denali.c 63.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32
/* We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
			INTR_STATUS0__ECC_TRANSACTION_DONE | \
			INTR_STATUS0__ECC_ERR | \
			INTR_STATUS0__PROGRAM_FAIL | \
			INTR_STATUS0__LOAD_COMP | \
			INTR_STATUS0__PROGRAM_COMP | \
			INTR_STATUS0__TIME_OUT | \
			INTR_STATUS0__ERASE_FAIL | \
			INTR_STATUS0__RST_COMP | \
			INTR_STATUS0__ERASE_COMP)

57
/* indicates whether or not the internal value for the flash bank is
58
   valid or not */
59
#define CHIP_SELECT_INVALID	-1
60 61 62

#define SUPPORT_8BITECC		1

63
/* This macro divides two integers and rounds fractional values up
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
   configuration options. */
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

86
/* this is a helper macro that allows us to
87 88 89 90 91 92 93 94 95 96 97
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};


98 99
/* these are static lookup tables that give us easy access to
   registers in the NAND controller.
100
 */
101 102 103
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
						  INTR_STATUS1,
						  INTR_STATUS2,
104 105 106
						  INTR_STATUS3};

static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
107 108 109
							DEVICE_RESET__BANK1,
							DEVICE_RESET__BANK2,
							DEVICE_RESET__BANK3};
110 111

static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
112 113 114
							INTR_STATUS1__TIME_OUT,
							INTR_STATUS2__TIME_OUT,
							INTR_STATUS3__TIME_OUT};
115 116

static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
117 118 119
							INTR_STATUS1__RST_COMP,
							INTR_STATUS2__RST_COMP,
							INTR_STATUS3__RST_COMP};
120 121

/* specifies the debug level of the driver */
122
static int nand_debug_level;
123 124 125

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
126 127 128 129
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
130 131 132 133 134 135
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

#define DEBUG_DENALI 0

/* This is a wrapper for writing to the denali registers.
 * this allows us to create debug information so we can
136
 * observe how the driver is programming the device.
137 138 139
 * it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
140
	iowrite32(value, addr);
141 142

#if DEBUG_DENALI
143 144
	printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
			(uint32_t)((uint32_t)addr & 0x1fff));
145
#endif
146
}
147

148 149 150 151 152
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
153
*/
154 155
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
156 157 158 159 160 161 162 163 164 165 166 167 168
{
	denali_write32(address, denali->flash_mem);
	denali_write32(data, denali->flash_mem + 0x10);
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
	denali_write32(address, denali->flash_mem);
	*pdata = ioread32(denali->flash_mem + 0x10);
}

169
/* We need to buffer some data for some of the NAND core routines.
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

	/* initiate a device status read */
191
	cmd = MODE_11 | BANK(denali->flash_bank);
192 193 194 195 196 197 198
	index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
	denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);

	/* update buffer with status value */
	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));

#if DEBUG_DENALI
199 200
	printk(KERN_INFO "device reporting status value of 0x%2x\n",
			denali->buf.buf[0]);
201 202 203 204 205 206 207
#endif
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
208
	uint32_t irq_mask = reset_complete[denali->flash_bank] |
209 210 211 212 213 214 215 216 217
			    operation_timeout[denali->flash_bank];
	int bank = 0;

	clear_interrupts(denali);

	bank = device_reset_banks[denali->flash_bank];
	denali_write32(bank, denali->flash_reg + DEVICE_RESET);

	irq_status = wait_for_irq(denali, irq_mask);
218

219 220 221 222 223
	if (irq_status & operation_timeout[denali->flash_bank])
		printk(KERN_ERR "reset bank failed.\n");
}

/* Reset the flash controller */
224
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
225 226 227 228 229 230 231 232 233 234 235
{
	uint32_t i;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
		denali_write32(reset_complete[i] | operation_timeout[i],
		denali->flash_reg + intr_status_addresses[i]);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
236 237 238 239
		denali_write32(device_reset_banks[i],
				denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg +
						intr_status_addresses[i]) &
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
			(reset_complete[i] | operation_timeout[i])))
			;
		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
			operation_timeout[i])
			nand_dbg_print(NAND_DBG_WARN,
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
		denali_write32(reset_complete[i] | operation_timeout[i],
			denali->flash_reg + intr_status_addresses[i]);

	return PASS;
}

255 256 257
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
258
 */
259
static void nand_onfi_timing_set(struct denali_nand_info *denali,
260
								uint16_t mode)
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
		nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

	denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
	denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
	denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
	denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
	denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}

/* configures the initial ECC settings for the controller */
static void set_ecc_config(struct denali_nand_info *denali)
{
#if SUPPORT_8BITECC
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif

366 367
	if ((ioread32(denali->flash_reg + ECC_CORRECTION) &
				ECC_CORRECTION__VALUE) == 1) {
368
		denali->dev_info.wECCBytesPerSector = 4;
369 370
		denali->dev_info.wECCBytesPerSector *=
			denali->dev_info.wDevicesConnected;
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
		denali->dev_info.wNumPageSpareFlag =
			denali->dev_info.wPageSpareSize -
			denali->dev_info.wPageDataSize /
			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
			denali->dev_info.wECCBytesPerSector
			- denali->dev_info.wSpareSkipBytes;
	} else {
		denali->dev_info.wECCBytesPerSector =
			(ioread32(denali->flash_reg + ECC_CORRECTION) &
			ECC_CORRECTION__VALUE) * 13 / 8;
		if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
			denali->dev_info.wECCBytesPerSector += 2;
		else
			denali->dev_info.wECCBytesPerSector += 1;

