denali.c 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
			INTR__ECC_TRANSACTION_DONE | \
			INTR__ECC_ERR | \
			INTR__PROGRAM_FAIL | \
			INTR__LOAD_COMP | \
			INTR__PROGRAM_COMP | \
			INTR__TIME_OUT | \
			INTR__ERASE_FAIL | \
			INTR__RST_COMP | \
			INTR__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64

65 66 67 68
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
69 70
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

71 72
/*
 * this macro allows us to convert from an MTD structure to our own
73 74
 * device context (denali) structure.
 */
75 76 77 78
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
79

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86 87 88 89 90
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

91 92 93 94
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
95 96 97 98
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
99 100 101 102
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
103 104
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

105 106 107 108
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
109
 * abstracts this common operation.
110
 */
111 112
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
113
{
114 115
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
116 117 118 119 120 121
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
122
	iowrite32(address, denali->flash_mem);
123 124 125
	*pdata = ioread32(denali->flash_mem + 0x10);
}

126 127 128 129
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
130 131 132 133 134 135 136 137 138 139 140 141 142
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
143
	uint32_t cmd;
144 145 146 147

	/* initialize the data buffer to store status */
	reset_buf(denali);

148 149 150 151 152
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
153 154 155 156 157
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
158
	uint32_t irq_status;
159
	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
160 161 162

	clear_interrupts(denali);

163
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
164 165

	irq_status = wait_for_irq(denali, irq_mask);
166

167
	if (irq_status & INTR__TIME_OUT)
168
		dev_err(denali->dev, "reset bank failed.\n");
169 170 171
}

/* Reset the flash controller */
172
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
173
{
174
	int i;
175

176
	for (i = 0; i < denali->max_banks; i++)
177
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
178
		denali->flash_reg + INTR_STATUS(i));
179

180
	for (i = 0; i < denali->max_banks; i++) {
181
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
182
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
183
			(INTR__RST_COMP | INTR__TIME_OUT)))
184
			cpu_relax();
185
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
186
			INTR__TIME_OUT)
187
			dev_dbg(denali->dev,
188 189 190
			"NAND Reset operation timed out on bank %d\n", i);
	}

191
	for (i = 0; i < denali->max_banks; i++)
192
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
193
			  denali->flash_reg + INTR_STATUS(i));
194 195 196 197

	return PASS;
}

198 199
/*
 * this routine calculates the ONFI timing values for a given mode and
200 201
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
202
 */
203
static void nand_onfi_timing_set(struct denali_nand_info *denali,
204
								uint16_t mode)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

243 244
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
245 246 247 248 249 250 251 252 253

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

254
	while (acc_clks * CLK_X - Trea[mode] < 3)
255 256
		acc_clks++;

257
	if (data_invalid - acc_clks * CLK_X < 2)
258
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259
			 __FILE__, __LINE__);
260 261 262 263 264 265 266 267 268 269

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
270
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
271 272 273 274 275 276 277 278 279
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
280 281
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
282 283
		acc_clks = 6;

284 285 286 287 288 289 290 291
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
292 293 294 295 296 297
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
298 299 300

	/*
	 * we needn't to do a reset here because driver has already
301
	 * reset all the banks before
302
	 */
303 304 305 306 307
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
308 309
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
310 311 312
			break;
	}

313
	nand_onfi_timing_set(denali, i);
314

315 316 317 318
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
319 320 321 322 323 324
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

325 326
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
327
{
328
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
329
		/* Set timing register values according to datasheet */
330 331 332 333 334 335 336
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
337 338 339 340 341
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
342 343 344 345
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
346
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
347
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
348
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
349 350
}

351 352
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
353
{
354
	switch (device_id) {
355 356
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
357 358 359 360
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
361 362
		break;
	default:
363
		dev_warn(denali->dev,
364
			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
365 366
			 "Will use default parameter values instead.\n",
			 device_id);
367 368 369
	}
}

370 371
/*
 * determines how many NAND chips are connected to the controller. Note for
372
 * Intel CE4100 devices we don't support more than one device.
373 374 375
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
376
	uint32_t id[denali->max_banks];
377 378 379
	int i;

	denali->total_used_banks = 1;
380
	for (i = 0; i < denali->max_banks; i++) {
381 382
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
383
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
384

