denali.c 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32
/* We define a module parameter that allows the user to override
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
					" use default timings");

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
			INTR_STATUS0__ECC_TRANSACTION_DONE | \
			INTR_STATUS0__ECC_ERR | \
			INTR_STATUS0__PROGRAM_FAIL | \
			INTR_STATUS0__LOAD_COMP | \
			INTR_STATUS0__PROGRAM_COMP | \
			INTR_STATUS0__TIME_OUT | \
			INTR_STATUS0__ERASE_FAIL | \
			INTR_STATUS0__RST_COMP | \
			INTR_STATUS0__ERASE_COMP)

57
/* indicates whether or not the internal value for the flash bank is
58
   valid or not */
59
#define CHIP_SELECT_INVALID	-1
60 61 62

#define SUPPORT_8BITECC		1

63
/* This macro divides two integers and rounds fractional values up
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
   configuration options. */
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

86
/* this is a helper macro that allows us to
87 88 89 90 91 92 93 94 95 96 97
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};


98 99
/* these are static lookup tables that give us easy access to
   registers in the NAND controller.
100
 */
101 102 103
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
						  INTR_STATUS1,
						  INTR_STATUS2,
104 105 106
						  INTR_STATUS3};

static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
107 108 109
							DEVICE_RESET__BANK1,
							DEVICE_RESET__BANK2,
							DEVICE_RESET__BANK3};
110 111

static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
112 113 114
							INTR_STATUS1__TIME_OUT,
							INTR_STATUS2__TIME_OUT,
							INTR_STATUS3__TIME_OUT};
115 116

static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
117 118 119
							INTR_STATUS1__RST_COMP,
							INTR_STATUS2__RST_COMP,
							INTR_STATUS3__RST_COMP};
120 121 122 123 124 125 126 127 128 129 130 131 132 133

/* specifies the debug level of the driver */
static int nand_debug_level = 0;

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

#define DEBUG_DENALI 0

/* This is a wrapper for writing to the denali registers.
 * this allows us to create debug information so we can
134
 * observe how the driver is programming the device.
135 136 137
 * it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
138
	iowrite32(value, addr);
139 140

#if DEBUG_DENALI
141
	printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
142
#endif
143
}
144

145 146 147 148
/* Certain operations for the denali NAND controller use an indexed mode to read/write
   data. The operation is performed by writing the address value of the command to
   the device memory followed by the data. This function abstracts this common
   operation.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
*/
static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
{
	denali_write32(address, denali->flash_mem);
	denali_write32(data, denali->flash_mem + 0x10);
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
	denali_write32(address, denali->flash_mem);
	*pdata = ioread32(denali->flash_mem + 0x10);
}

164
/* We need to buffer some data for some of the NAND core routines.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

	/* initiate a device status read */
186
	cmd = MODE_11 | BANK(denali->flash_bank);
187 188 189 190 191 192 193
	index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
	denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);

	/* update buffer with status value */
	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));

#if DEBUG_DENALI
194
	printk(KERN_INFO "device reporting status value of 0x%2x\n", denali->buf.buf[0]);
195 196 197 198 199 200 201
#endif
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
202
	uint32_t irq_mask = reset_complete[denali->flash_bank] |
203 204 205 206 207 208 209 210 211
			    operation_timeout[denali->flash_bank];
	int bank = 0;

	clear_interrupts(denali);

	bank = device_reset_banks[denali->flash_bank];
	denali_write32(bank, denali->flash_reg + DEVICE_RESET);

	irq_status = wait_for_irq(denali, irq_mask);
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	if (irq_status & operation_timeout[denali->flash_bank])
		printk(KERN_ERR "reset bank failed.\n");
}

/* Reset the flash controller */
static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
{
	uint32_t i;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
		denali_write32(reset_complete[i] | operation_timeout[i],
		denali->flash_reg + intr_status_addresses[i]);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
		denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
			(reset_complete[i] | operation_timeout[i])))
			;
		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
			operation_timeout[i])
			nand_dbg_print(NAND_DBG_WARN,
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
		denali_write32(reset_complete[i] | operation_timeout[i],
			denali->flash_reg + intr_status_addresses[i]);

	return PASS;
}

/* this routine calculates the ONFI timing values for a given mode and programs
 * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
   routine.
 */
static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
		nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

	denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
	denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
	denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
	denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
	denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}