386 387 388 389
		denali->dev_info.wECCBytesPerSector *=
			denali->dev_info.wDevicesConnected;
		denali->dev_info.wNumPageSpareFlag =
			denali->dev_info.wPageSpareSize -
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
			denali->dev_info.wPageDataSize /
			(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
			denali->dev_info.wECCBytesPerSector
			- denali->dev_info.wSpareSkipBytes;
	}
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
	uint16_t blks_lun_l, blks_lun_h, n_of_luns;
	uint32_t blockperlun, id;

	denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);

	while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
407 408 409
			INTR_STATUS0__RST_COMP) |
			(ioread32(denali->flash_reg + INTR_STATUS0) &
			INTR_STATUS0__TIME_OUT)))
410 411
		;

412 413 414 415
	if (ioread32(denali->flash_reg + INTR_STATUS0) &
			INTR_STATUS0__RST_COMP) {
		denali_write32(DEVICE_RESET__BANK1,
				denali->flash_reg + DEVICE_RESET);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
		while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__RST_COMP) |
			(ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__TIME_OUT)))
			;

		if (ioread32(denali->flash_reg + INTR_STATUS1) &
			INTR_STATUS1__RST_COMP) {
			denali_write32(DEVICE_RESET__BANK2,
				denali->flash_reg + DEVICE_RESET);
			while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__RST_COMP) |
				(ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__TIME_OUT)))
				;

			if (ioread32(denali->flash_reg + INTR_STATUS2) &
				INTR_STATUS2__RST_COMP) {
				denali_write32(DEVICE_RESET__BANK3,
					denali->flash_reg + DEVICE_RESET);
436 437 438 439 440 441
				while (!((ioread32(denali->flash_reg +
						INTR_STATUS3) &
						INTR_STATUS3__RST_COMP) |
						(ioread32(denali->flash_reg +
						INTR_STATUS3) &
						INTR_STATUS3__TIME_OUT)))
442 443 444 445 446 447 448 449 450
					;
			} else {
				printk(KERN_ERR "Getting a time out for bank 2!\n");
			}
		} else {
			printk(KERN_ERR "Getting a time out for bank 1!\n");
		}
	}

451 452 453 454 455 456 457 458
	denali_write32(INTR_STATUS0__TIME_OUT,
			denali->flash_reg + INTR_STATUS0);
	denali_write32(INTR_STATUS1__TIME_OUT,
			denali->flash_reg + INTR_STATUS1);
	denali_write32(INTR_STATUS2__TIME_OUT,
			denali->flash_reg + INTR_STATUS2);
	denali_write32(INTR_STATUS3__TIME_OUT,
			denali->flash_reg + INTR_STATUS3);
459 460 461 462 463 464 465 466 467 468 469 470

	denali->dev_info.wONFIDevFeatures =
		ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
	denali->dev_info.wONFIOptCommands =
		ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
	denali->dev_info.wONFITimingMode =
		ioread32(denali->flash_reg + ONFI_TIMING_MODE);
	denali->dev_info.wONFIPgmCacheTimingMode =
		ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);

	n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
471 472 473 474
	blks_lun_l = ioread32(denali->flash_reg +
				ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
	blks_lun_h = ioread32(denali->flash_reg +
				ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
475 476 477 478 479 480 481 482 483 484

	blockperlun = (blks_lun_h << 16) | blks_lun_l;

	denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;

	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
485 486
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
487 488 489
			break;
	}

490
	nand_onfi_timing_set(denali, i);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	index_addr(denali, MODE_11 | 0, 0x90);
	index_addr(denali, MODE_11 | 1, 0);

	for (i = 0; i < 3; i++)
		index_addr_read_data(denali, MODE_11 | 2, &id);

	nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);

	denali->dev_info.MLCDevice = id & 0x0C;

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

static void get_samsung_nand_para(struct denali_nand_info *denali)
{
	uint8_t no_of_planes;
	uint32_t blk_size;
	uint64_t plane_size, capacity;
	uint32_t id_bytes[5];
	int i;

	index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
	index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
	for (i = 0; i < 5; i++)
521 522
		index_addr_read_data(denali, (uint32_t)(MODE_11 | 2),
							&id_bytes[i]);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	nand_dbg_print(NAND_DBG_DEBUG,
		"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
		id_bytes[0], id_bytes[1], id_bytes[2],
		id_bytes[3], id_bytes[4]);

	if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
		/* Set timing register values according to datasheet */
		denali_write32(5, denali->flash_reg + ACC_CLKS);
		denali_write32(20, denali->flash_reg + RE_2_WE);
		denali_write32(12, denali->flash_reg + WE_2_RE);
		denali_write32(14, denali->flash_reg + ADDR_2_DATA);
		denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
	}

	no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
	plane_size  = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
542 543
	blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) &
					0x30) >> 4);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	capacity = (uint64_t)128 * plane_size * no_of_planes;

	do_div(capacity, blk_size);
	denali->dev_info.wTotalBlocks = capacity;
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	void __iomem *scratch_reg;
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
		denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
562 563
		denali_write32(tmp,
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
#if SUPPORT_15BITECC
		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
	}

