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1103
	size_t size = mtd->writesize + mtd->oobsize;
1104
	uint32_t irq_mask = INTR__DMA_CMD_COMP;
1105

1106
	if (page != denali->page) {
1107 1108 1109
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1110 1111 1112
		BUG();
	}

1113
	setup_ecc_for_xfer(denali, false, true);
1114
	denali_enable_dma(denali, true);
1115

1116
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1117 1118

	clear_interrupts(denali);
1119
	denali_setup_dma(denali, DENALI_READ);
1120 1121

	/* wait for operation to complete */
1122
	wait_for_irq(denali, irq_mask);
1123

1124
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1125

1126
	denali_enable_dma(denali, false);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1158

1159 1160 1161 1162 1163
	denali->status = 0;

	return status;
}

1164
static int denali_erase(struct mtd_info *mtd, int page)
1165 1166 1167
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1168
	uint32_t cmd, irq_status;
1169

1170
	clear_interrupts(denali);
1171 1172 1173

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1174
	index_addr(denali, cmd, 0x1);
1175 1176

	/* wait for erase to complete or failure to occur */
1177
	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1178

1179
	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1180 1181
}

1182
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1183 1184 1185
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1186 1187
	uint32_t addr, id;
	int i;
1188

1189
	switch (cmd) {
1190 1191 1192 1193 1194 1195
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1196
	case NAND_CMD_PARAM:
1197
		reset_buf(denali);
1198 1199
		/*
		 * sometimes ManufactureId read from register is not right
1200 1201
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1202
		 */
1203 1204
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1205
		index_addr(denali, addr | 1, col);
1206
		for (i = 0; i < 8; i++) {
1207
			index_addr_read_data(denali, addr | 2, &id);
1208
			write_byte_to_buf(denali, id);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1222
		pr_err(": unsupported command received 0x%x\n", cmd);
1223
		break;
1224 1225 1226 1227 1228 1229 1230
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1231 1232
	/*
	 * tell driver how many bit controller will skip before
1233 1234 1235
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1236
	 */
1237 1238
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1239
	detect_max_banks(denali);
1240
	denali_nand_reset(denali);
1241 1242
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1243
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1244

1245
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1246 1247

	/* Should set value for these registers when init */
1248 1249
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1250 1251
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1252 1253
}

1254 1255
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1256 1257
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1258
 */
1259 1260
#define ECC_8BITS	14
#define ECC_15BITS	26
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1320
/* initialize driver data structures */
1321
static void denali_drv_init(struct denali_nand_info *denali)
1322
{
1323 1324 1325 1326
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1327 1328
	init_completion(&denali->complete);

1329 1330 1331 1332
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1333 1334 1335 1336 1337 1338 1339 1340 1341
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1342
static int denali_multidev_fixup(struct denali_nand_info *denali)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devnum == 0) {
		denali->devnum = 1;
		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
	}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	if (denali->devnum == 1)
		return 0;

	if (denali->devnum != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devnum);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->bbtskipbytes <<= 1;

	return 0;
1391 1392
}

1393
int denali_init(struct denali_nand_info *denali)
1394
{
1395 1396
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1397
	int ret;
1398

1399
	if (denali->platform == INTEL_CE4100) {
1400 1401
		/*
		 * Due to a silicon limitation, we can only support
1402 1403
		 * ONFI timing mode 1 and below.
		 */
1404
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1405 1406
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1407 1408 1409
		}
	}

1410 1411 1412 1413 1414
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1415

1416
	mtd->dev.parent = denali->dev;
1417 1418 1419
	denali_hw_init(denali);
	denali_drv_init(denali);

1420 1421 1422 1423
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1424
		dev_err(denali->dev, "Unable to request IRQ\n");
1425
		return ret;
1426 1427 1428
	}

	/* now that our ISR is registered, we can enable interrupts */
1429
	denali_set_intr_modes(denali, true);
1430
	nand_set_flash_node(chip, denali->dev->of_node);
1431 1432 1433
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";
1434 1435

	/* register the driver with the NAND core subsystem */
1436 1437 1438 1439
	chip->select_chip = denali_select_chip;
	chip->cmdfunc = denali_cmdfunc;
	chip->read_byte = denali_read_byte;
	chip->waitfunc = denali_waitfunc;
1440

1441 1442
	/*
	 * scan for NAND devices attached to the controller
1443
	 * this is the first stage in a two step process to register
1444 1445
	 * with the nand subsystem
	 */
1446 1447
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1448
		goto failed_req_irq;
1449

1450 1451 1452
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1453
			     mtd->writesize + mtd->oobsize,
1454 1455 1456 1457 1458 1459 1460 1461 1462
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
1463
		dev_err(denali->dev, "No usable DMA configuration\n");
1464 1465 1466 1467
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1468
			     mtd->writesize + mtd->oobsize,
1469 1470
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1471
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1472
		ret = -EIO;
1473
		goto failed_req_irq;
1474 1475
	}

1476 1477
	/*
	 * second stage of the NAND scan
1478
	 * this stage requires information regarding ECC and
1479 1480
	 * bad block management.
	 */
1481 1482

	/* Bad block management */
1483 1484
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1485 1486

	/* skip the scan for now until we have OOB read and write support */
1487 1488 1489
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1490

1491
	/* no subpage writes on denali */
1492
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1493

1494 1495
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1496 1497 1498
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1499
	if (!nand_is_slc(chip) &&
1500 1501
			(mtd->oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (mtd->writesize /
1502 1503
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
1504 1505
		chip->ecc.strength = 15;
		chip->ecc.bytes = ECC_15BITS;
1506
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1507 1508
	} else if (mtd->oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (mtd->writesize /
1509
			ECC_SECTOR_SIZE))) {
1510
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1511
		goto failed_req_irq;
1512
	} else {
1513 1514
		chip->ecc.strength = 8;
		chip->ecc.bytes = ECC_8BITS;
1515
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1516 1517
	}

1518
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1519

1520
	/* override the default read operations */
1521
	chip->ecc.size = ECC_SECTOR_SIZE;
1522 1523 1524 1525 1526 1527 1528
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1529

1530 1531 1532
	ret = denali_multidev_fixup(denali);
	if (ret)
		goto failed_req_irq;
1533

1534 1535
	ret = nand_scan_tail(mtd);
	if (ret)
1536
		goto failed_req_irq;
1537

1538
	ret = mtd_device_register(mtd, NULL, 0);
1539
	if (ret) {
1540
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1541
		goto failed_req_irq;
1542 1543 1544
	}
	return 0;

1545
failed_req_irq:
1546 1547
	denali_irq_cleanup(denali->irq, denali);

1548 1549
	return ret;
}
1550
EXPORT_SYMBOL(denali_init);
1551 1552

/* driver exit point */
1553
void denali_remove(struct denali_nand_info *denali)
1554
{
1555
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1556 1557 1558 1559 1560
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1561
	int bufsize = mtd->writesize + mtd->oobsize;
1562

1563
	nand_release(mtd);
1564
	denali_irq_cleanup(denali->irq, denali);
1565
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1566
			 DMA_BIDIRECTIONAL);
1567
}
1568
EXPORT_SYMBOL(denali_remove);