/* configures the initial ECC settings for the controller */
static void set_ecc_config(struct denali_nand_info *denali)
{
#if SUPPORT_8BITECC
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif

	if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
		== 1) {
		denali->dev_info.wECCBytesPerSector = 4;
		denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
		denali->dev_info.wNumPageSpareFlag =
			denali->dev_info.wPageSpareSize -
			denali->dev_info.wPageDataSize /
			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
			denali->dev_info.wECCBytesPerSector
			- denali->dev_info.wSpareSkipBytes;
	} else {
		denali->dev_info.wECCBytesPerSector =
			(ioread32(denali->flash_reg + ECC_CORRECTION) &
			ECC_CORRECTION__VALUE) * 13 / 8;
		if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
			denali->dev_info.wECCBytesPerSector += 2;
		else
			denali->dev_info.wECCBytesPerSector += 1;

		denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
		denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
			denali->dev_info.wPageDataSize /
			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
			denali->dev_info.wECCBytesPerSector
			- denali->dev_info.wSpareSkipBytes;
	}
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
	uint16_t blks_lun_l, blks_lun_h, n_of_luns;
	uint32_t blockperlun, id;

	denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);

	while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
		INTR_STATUS0__RST_COMP) |
		(ioread32(denali->flash_reg + INTR_STATUS0) &
		INTR_STATUS0__TIME_OUT)))
		;

	if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
		denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
		while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__RST_COMP) |
			(ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__TIME_OUT)))
			;

		if (ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__RST_COMP) {
			denali_write32(DEVICE_RESET__BANK2,
				denali->flash_reg + DEVICE_RESET);
			while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__RST_COMP) |
				(ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__TIME_OUT)))
				;

			if (ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__RST_COMP) {
				denali_write32(DEVICE_RESET__BANK3,
					denali->flash_reg + DEVICE_RESET);
				while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
					INTR_STATUS3__RST_COMP) |
					(ioread32(denali->flash_reg + INTR_STATUS3) &
					INTR_STATUS3__TIME_OUT)))
					;
			} else {
				printk(KERN_ERR "Getting a time out for bank 2!\n");
			}
		} else {
			printk(KERN_ERR "Getting a time out for bank 1!\n");
		}
	}

	denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
	denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
	denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
	denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);

	denali->dev_info.wONFIDevFeatures =
		ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
	denali->dev_info.wONFIOptCommands =
		ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
	denali->dev_info.wONFITimingMode =
		ioread32(denali->flash_reg + ONFI_TIMING_MODE);
	denali->dev_info.wONFIPgmCacheTimingMode =
		ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);

	n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
	blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
	blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);

	blockperlun = (blks_lun_h << 16) | blks_lun_l;

	denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;

	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
			break;
	}

	NAND_ONFi_Timing_Mode(denali, i);

	index_addr(denali, MODE_11 | 0, 0x90);
	index_addr(denali, MODE_11 | 1, 0);

	for (i = 0; i < 3; i++)
		index_addr_read_data(denali, MODE_11 | 2, &id);

	nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);

	denali->dev_info.MLCDevice = id & 0x0C;

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

static void get_samsung_nand_para(struct denali_nand_info *denali)
{
	uint8_t no_of_planes;
	uint32_t blk_size;
	uint64_t plane_size, capacity;
	uint32_t id_bytes[5];
	int i;

	index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
	index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);

	nand_dbg_print(NAND_DBG_DEBUG,
		"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
		id_bytes[0], id_bytes[1], id_bytes[2],
		id_bytes[3], id_bytes[4]);

	if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
		/* Set timing register values according to datasheet */
		denali_write32(5, denali->flash_reg + ACC_CLKS);
		denali_write32(20, denali->flash_reg + RE_2_WE);
		denali_write32(12, denali->flash_reg + WE_2_RE);
		denali_write32(14, denali->flash_reg + ADDR_2_DATA);
		denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
	}

	no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
	plane_size  = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
	blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
	capacity = (uint64_t)128 * plane_size * no_of_planes;

	do_div(capacity, blk_size);
	denali->dev_info.wTotalBlocks = capacity;
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	void __iomem *scratch_reg;
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
		denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
	}