	/* As Toshiba NAND can not provide it's block number, */
	/* so here we need user to provide the correct block */
	/* number in a scratch register before the Linux NAND */
	/* driver is loaded. If no valid value found in the scratch */
	/* register, then we use default block number value */
	scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
	if (!scratch_reg) {
		printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
			__FILE__, __LINE__);
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	} else {
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
		denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
		if (denali->dev_info.wTotalBlocks < 512)
			denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
		iounmap(scratch_reg);
	}
}

static void get_hynix_nand_para(struct denali_nand_info *denali)
{
	void __iomem *scratch_reg;
	uint32_t main_size, spare_size;

	switch (denali->dev_info.wDeviceID) {
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
		denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
		denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
602 603 604 605 606 607 608 609
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		denali_write32(main_size,
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
		denali_write32(spare_size,
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
		denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
		denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
		denali->dev_info.MLCDevice  = 1;
		break;
	default:
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
			denali->dev_info.wDeviceID);
	}

	scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
	if (!scratch_reg) {
		printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
			__FILE__, __LINE__);
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	} else {
		nand_dbg_print(NAND_DBG_WARN,
			"Spectra: ioremap reg address: 0x%p\n", scratch_reg);
		denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
		if (denali->dev_info.wTotalBlocks < 512)
			denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
		iounmap(scratch_reg);
	}
}

/* determines how many NAND chips are connected to the controller. Note for
641
   Intel CE4100 devices we don't support more than one device.
642 643 644 645 646 647 648 649 650 651
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[LLD_MAX_FLASH_BANKS];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
652 653
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

		nand_dbg_print(NAND_DBG_DEBUG,
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

669
	if (denali->platform == INTEL_CE4100) {
670 671
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
672 673
		 * Multichip support is not enabled.
		 */
674
		if (denali->total_used_banks != 1) {
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
			printk(KERN_ERR "Sorry, Intel CE4100 only supports "
					"a single NAND device.\n");
			BUG();
		}
	}
	nand_dbg_print(NAND_DBG_DEBUG,
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
			denali->dev_info.wSpectraStartBlock =
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			      MIN_MAX_BANK_1__MIN_VALUE) *
			     denali->dev_info.wTotalBlocks)
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
			    MIN_BLK_ADDR_1__VALUE);

			denali->dev_info.wSpectraEndBlock =
			    (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			       MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
			     denali->dev_info.wTotalBlocks)
			    +
			    (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
			    MAX_BLK_ADDR_1__VALUE);

705 706
			denali->dev_info.wTotalBlocks *=
				denali->total_used_banks;
707 708 709 710 711 712 713 714 715 716 717

			if (denali->dev_info.wSpectraEndBlock >=
			    denali->dev_info.wTotalBlocks) {
				denali->dev_info.wSpectraEndBlock =
				    denali->dev_info.wTotalBlocks - 1;
			}

			denali->dev_info.wDataBlockNum =
				denali->dev_info.wSpectraEndBlock -
				denali->dev_info.wSpectraStartBlock + 1;
		} else {
718 719 720 721
			denali->dev_info.wTotalBlocks *=
				denali->total_used_banks;
			denali->dev_info.wSpectraStartBlock =
				SPECTRA_START_BLOCK;
722 723 724 725 726 727 728 729 730
			denali->dev_info.wSpectraEndBlock =
				denali->dev_info.wTotalBlocks - 1;
			denali->dev_info.wDataBlockNum =
				denali->dev_info.wSpectraEndBlock -
				denali->dev_info.wSpectraStartBlock + 1;
		}
	} else {
		denali->dev_info.wTotalBlocks *= denali->total_used_banks;
		denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
731 732
		denali->dev_info.wSpectraEndBlock =
			denali->dev_info.wTotalBlocks - 1;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		denali->dev_info.wDataBlockNum =
			denali->dev_info.wSpectraEndBlock -
			denali->dev_info.wSpectraStartBlock + 1;
	}
}