	/* As Toshiba NAND can not provide it's block number, */
	/* so here we need user to provide the correct block */
	/* number in a scratch register before the Linux NAND */
	/* driver is loaded. If no valid value found in the scratch */
	/* register, then we use default block number value */
	scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
	if (!scratch_reg) {
		printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
			__FILE__, __LINE__);
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	} else {
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
		denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
		if (denali->dev_info.wTotalBlocks < 512)
			denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
		iounmap(scratch_reg);
	}
}

static void get_hynix_nand_para(struct denali_nand_info *denali)
{
	void __iomem *scratch_reg;
	uint32_t main_size, spare_size;

	switch (denali->dev_info.wDeviceID) {
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
		denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
		denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
		denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
		denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
		denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
		denali->dev_info.MLCDevice  = 1;
		break;
	default:
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
			denali->dev_info.wDeviceID);
	}

	scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
	if (!scratch_reg) {
		printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
			__FILE__, __LINE__);
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	} else {
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
		denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
		if (denali->dev_info.wTotalBlocks < 512)
			denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
		iounmap(scratch_reg);
	}
}

/* determines how many NAND chips are connected to the controller. Note for
611
   Intel CE4100 devices we don't support more than one device.
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[LLD_MAX_FLASH_BANKS];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
		index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);

		nand_dbg_print(NAND_DBG_DEBUG,
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

638
	if (denali->platform == INTEL_CE4100) {
639 640
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
641 642
		 * Multichip support is not enabled.
		 */
643
		if (denali->total_used_banks != 1) {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
			printk(KERN_ERR "Sorry, Intel CE4100 only supports "
					"a single NAND device.\n");
			BUG();
		}
	}
	nand_dbg_print(NAND_DBG_DEBUG,
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
			denali->dev_info.wSpectraStartBlock =
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			      MIN_MAX_BANK_1__MIN_VALUE) *
			     denali->dev_info.wTotalBlocks)
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
			    MIN_BLK_ADDR_1__VALUE);

			denali->dev_info.wSpectraEndBlock =
			    (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			       MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
			     denali->dev_info.wTotalBlocks)
			    +
			    (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
			    MAX_BLK_ADDR_1__VALUE);

			denali->dev_info.wTotalBlocks *= denali->total_used_banks;

			if (denali->dev_info.wSpectraEndBlock >=
			    denali->dev_info.wTotalBlocks) {
				denali->dev_info.wSpectraEndBlock =
				    denali->dev_info.wTotalBlocks - 1;
			}

			denali->dev_info.wDataBlockNum =
				denali->dev_info.wSpectraEndBlock -
				denali->dev_info.wSpectraStartBlock + 1;
		} else {
			denali->dev_info.wTotalBlocks *= denali->total_used_banks;
			denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
			denali->dev_info.wSpectraEndBlock =
				denali->dev_info.wTotalBlocks - 1;
			denali->dev_info.wDataBlockNum =
				denali->dev_info.wSpectraEndBlock -
				denali->dev_info.wSpectraStartBlock + 1;
		}
	} else {
		denali->dev_info.wTotalBlocks *= denali->total_used_banks;
		denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
		denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
		denali->dev_info.wDataBlockNum =
			denali->dev_info.wSpectraEndBlock -
			denali->dev_info.wSpectraStartBlock + 1;
	}
}

static void dump_device_info(struct denali_nand_info *denali)
{
	nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
		denali->dev_info.wDeviceMaker);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
		denali->dev_info.wDeviceID);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
		denali->dev_info.wDeviceType);
	nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
		denali->dev_info.wSpectraStartBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
		denali->dev_info.wSpectraEndBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
		denali->dev_info.wTotalBlocks);
	nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
		denali->dev_info.wPagesPerBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
		denali->dev_info.wPageSize);
	nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
		denali->dev_info.wPageDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
		denali->dev_info.wPageSpareSize);
	nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
		denali->dev_info.wNumPageSpareFlag);
	nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
		denali->dev_info.wECCBytesPerSector);
	nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
		denali->dev_info.wBlockSize);
	nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
		denali->dev_info.wBlockDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
		denali->dev_info.wDataBlockNum);
	nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
		denali->dev_info.bPlaneNum);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
		denali->dev_info.wDeviceMainAreaSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
		denali->dev_info.wDeviceSpareAreaSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
		denali->dev_info.wDevicesConnected);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
		denali->dev_info.wDeviceWidth);
	nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
		denali->dev_info.wHWRevision);
	nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
		denali->dev_info.wHWFeatures);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
		denali->dev_info.wONFIDevFeatures);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
		denali->dev_info.wONFIOptCommands);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
		denali->dev_info.wONFITimingMode);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
		denali->dev_info.wONFIPgmCacheTimingMode);
	nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
		denali->dev_info.MLCDevice ? "Yes" : "No");
	nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
		denali->dev_info.wSpareSkipBytes);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
		denali->dev_info.nBitsInPageNumber);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
		denali->dev_info.nBitsInPageDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
		denali->dev_info.nBitsInBlockDataSize);
}

static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
{
	uint16_t status = PASS;
	uint8_t no_of_planes;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
	denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
	denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
	denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
	denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);

	denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
	} else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
		get_samsung_nand_para(denali);
	} else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
		get_toshiba_nand_para(denali);
	} else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali);
	} else {
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
	denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);

	denali->dev_info.wDeviceMainAreaSize =
		ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	denali->dev_info.wDeviceSpareAreaSize =
		ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);

	denali->dev_info.wPageDataSize =
		ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);

	/* Note: When using the Micon 4K NAND device, the controller will report
	 * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
	 * And if force set it to 218 bytes, the controller can not work
	 * correctly. So just let it be. But keep in mind that this bug may
	 * cause
	 * other problems in future.       - Yunpeng  2008-10-10
	 */
	denali->dev_info.wPageSpareSize =
		ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);

	denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);

	denali->dev_info.wPageSize =
	    denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
	denali->dev_info.wBlockSize =
	    denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
	denali->dev_info.wBlockDataSize =
	    denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;

	denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
	denali->dev_info.wDeviceType =
		((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);

	denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);

	denali->dev_info.wSpareSkipBytes =
		ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
		denali->dev_info.wDevicesConnected;

	denali->dev_info.nBitsInPageNumber =
		ilog2(denali->dev_info.wPagesPerBlock);
	denali->dev_info.nBitsInPageDataSize =
		ilog2(denali->dev_info.wPageDataSize);
	denali->dev_info.nBitsInBlockDataSize =
		ilog2(denali->dev_info.wBlockDataSize);

	set_ecc_config(denali);

	no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
		NUMBER_OF_PLANES__VALUE;

	switch (no_of_planes) {
	case 0:
	case 1:
	case 3:
	case 7:
		denali->dev_info.bPlaneNum = no_of_planes + 1;
		break;
	default:
		status = FAIL;
		break;
	}

	find_valid_banks(denali);

	detect_partition_feature(denali);

	dump_device_info(denali);

	/* If the user specified to override the default timings
884
	 * with a specific ONFI mode, we apply those changes here.
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
		NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);

	return status;
}

static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
					uint16_t INT_ENABLE)
{
	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
		denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
	else
		denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}

/* validation function to verify that the controlling software is making
   a valid request
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
909
	return (flash_bank >= 0 && flash_bank < 4);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;

	/* Disable global interrupts */
	NAND_LLD_Enable_Disable_Interrupts(denali, false);

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
	NAND_LLD_Enable_Disable_Interrupts(denali, false);
	free_irq(irqnum, denali);
}

static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
{
	denali_write32(int_mask, denali->flash_reg + INTR_EN0);
	denali_write32(int_mask, denali->flash_reg + INTR_EN1);
	denali_write32(int_mask, denali->flash_reg + INTR_EN2);
	denali_write32(int_mask, denali->flash_reg + INTR_EN3);
}

/* This function only returns when an interrupt that this driver cares about
945
 * occurs. This is to reduce the overhead of servicing interrupts
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
	return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);

#if DEBUG_DENALI
	denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
	denali->idx %= 32;
#endif

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	return ioread32(denali->flash_reg + intr_status_reg);
}

#if DEBUG_DENALI
static void print_irq_log(struct denali_nand_info *denali)
{
	int i = 0;

992
	printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
993
	for (i = 0; i < 32; i++)
994
		printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
995 996 997
}
#endif

998 999 1000
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
1001 1002 1003 1004 1005 1006 1007 1008 1009
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

1010 1011
	/* check to see if a valid NAND chip has
	 * been selected.
1012
	 */
1013
	if (is_flash_bank_valid(denali->flash_bank)) {
1014
		/* check to see if controller generated
1015
		 * the interrupt, since this is a shared interrupt */
1016
		if ((irq_status = denali_irq_detected(denali)) != 0) {
1017 1018 1019 1020
#if DEBUG_DENALI
			denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
			denali->idx %= 32;