static void dump_device_info(struct denali_nand_info *denali)
{
	nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
		denali->dev_info.wDeviceMaker);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
		denali->dev_info.wDeviceID);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
		denali->dev_info.wDeviceType);
	nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
		denali->dev_info.wSpectraStartBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
		denali->dev_info.wSpectraEndBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
		denali->dev_info.wTotalBlocks);
	nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
		denali->dev_info.wPagesPerBlock);
	nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
		denali->dev_info.wPageSize);
	nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
		denali->dev_info.wPageDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
		denali->dev_info.wPageSpareSize);
	nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
		denali->dev_info.wNumPageSpareFlag);
	nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
		denali->dev_info.wECCBytesPerSector);
	nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
		denali->dev_info.wBlockSize);
	nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
		denali->dev_info.wBlockDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
		denali->dev_info.wDataBlockNum);
	nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
		denali->dev_info.bPlaneNum);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
		denali->dev_info.wDeviceMainAreaSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
		denali->dev_info.wDeviceSpareAreaSize);
	nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
		denali->dev_info.wDevicesConnected);
	nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
		denali->dev_info.wDeviceWidth);
	nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
		denali->dev_info.wHWRevision);
	nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
		denali->dev_info.wHWFeatures);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
		denali->dev_info.wONFIDevFeatures);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
		denali->dev_info.wONFIOptCommands);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
		denali->dev_info.wONFITimingMode);
	nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
		denali->dev_info.wONFIPgmCacheTimingMode);
	nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
		denali->dev_info.MLCDevice ? "Yes" : "No");
	nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
		denali->dev_info.wSpareSkipBytes);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
		denali->dev_info.nBitsInPageNumber);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
		denali->dev_info.nBitsInPageDataSize);
	nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
		denali->dev_info.nBitsInBlockDataSize);
}

806
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
807 808 809 810 811 812 813
{
	uint16_t status = PASS;
	uint8_t no_of_planes;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

814 815 816 817 818 819 820 821 822 823
	denali->dev_info.wDeviceMaker =
		ioread32(denali->flash_reg + MANUFACTURER_ID);
	denali->dev_info.wDeviceID =
		ioread32(denali->flash_reg + DEVICE_ID);
	denali->dev_info.bDeviceParam0 =
		ioread32(denali->flash_reg + DEVICE_PARAM_0);
	denali->dev_info.bDeviceParam1 =
		ioread32(denali->flash_reg + DEVICE_PARAM_1);
	denali->dev_info.bDeviceParam2 =
		ioread32(denali->flash_reg + DEVICE_PARAM_2);
824

825 826
	denali->dev_info.MLCDevice =
		ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
	} else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
		get_samsung_nand_para(denali);
	} else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
		get_toshiba_nand_para(denali);
	} else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali);
	} else {
		denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
	denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);

	denali->dev_info.wDeviceMainAreaSize =
		ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	denali->dev_info.wDeviceSpareAreaSize =
		ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);

	denali->dev_info.wPageDataSize =
		ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);

	/* Note: When using the Micon 4K NAND device, the controller will report
	 * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
	 * And if force set it to 218 bytes, the controller can not work
	 * correctly. So just let it be. But keep in mind that this bug may
	 * cause
	 * other problems in future.       - Yunpeng  2008-10-10
	 */
	denali->dev_info.wPageSpareSize =
		ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);

875 876
	denali->dev_info.wPagesPerBlock =
		ioread32(denali->flash_reg + PAGES_PER_BLOCK);
877 878 879 880 881 882 883 884

	denali->dev_info.wPageSize =
	    denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
	denali->dev_info.wBlockSize =
	    denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
	denali->dev_info.wBlockDataSize =
	    denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;

885 886
	denali->dev_info.wDeviceWidth =
		ioread32(denali->flash_reg + DEVICE_WIDTH);
887 888 889
	denali->dev_info.wDeviceType =
		((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);

890 891
	denali->dev_info.wDevicesConnected =
		ioread32(denali->flash_reg + DEVICES_CONNECTED);
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

	denali->dev_info.wSpareSkipBytes =
		ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
		denali->dev_info.wDevicesConnected;

	denali->dev_info.nBitsInPageNumber =
		ilog2(denali->dev_info.wPagesPerBlock);
	denali->dev_info.nBitsInPageDataSize =
		ilog2(denali->dev_info.wPageDataSize);
	denali->dev_info.nBitsInBlockDataSize =
		ilog2(denali->dev_info.wBlockDataSize);

	set_ecc_config(denali);

	no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
		NUMBER_OF_PLANES__VALUE;

	switch (no_of_planes) {
	case 0:
	case 1:
	case 3:
	case 7:
		denali->dev_info.bPlaneNum = no_of_planes + 1;
		break;
	default:
		status = FAIL;
		break;
	}

	find_valid_banks(denali);

	detect_partition_feature(denali);

	dump_device_info(denali);

	/* If the user specified to override the default timings
928
	 * with a specific ONFI mode, we apply those changes here.
929 930
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
931
		nand_onfi_timing_set(denali, onfi_timing_mode);
932 933 934 935

	return status;
}

936
static void denali_set_intr_modes(struct denali_nand_info *denali,
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
					uint16_t INT_ENABLE)
{
	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
		denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
	else
		denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}

/* validation function to verify that the controlling software is making
   a valid request
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
953
	return (flash_bank >= 0 && flash_bank < 4);
954 955 956 957 958 959 960
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;

	/* Disable global interrupts */
961
	denali_set_intr_modes(denali, false);
962 963 964 965 966 967 968 969 970 971 972 973 974 975

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
976
	denali_set_intr_modes(denali, false);
977 978 979
	free_irq(irqnum, denali);
}

980 981
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
982 983 984 985 986 987 988 989
{
	denali_write32(int_mask, denali->flash_reg + INTR_EN0);
	denali_write32(int_mask, denali->flash_reg + INTR_EN1);
	denali_write32(int_mask, denali->flash_reg + INTR_EN2);
	denali_write32(int_mask, denali->flash_reg + INTR_EN3);
}