1021
			printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
#endif
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

1047
	do {
1048
#if DEBUG_DENALI
1049
		printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
#endif
		comp_res = wait_for_completion_timeout(&denali->complete, timeout);
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

#if DEBUG_DENALI
		denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
		denali->idx %= 32;
#endif

1060
		if (intr_status & irq_mask) {
1061 1062 1063
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
1064
			if (retry) printk(KERN_INFO "status on retry = 0x%x\n", intr_status);
1065 1066 1067
#endif
			/* our interrupt was detected */
			break;
1068
		} else {
1069 1070
			/* these are not the interrupts you are looking for -
			 * need to wait again */
1071 1072 1073
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
			print_irq_log(denali);
1074
			printk(KERN_INFO "received irq nobody cared: irq_status = 0x%x,"
1075 1076 1077 1078 1079 1080
				" irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
#endif
			retry = true;
		}
	} while (comp_res != 0);

1081
	if (comp_res == 0) {
1082
		/* timeout */
1083 1084
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
1085 1086 1087 1088 1089 1090

		intr_status = 0;
	}
	return intr_status;
}

1091
/* This helper function setups the registers for ECC and whether or not
1092
   the spare area will be transfered. */
1093
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
1094 1095
				bool transfer_spare)
{
1096
	int ecc_en_flag = 0, transfer_spare_flag = 0;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
	denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}

1107 1108
/* sends a pipeline command operation to the controller. See the Denali NAND
   controller's user guide for more information (section 4.2.3.6).
1109
 */
1110 1111
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
					bool transfer_spare, int access_type,
1112 1113 1114
					int op)
{
	int status = PASS;
1115
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		 irq_mask = 0;

	if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
	else if (op == DENALI_WRITE) irq_mask = 0;
	else BUG();

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

#if DEBUG_DENALI
	spin_lock_irq(&denali->irq_lock);
	denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
	denali->idx %= 32;
	spin_unlock_irq(&denali->irq_lock);
#endif


	/* clear interrupts */
1133
	clear_interrupts(denali);
1134 1135 1136

	addr = BANK(denali->flash_bank) | denali->page;

1137
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
1138
		cmd = MODE_01 | addr;
1139
		denali_write32(cmd, denali->flash_mem);
1140
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
1141
		/* read spare area */
1142
		cmd = MODE_10 | addr;
1143 1144
		index_addr(denali, (uint32_t)cmd, access_type);

1145
		cmd = MODE_01 | addr;
1146
		denali_write32(cmd, denali->flash_mem);
1147
	} else if (op == DENALI_READ) {
1148
		/* setup page read request for access type */
1149
		cmd = MODE_10 | addr;
1150 1151 1152
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
1153
		   use the pipeline commands in Spare area only mode. So we
1154 1155
		   don't.
		 */
1156
		if (access_type == SPARE_ACCESS) {
1157 1158
			cmd = MODE_01 | addr;
			denali_write32(cmd, denali->flash_mem);
1159
		} else {
1160
			index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
1161 1162

			/* wait for command to be accepted
1163 1164 1165 1166
			 * can always use status0 bit as the mask is identical for each
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

1167
			if (irq_status == 0) {
1168 1169 1170
				printk(KERN_ERR "cmd, page, addr on timeout "
					"(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
				status = FAIL;
1171
			} else {
1172 1173 1174 1175 1176 1177 1178 1179 1180
				cmd = MODE_01 | addr;
				denali_write32(cmd, denali->flash_mem);
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
1181 1182
static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
					int len)
1183 1184 1185
{
	uint32_t i = 0, *buf32;

1186 1187
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
1188 1189 1190 1191 1192 1193
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		denali_write32(*buf32++, denali->flash_mem + 0x10);
1194
	return i*4; /* intent is to return the number of bytes read */
1195 1196 1197
}

/* helper function that simply reads a buffer from the flash */
1198
static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
1199 1200 1201 1202 1203 1204
					int len)
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
1205 1206 1207
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
1208 1209 1210 1211 1212 1213 1214 1215 1216
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
1217
	return i*4; /* intent is to return the number of bytes read */
1218 1219 1220 1221 1222 1223 1224
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
1225
	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
1226 1227 1228 1229 1230
						INTR_STATUS0__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

1231
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
1232
							DENALI_WRITE) == PASS) {
1233 1234 1235 1236 1237 1238 1239 1240 1241
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
		denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif

1242

1243 1244 1245
		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

1246
		if (irq_status == 0) {
1247 1248 1249
			printk(KERN_ERR "OOB write failed\n");
			status = -EIO;
		}
1250
	} else {
1251
		printk(KERN_ERR "unable to send pipeline command\n");
1252
		status = -EIO;
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;

	denali->page = page;

#if DEBUG_DENALI
1266
	printk(KERN_INFO "read_oob %d\n", page);
1267
#endif
1268
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
1269
							DENALI_READ) == PASS) {
1270
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
1271

1272
		/* wait for command to be accepted
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
			printk(KERN_ERR "page on OOB timeout %d\n", denali->page);

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
1284
		 * if you are in MAIN_ACCESS.
1285 1286
		 */
		addr = BANK(denali->flash_bank) | denali->page;
1287
		cmd = MODE_10 | addr;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
		denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif
	}
}

1299
/* this function examines buffers to see if they contain data that
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
#define ECC_ERR_DEVICE(x)	((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

1319
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
1320 1321 1322 1323
			uint8_t *oobbuf, uint32_t irq_status)
{
	bool check_erased_page = false;

1324
	if (irq_status & INTR_STATUS0__ECC_ERR) {
1325 1326 1327 1328 1329
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;

1330
		do {
1331
			err_address = ioread32(denali->flash_reg +
1332 1333 1334 1335 1336
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);


1337
			err_correction_info = ioread32(denali->flash_reg +
1338
						ERR_CORRECTION_INFO);
1339
			err_correction_value =
1340 1341 1342
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

1343
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
1344
				/* offset in our buffer is computed as:
1345
				   sector number * sector size + offset in
1346 1347
				   sector
				 */
1348
				int offset = err_sector * ECC_SECTOR_SIZE +
1349
								err_byte;
1350
				if (offset < denali->mtd.writesize) {
1351 1352 1353
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
1354
				} else {
1355 1356 1357 1358
					/* bummer, couldn't correct the error */
					printk(KERN_ERR "ECC offset invalid\n");
					denali->mtd.ecc_stats.failed++;
				}
1359
			} else {
1360
				/* if the error is not correctable, need to
1361
				 * look at the page to see if it is an erased page.
1362
				 * if so, then it's not a real ECC error */
1363 1364 1365
				check_erased_page = true;
			}

1366
#if DEBUG_DENALI
1367
			printk(KERN_INFO "Detected ECC error in page %d: err_addr = 0x%08x,"
1368
				" info to fix is 0x%08x\n", denali->page, err_address,
1369 1370 1371 1372 1373 1374 1375 1376
				err_correction_info);
#endif
		} while (!ECC_LAST_ERR(err_correction_info));
	}
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1377
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
{
	uint32_t reg_val = 0x0;

	if (en) reg_val = DMA_ENABLE__FLAG;

	denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1388
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1411
/* writes a page. user specifies type, and this function handles the
1412
   configuration details. */
1413
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1414 1415 1416 1417 1418 1419 1420 1421 1422
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1423
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
						INTR_STATUS0__PROGRAM_FAIL;

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1436
	if (raw_xfer) {
1437
		/* transfer the data to the spare area */
1438 1439 1440
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1441 1442 1443 1444 1445
	}

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);

	clear_interrupts(denali);
1446
	denali_enable_dma(denali, true);
1447

1448
	denali_setup_dma(denali, DENALI_WRITE);
1449 1450 1451 1452

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1453
	if (irq_status == 0) {
1454
		printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
1455 1456 1457
		denali->status =
			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
														PASS;
1458 1459
	}

1460
	denali_enable_dma(denali, false);
1461 1462 1463 1464 1465
	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}

/* NAND core entry points */

1466 1467
/* this is the callback that the NAND core calls to write a page. Since
   writing a page with ECC or without is similar, all the work is done
1468
   by write_page above.   */
1469
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1470 1471 1472
				const uint8_t *buf)
{
	/* for regular page writes, we let HW handle all the ECC
1473
	 * data written to the device. */
1474 1475 1476
	write_page(mtd, chip, buf, false);
}