/* This function only returns when an interrupt that this driver cares about
990
 * occurs. This is to reduce the overhead of servicing interrupts
991 992 993
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
994
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
995 996 997
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
998 999
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);

#if DEBUG_DENALI
	denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
	denali->idx %= 32;
#endif

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	return ioread32(denali->flash_reg + intr_status_reg);
}

#if DEBUG_DENALI
static void print_irq_log(struct denali_nand_info *denali)
{
	int i = 0;

1038
	printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
1039
	for (i = 0; i < 32; i++)
1040
		printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
1041 1042 1043
}
#endif

1044 1045 1046
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
1047 1048 1049 1050 1051 1052 1053 1054 1055
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

1056 1057
	/* check to see if a valid NAND chip has
	 * been selected.
1058
	 */
1059
	if (is_flash_bank_valid(denali->flash_bank)) {
1060
		/* check to see if controller generated
1061
		 * the interrupt, since this is a shared interrupt */
1062 1063
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
1064
#if DEBUG_DENALI
1065 1066
			denali->irq_debug_array[denali->idx++] =
				0x10000000 | irq_status;
1067 1068
			denali->idx %= 32;

1069
			printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
#endif
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

1095
	do {
1096
#if DEBUG_DENALI
1097
		printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
1098
#endif
1099 1100
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
1101 1102 1103 1104
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

#if DEBUG_DENALI
1105 1106
		denali->irq_debug_array[denali->idx++] =
			0x20000000 | (irq_mask << 16) | intr_status;
1107 1108 1109
		denali->idx %= 32;
#endif

1110
		if (intr_status & irq_mask) {
1111 1112 1113
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
1114 1115 1116
			if (retry)
				printk(KERN_INFO "status on retry = 0x%x\n",
						intr_status);
1117 1118 1119
#endif
			/* our interrupt was detected */
			break;
1120
		} else {
1121 1122
			/* these are not the interrupts you are looking for -
			 * need to wait again */
1123 1124 1125
			spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
			print_irq_log(denali);
1126 1127 1128 1129
			printk(KERN_INFO "received irq nobody cared:"
					" irq_status = 0x%x, irq_mask = 0x%x,"
					" timeout = %ld\n", intr_status,
					irq_mask, comp_res);
1130 1131 1132 1133 1134
#endif
			retry = true;
		}
	} while (comp_res != 0);

1135
	if (comp_res == 0) {
1136
		/* timeout */
1137 1138
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
1139 1140 1141 1142 1143 1144

		intr_status = 0;
	}
	return intr_status;
}

1145
/* This helper function setups the registers for ECC and whether or not
1146
   the spare area will be transfered. */
1147
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
1148 1149
				bool transfer_spare)
{
1150
	int ecc_en_flag = 0, transfer_spare_flag = 0;
1151 1152 1153 1154 1155 1156 1157

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
	denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
1158 1159
	denali_write32(transfer_spare_flag,
			denali->flash_reg + TRANSFER_SPARE_REG);
1160 1161
}

1162 1163
/* sends a pipeline command operation to the controller. See the Denali NAND
   controller's user guide for more information (section 4.2.3.6).
1164
 */
1165 1166 1167 1168 1169
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
1170 1171
{
	int status = PASS;
1172
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
1173 1174
		 irq_mask = 0;

1175 1176 1177 1178 1179 1180
	if (op == DENALI_READ)
		irq_mask = INTR_STATUS0__LOAD_COMP;
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
1181 1182 1183 1184 1185

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

#if DEBUG_DENALI
	spin_lock_irq(&denali->irq_lock);
1186 1187 1188
	denali->irq_debug_array[denali->idx++] =
		0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
		(access_type << 4);
1189 1190 1191 1192 1193 1194
	denali->idx %= 32;
	spin_unlock_irq(&denali->irq_lock);
#endif


	/* clear interrupts */
1195
	clear_interrupts(denali);
1196 1197 1198

	addr = BANK(denali->flash_bank) | denali->page;

1199
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
1200
		cmd = MODE_01 | addr;
1201
		denali_write32(cmd, denali->flash_mem);
1202
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
1203
		/* read spare area */
1204
		cmd = MODE_10 | addr;
1205 1206
		index_addr(denali, (uint32_t)cmd, access_type);

1207
		cmd = MODE_01 | addr;
1208
		denali_write32(cmd, denali->flash_mem);
1209
	} else if (op == DENALI_READ) {
1210
		/* setup page read request for access type */
1211
		cmd = MODE_10 | addr;
1212 1213 1214
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
1215
		   use the pipeline commands in Spare area only mode. So we
1216 1217
		   don't.
		 */
1218
		if (access_type == SPARE_ACCESS) {
1219 1220
			cmd = MODE_01 | addr;
			denali_write32(cmd, denali->flash_mem);
1221
		} else {
1222 1223
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
1224 1225

			/* wait for command to be accepted
1226 1227
			 * can always use status0 bit as the
			 * mask is identical for each
1228 1229 1230
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

1231
			if (irq_status == 0) {
1232
				printk(KERN_ERR "cmd, page, addr on timeout "
1233 1234
					"(0x%x, 0x%x, 0x%x)\n", cmd,
					denali->page, addr);
1235
				status = FAIL;
1236
			} else {
1237 1238 1239 1240 1241 1242 1243 1244 1245
				cmd = MODE_01 | addr;
				denali_write32(cmd, denali->flash_mem);
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
1246 1247 1248
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
1249 1250 1251
{
	uint32_t i = 0, *buf32;

1252 1253
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
1254 1255 1256 1257 1258 1259
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		denali_write32(*buf32++, denali->flash_mem + 0x10);
1260
	return i*4; /* intent is to return the number of bytes read */
1261 1262 1263
}

/* helper function that simply reads a buffer from the flash */
1264 1265 1266
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
1267 1268 1269 1270 1271
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
1272 1273 1274
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
1275 1276 1277 1278 1279 1280 1281 1282 1283
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
1284
	return i*4; /* intent is to return the number of bytes read */
1285 1286 1287 1288 1289 1290 1291
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
1292
	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
1293 1294 1295 1296 1297
						INTR_STATUS0__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

1298
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
1299
							DENALI_WRITE) == PASS) {
1300 1301 1302 1303
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
1304 1305
		denali->irq_debug_array[denali->idx++] =
			0x80000000 | mtd->oobsize;
1306 1307 1308 1309
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif

1310

1311 1312 1313
		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

1314
		if (irq_status == 0) {
1315 1316 1317
			printk(KERN_ERR "OOB write failed\n");
			status = -EIO;
		}
1318
	} else {
1319
		printk(KERN_ERR "unable to send pipeline command\n");
1320
		status = -EIO;
1321 1322 1323 1324 1325 1326 1327 1328
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1329 1330
	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
			 irq_status = 0, addr = 0x0, cmd = 0x0;
1331 1332 1333 1334

	denali->page = page;

#if DEBUG_DENALI
1335
	printk(KERN_INFO "read_oob %d\n", page);
1336
#endif
1337
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
1338
							DENALI_READ) == PASS) {
1339
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
1340

1341
		/* wait for command to be accepted
1342 1343 1344 1345 1346
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
1347 1348
			printk(KERN_ERR "page on OOB timeout %d\n",
					denali->page);
1349 1350 1351 1352 1353

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
1354
		 * if you are in MAIN_ACCESS.
1355 1356
		 */
		addr = BANK(denali->flash_bank) | denali->page;
1357
		cmd = MODE_10 | addr;
1358 1359 1360 1361
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);

#if DEBUG_DENALI
		spin_lock_irq(&denali->irq_lock);
1362 1363
		denali->irq_debug_array[denali->idx++] =
			0x60000000 | mtd->oobsize;
1364 1365 1366 1367 1368 1369
		denali->idx %= 32;
		spin_unlock_irq(&denali->irq_lock);
#endif
	}
}

1370
/* this function examines buffers to see if they contain data that
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
#define ECC_ERR_DEVICE(x)	((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

1390
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
1391 1392 1393 1394
			uint8_t *oobbuf, uint32_t irq_status)
{
	bool check_erased_page = false;

1395
	if (irq_status & INTR_STATUS0__ECC_ERR) {
1396 1397 1398 1399 1400
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;

1401
		do {
1402
			err_address = ioread32(denali->flash_reg +
1403 1404 1405 1406 1407
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);


1408
			err_correction_info = ioread32(denali->flash_reg +
1409
						ERR_CORRECTION_INFO);
1410
			err_correction_value =
1411 1412 1413
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

1414
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
1415
				/* offset in our buffer is computed as:
1416
				   sector number * sector size + offset in
1417 1418
				   sector
				 */
1419
				int offset = err_sector * ECC_SECTOR_SIZE +
1420
								err_byte;
1421
				if (offset < denali->mtd.writesize) {
1422 1423 1424
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
1425
				} else {
1426 1427 1428 1429
					/* bummer, couldn't correct the error */
					printk(KERN_ERR "ECC offset invalid\n");
					denali->mtd.ecc_stats.failed++;
				}
1430
			} else {
1431
				/* if the error is not correctable, need to
1432 1433 1434
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
1435 1436 1437
				check_erased_page = true;
			}

1438
#if DEBUG_DENALI
1439 1440 1441 1442
			printk(KERN_INFO "Detected ECC error in page %d:"
					" err_addr = 0x%08x, info to fix is"
					" 0x%08x\n", denali->page, err_address,
					err_correction_info);
1443 1444 1445 1446 1447 1448 1449
#endif
		} while (!ECC_LAST_ERR(err_correction_info));
	}
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1450
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1451 1452 1453
{
	uint32_t reg_val = 0x0;

1454 1455
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1456 1457 1458 1459 1460 1461

	denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1462
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1485
/* writes a page. user specifies type, and this function handles the
1486
   configuration details. */
1487
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1488 1489 1490 1491 1492 1493 1494 1495 1496
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1497
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
						INTR_STATUS0__PROGRAM_FAIL;

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1510
	if (raw_xfer) {
1511
		/* transfer the data to the spare area */
1512 1513 1514
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1515 1516 1517 1518 1519
	}