1477
/* This is the callback that the NAND core calls to write a page without ECC.
1478
   raw access is similiar to ECC page writes, so all the work is done in the
1479
   write_page() function above.
1480
 */
1481
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1482 1483
					const uint8_t *buf)
{
1484
	/* for raw page writes, we want to disable ECC and simply write
1485 1486 1487 1488
	   whatever data is in the buffer. */
	write_page(mtd, chip, buf, true);
}

1489
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1490 1491
			    int page)
{
1492
	return write_oob_data(mtd, chip->oob_poi, page);
1493 1494
}

1495
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1496 1497 1498 1499
			   int page, int sndcmd)
{
	read_oob_data(mtd, chip->oob_poi, page);

1500 1501
	return 0; /* notify NAND core to send command to
			   NAND device. */
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1514
	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1515 1516 1517 1518 1519
			    INTR_STATUS0__ECC_ERR;
	bool check_erased_page = false;

	setup_ecc_for_xfer(denali, true, false);

1520
	denali_enable_dma(denali, true);
1521 1522 1523
	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1524
	denali_setup_dma(denali, DENALI_READ);
1525 1526 1527 1528 1529 1530 1531

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);
1532

1533
	check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
1534
	denali_enable_dma(denali, false);
1535

1536
	if (check_erased_page) {
1537 1538 1539
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1540
		if (check_erased_page) {
1541 1542 1543 1544
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1545
		}
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	}
	return 0;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1561

1562
	setup_ecc_for_xfer(denali, false, true);
1563
	denali_enable_dma(denali, true);
1564 1565 1566 1567

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1568
	denali_setup_dma(denali, DENALI_READ);
1569 1570 1571 1572 1573 1574

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

1575
	denali_enable_dma(denali, false);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

#if DEBUG_DENALI
1592
	printk(KERN_INFO "read byte -> 0x%02x\n", result);
1593 1594 1595 1596 1597 1598 1599 1600
#endif
	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
1601
	printk(KERN_INFO "denali select chip %d\n", chip);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
#endif
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

#if DEBUG_DENALI
1615
	printk(KERN_INFO "waitfunc %d\n", status);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
#endif
	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

#if DEBUG_DENALI
1627
	printk(KERN_INFO "erase page: %d\n", page);
1628 1629
#endif
	/* clear interrupts */
1630
	clear_interrupts(denali);
1631 1632 1633 1634 1635 1636

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1637
	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1638 1639
					INTR_STATUS0__ERASE_FAIL);

1640
	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
1641 1642 1643
								 PASS;
}

1644
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1645 1646 1647 1648 1649
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

#if DEBUG_DENALI
1650
	printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
1651
#endif
1652
	switch (cmd) {
1653 1654 1655 1656 1657 1658 1659
		case NAND_CMD_PAGEPROG:
			break;
		case NAND_CMD_STATUS:
			read_status(denali);
			break;
		case NAND_CMD_READID:
			reset_buf(denali);
1660
			if (denali->flash_bank < denali->total_used_banks) {
1661
				/* write manufacturer information into nand
1662
				   buffer for NAND subsystem to fetch.
1663 1664 1665 1666 1667 1668
				   */
				write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
				write_byte_to_buf(denali, denali->dev_info.wDeviceID);
				write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
				write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
				write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
1669
			} else {
1670
				int i;
1671
				for (i = 0; i < 5; i++)
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
					write_byte_to_buf(denali, 0xff);
			}
			break;
		case NAND_CMD_READ0:
		case NAND_CMD_SEQIN:
			denali->page = page;
			break;
		case NAND_CMD_RESET:
			reset_bank(denali);
			break;
		case NAND_CMD_READOOB:
			/* TODO: Read OOB data */
			break;
		default:
			printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
			break;
	}
}

/* stubs for ECC functions not used by the NAND core */
1692
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1693 1694 1695 1696 1697 1698 1699
				uint8_t *ecc_code)
{
	printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
	BUG();
	return -EIO;
}

1700
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
	printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
	printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
	denali_irq_init(denali);
	NAND_Flash_Reset(denali);
	denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);

	denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
	denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);

	/* Should set value for these registers when init */
	denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	denali_write32(1, denali->flash_reg + ECC_ENABLE);
}

/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
#define ECC_BYTES_SLC   4 * (2048 / ECC_SECTOR_SIZE)
static struct nand_ecclayout nand_oob_slc = {
	.eccbytes = 4,
	.eccpos = { 0, 1, 2, 3 }, /* not used */
1736 1737
	.oobfree = {
		{
1738 1739
			.offset = ECC_BYTES_SLC,
			.length = 64 - ECC_BYTES_SLC
1740 1741
		}
	}
1742 1743 1744 1745 1746 1747
};