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);

	clear_interrupts(denali);
1520
	denali_enable_dma(denali, true);
1521

1522
	denali_setup_dma(denali, DENALI_WRITE);
1523 1524 1525 1526

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1527
	if (irq_status == 0) {
1528 1529
		printk(KERN_ERR "timeout on write_page"
				" (type = %d)\n", raw_xfer);
1530
		denali->status =
1531 1532
			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
			NAND_STATUS_FAIL : PASS;
1533 1534
	}

1535
	denali_enable_dma(denali, false);
1536 1537 1538 1539 1540
	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}

/* NAND core entry points */

1541 1542
/* this is the callback that the NAND core calls to write a page. Since
   writing a page with ECC or without is similar, all the work is done
1543
   by write_page above.   */
1544
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1545 1546 1547
				const uint8_t *buf)
{
	/* for regular page writes, we let HW handle all the ECC
1548
	 * data written to the device. */
1549 1550 1551
	write_page(mtd, chip, buf, false);
}

1552
/* This is the callback that the NAND core calls to write a page without ECC.
1553
   raw access is similiar to ECC page writes, so all the work is done in the
1554
   write_page() function above.
1555
 */
1556
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1557 1558
					const uint8_t *buf)
{
1559
	/* for raw page writes, we want to disable ECC and simply write
1560 1561 1562 1563
	   whatever data is in the buffer. */
	write_page(mtd, chip, buf, true);
}

1564
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1565 1566
			    int page)
{
1567
	return write_oob_data(mtd, chip->oob_poi, page);
1568 1569
}

1570
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1571 1572 1573 1574
			   int page, int sndcmd)
{
	read_oob_data(mtd, chip->oob_poi, page);

1575 1576
	return 0; /* notify NAND core to send command to
			   NAND device. */
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1589
	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1590 1591 1592 1593 1594
			    INTR_STATUS0__ECC_ERR;
	bool check_erased_page = false;

	setup_ecc_for_xfer(denali, true, false);

1595
	denali_enable_dma(denali, true);
1596 1597 1598
	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1599
	denali_setup_dma(denali, DENALI_READ);
1600 1601 1602 1603 1604 1605 1606

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);
1607

1608
	check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
1609
	denali_enable_dma(denali, false);
1610

1611
	if (check_erased_page) {
1612 1613 1614
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1615
		if (check_erased_page) {
1616 1617 1618 1619
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1620
		}
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	}
	return 0;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1636

1637
	setup_ecc_for_xfer(denali, false, true);
1638
	denali_enable_dma(denali, true);
1639 1640 1641 1642

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1643
	denali_setup_dma(denali, DENALI_READ);
1644 1645 1646 1647 1648 1649

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

1650
	denali_enable_dma(denali, false);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

#if DEBUG_DENALI
1667
	printk(KERN_INFO "read byte -> 0x%02x\n", result);
1668 1669 1670 1671 1672 1673 1674 1675
#endif
	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
1676
	printk(KERN_INFO "denali select chip %d\n", chip);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
#endif
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

#if DEBUG_DENALI
1690
	printk(KERN_INFO "waitfunc %d\n", status);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
#endif
	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

#if DEBUG_DENALI
1702
	printk(KERN_INFO "erase page: %d\n", page);
1703 1704
#endif
	/* clear interrupts */
1705
	clear_interrupts(denali);
1706 1707 1708 1709 1710 1711

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1712
	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1713 1714
					INTR_STATUS0__ERASE_FAIL);

1715 1716
	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
						NAND_STATUS_FAIL : PASS;
1717 1718
}

1719
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1720 1721 1722 1723 1724
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

#if DEBUG_DENALI
1725
	printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
1726
#endif
1727
	switch (cmd) {
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
		reset_buf(denali);
		if (denali->flash_bank < denali->total_used_banks) {
			/* write manufacturer information into nand
			   buffer for NAND subsystem to fetch.
			   */
			write_byte_to_buf(denali,
					denali->dev_info.wDeviceMaker);
			write_byte_to_buf(denali,
					denali->dev_info.wDeviceID);
			write_byte_to_buf(denali,
					denali->dev_info.bDeviceParam0);
			write_byte_to_buf(denali,
					denali->dev_info.bDeviceParam1);
			write_byte_to_buf(denali,
					denali->dev_info.bDeviceParam2);
		} else {
			int i;
			for (i = 0; i < 5; i++)
				write_byte_to_buf(denali, 0xff);
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		printk(KERN_ERR ": unsupported command"
				" received 0x%x\n", cmd);
		break;
1769 1770 1771 1772
	}
}

/* stubs for ECC functions not used by the NAND core */
1773
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1774 1775 1776 1777 1778 1779 1780
				uint8_t *ecc_code)
{
	printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
	BUG();
	return -EIO;
}

1781
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
	printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
	printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
	denali_irq_init(denali);
1800
	denali_nand_reset(denali);
1801
	denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1802 1803
	denali_write32(CHIP_EN_DONT_CARE__FLAG,
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
	denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);

	/* Should set value for these registers when init */
	denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	denali_write32(1, denali->flash_reg + ECC_ENABLE);
}

/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
1814
#define ECC_BYTES_SLC   (4 * (2048 / ECC_SECTOR_SIZE))
1815 1816 1817
static struct nand_ecclayout nand_oob_slc = {
	.eccbytes = 4,
	.eccpos = { 0, 1, 2, 3 }, /* not used */
1818 1819
	.oobfree = {
		{
1820 1821
			.offset = ECC_BYTES_SLC,
			.length = 64 - ECC_BYTES_SLC
1822 1823
		}
	}
1824 1825
};

1826
#define ECC_BYTES_MLC   (14 * (2048 / ECC_SECTOR_SIZE))
1827 1828 1829
static struct nand_ecclayout nand_oob_mlc_14bit = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
1830 1831
	.oobfree = {
		{
1832 1833
			.offset = ECC_BYTES_MLC,
			.length = 64 - ECC_BYTES_MLC
1834 1835
		}
	}
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/* initalize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1867
	/* the completion object will be used to notify
1868 1869 1870 1871
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1872
	 * with any element that might be access shared
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
		goto failed_enable;
	}

	if (id->driver_data == INTEL_CE4100) {
1905 1906 1907
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1908
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1909 1910
			printk(KERN_ERR "Intel CE4100 only supports"
					" ONFI timing mode 1 or below\n");
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
			ret = -EINVAL;
			goto failed_enable;
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
		csr_len = pci_resource_start(dev, 0);
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
			nand_dbg_print(NAND_DBG_WARN,
1929 1930 1931
				       "Spectra: No second"
					   " BAR for PCI device;"
					   " assuming %08Lx\n",
1932 1933 1934 1935 1936 1937 1938
				       (uint64_t)csr_base);
		}
	}

	/* Is 32-bit DMA supported? */
	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));

1939
	if (ret) {
1940 1941 1942
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
		goto failed_enable;
	}
1943 1944 1945 1946
	denali->buf.dma_buf =
		pci_map_single(dev, denali->buf.buf,
						DENALI_BUF_SIZE,
						PCI_DMA_BIDIRECTIONAL);
1947

1948
	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
		printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
		goto failed_enable;
	}

	pci_set_master(dev);
	denali->dev = dev;

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
		goto failed_req_csr;
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
		goto failed_remap_csr;
	}
	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
		       (uint64_t)csr_base, denali->flash_reg, csr_len);

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		iounmap(denali->flash_reg);
		ret = -ENOMEM;
		goto failed_remap_csr;
	}

	nand_dbg_print(NAND_DBG_WARN,
		"Spectra: Remapped flash base address: "
		"0x%p, len: %ld\n",
		denali->flash_mem, csr_len);

	denali_hw_init(denali);
	denali_drv_init(denali);

	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
		goto failed_request_irq;
	}

	/* now that our ISR is registered, we can enable interrupts */
1996
	denali_set_intr_modes(denali, true);
1997 1998 1999

	pci_set_drvdata(dev, denali);

2000
	denali_nand_timing_set(denali);
2001

2002 2003
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
2004
	 */
2005
	if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
		goto failed_nand;
	}

	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
			"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	denali->mtd.name = "Denali NAND";
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

2034
	/* scan for NAND devices attached to the controller
2035
	 * this is the first stage in a two step process to register
2036
	 * with the nand subsystem */
2037
	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
2038 2039 2040
		ret = -ENXIO;
		goto failed_nand;
	}
2041 2042 2043 2044

	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
2045 2046 2047 2048 2049 2050 2051 2052 2053

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

2054
	if (denali->dev_info.MLCDevice) {
2055 2056
		denali->nand.ecc.layout = &nand_oob_mlc_14bit;
		denali->nand.ecc.bytes = ECC_BYTES_MLC;
2057
	} else {/* SLC */
2058 2059 2060 2061
		denali->nand.ecc.layout = &nand_oob_slc;
		denali->nand.ecc.bytes = ECC_BYTES_SLC;
	}

2062 2063 2064
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
	denali->nand.ecc.size = denali->mtd.writesize;
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

2079
	if (nand_scan_tail(&denali->mtd)) {
2080 2081 2082 2083 2084 2085
		ret = -ENXIO;
		goto failed_nand;
	}

	ret = add_mtd_device(&denali->mtd);
	if (ret) {
2086 2087
		printk(KERN_ERR "Spectra: Failed to register"
				" MTD device: %d\n", ret);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		goto failed_nand;
	}
	return 0;

 failed_nand:
	denali_irq_cleanup(dev->irq, denali);
 failed_request_irq:
	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
 failed_remap_csr:
	pci_release_regions(dev);
 failed_req_csr:
2100
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
							PCI_DMA_BIDIRECTIONAL);
 failed_enable:
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	nand_release(&denali->mtd);
	del_mtd_device(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
2124
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
							PCI_DMA_BIDIRECTIONAL);
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

static int __devinit denali_init(void)
{
2141 2142
	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
			__DATE__, __TIME__);
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	return pci_register_driver(&denali_pci_driver);
}

/* Free memory */
static void __devexit denali_exit(void)
{
	pci_unregister_driver(&denali_pci_driver);
}

module_init(denali_init);
module_exit(denali_exit);