#define ECC_BYTES_MLC   14 * (2048 / ECC_SECTOR_SIZE)
static struct nand_ecclayout nand_oob_mlc_14bit = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
1748 1749
	.oobfree = {
		{
1750 1751
			.offset = ECC_BYTES_MLC,
			.length = 64 - ECC_BYTES_MLC
1752 1753
		}
	}
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/* initalize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1785
	/* the completion object will be used to notify
1786 1787 1788 1789
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1790
	 * with any element that might be access shared
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
		goto failed_enable;
	}

	if (id->driver_data == INTEL_CE4100) {
1823 1824 1825
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1826
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1827
			printk(KERN_ERR "Intel CE4100 only supports ONFI timing mode 1 "
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
				"or below\n");
			ret = -EINVAL;
			goto failed_enable;
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
		csr_len = pci_resource_start(dev, 0);
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
			nand_dbg_print(NAND_DBG_WARN,
				       "Spectra: No second BAR for PCI device; assuming %08Lx\n",
				       (uint64_t)csr_base);
		}
	}

	/* Is 32-bit DMA supported? */
	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));

1855
	if (ret) {
1856 1857 1858
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
		goto failed_enable;
	}
1859
	denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
1860 1861
					 PCI_DMA_BIDIRECTIONAL);

1862
	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
		goto failed_enable;
	}

	pci_set_master(dev);
	denali->dev = dev;

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
		goto failed_req_csr;
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
		goto failed_remap_csr;
	}
	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
		       (uint64_t)csr_base, denali->flash_reg, csr_len);

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		iounmap(denali->flash_reg);
		ret = -ENOMEM;
		goto failed_remap_csr;
	}

	nand_dbg_print(NAND_DBG_WARN,
		"Spectra: Remapped flash base address: "
		"0x%p, len: %ld\n",
		denali->flash_mem, csr_len);

	denali_hw_init(denali);
	denali_drv_init(denali);

	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
		goto failed_request_irq;
	}

	/* now that our ISR is registered, we can enable interrupts */
	NAND_LLD_Enable_Disable_Interrupts(denali, true);

	pci_set_drvdata(dev, denali);

	NAND_Read_Device_ID(denali);

1916 1917
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
1918
	 */
1919
	if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
		goto failed_nand;
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->mtd.name = "Denali NAND";
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1948
	/* scan for NAND devices attached to the controller
1949
	 * this is the first stage in a two step process to register
1950
	 * with the nand subsystem */
1951
	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
1952 1953 1954
		ret = -ENXIO;
		goto failed_nand;
	}
1955 1956 1957 1958

	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1959 1960 1961 1962 1963 1964 1965 1966 1967

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1968
	if (denali->dev_info.MLCDevice) {
1969 1970
		denali->nand.ecc.layout = &nand_oob_mlc_14bit;
		denali->nand.ecc.bytes = ECC_BYTES_MLC;
1971
	} else {/* SLC */
1972 1973 1974 1975
		denali->nand.ecc.layout = &nand_oob_slc;
		denali->nand.ecc.bytes = ECC_BYTES_SLC;
	}

1976 1977 1978
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
	denali->nand.ecc.size = denali->mtd.writesize;
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

1993
	if (nand_scan_tail(&denali->mtd)) {
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		ret = -ENXIO;
		goto failed_nand;
	}

	ret = add_mtd_device(&denali->mtd);
	if (ret) {
		printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
		goto failed_nand;
	}
	return 0;

 failed_nand:
	denali_irq_cleanup(dev->irq, denali);
 failed_request_irq:
	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
 failed_remap_csr:
	pci_release_regions(dev);
 failed_req_csr:
2013
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
							PCI_DMA_BIDIRECTIONAL);
 failed_enable:
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	nand_release(&denali->mtd);
	del_mtd_device(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
2037
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
							PCI_DMA_BIDIRECTIONAL);
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

static int __devinit denali_init(void)
{
	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
	return pci_register_driver(&denali_pci_driver);
}

/* Free memory */
static void __devexit denali_exit(void)
{
	pci_unregister_driver(&denali_pci_driver);
}

module_init(denali_init);
module_exit(denali_exit);