385
		dev_dbg(denali->dev,
386 387 388 389 390 391 392 393 394 395 396 397 398
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

399
	if (denali->platform == INTEL_CE4100) {
400 401
		/*
		 * Platform limitations of the CE4100 device limit
402
		 * users to a single chip solution for NAND.
403 404
		 * Multichip support is not enabled.
		 */
405
		if (denali->total_used_banks != 1) {
406
			dev_err(denali->dev,
407
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
408 409 410
			BUG();
		}
	}
411
	dev_dbg(denali->dev,
412 413 414
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

415 416 417 418 419 420 421
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
422 423 424 425 426 427
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
428

429 430 431 432
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
433 434
}

435
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
436 437
{
	uint16_t status = PASS;
438
	uint32_t id_bytes[8], addr;
439 440
	uint8_t maf_id, device_id;
	int i;
441

442 443 444 445 446
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
447 448 449
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
450
	for (i = 0; i < 8; i++)
451 452 453
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
454 455 456 457 458

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
459
	} else if (maf_id == 0xEC) { /* Samsung NAND */
460
		get_samsung_nand_para(denali, device_id);
461
	} else if (maf_id == 0x98) { /* Toshiba NAND */
462
		get_toshiba_nand_para(denali);
463 464
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
465 466
	}

467
	dev_info(denali->dev,
468
			"Dump timing register values:\n"
469 470
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
471 472 473
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
474
			ioread32(denali->flash_reg + RE_2_RE),
475 476 477 478 479 480 481 482
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

483 484
	/*
	 * If the user specified to override the default timings
485
	 * with a specific ONFI mode, we apply those changes here.
486 487
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
488
		nand_onfi_timing_set(denali, onfi_timing_mode);
489 490 491 492

	return status;
}

493
static void denali_set_intr_modes(struct denali_nand_info *denali,
494 495 496
					uint16_t INT_ENABLE)
{
	if (INT_ENABLE)
497
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
498
	else
499
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
500 501
}

502 503
/*
 * validation function to verify that the controlling software is making
504
 * a valid request
505 506 507
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
508
	return flash_bank >= 0 && flash_bank < 4;
509 510 511 512
}

static void denali_irq_init(struct denali_nand_info *denali)
{
513
	uint32_t int_mask;
514
	int i;
515 516

	/* Disable global interrupts */
517
	denali_set_intr_modes(denali, false);
518 519 520 521

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
522
	for (i = 0; i < denali->max_banks; ++i)
523
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
524 525 526 527 528 529

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
530
	denali_set_intr_modes(denali, false);
531 532
}

533 534
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
535
{
536 537
	int i;

538
	for (i = 0; i < denali->max_banks; ++i)
539
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
540 541
}

542 543
/*
 * This function only returns when an interrupt that this driver cares about
544
 * occurs. This is to reduce the overhead of servicing interrupts
545 546 547
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
548
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
549 550 551
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
552 553
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
554
{
555
	uint32_t intr_status_reg;
556

557
	intr_status_reg = INTR_STATUS(denali->flash_bank);
558

559
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
560 561 562 563
}

static void clear_interrupts(struct denali_nand_info *denali)
{
564 565
	uint32_t status;

566 567 568
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
569
	clear_interrupt(denali, status);
570 571 572 573 574 575 576

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
577
	uint32_t intr_status_reg;
578

579
	intr_status_reg = INTR_STATUS(denali->flash_bank);
580 581 582 583

	return ioread32(denali->flash_reg + intr_status_reg);
}

584 585 586
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
587 588 589 590
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
591
	uint32_t irq_status;
592 593 594 595
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

596
	/* check to see if a valid NAND chip has been selected. */
597
	if (is_flash_bank_valid(denali->flash_bank)) {
598 599 600 601
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
602 603
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
604 605 606
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
607 608 609 610
			/*
			 * store the status in the device context for someone
			 * to read
			 */
611 612 613 614 615 616 617 618 619 620 621 622 623
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
624 625
	unsigned long comp_res;
	uint32_t intr_status;
626 627
	unsigned long timeout = msecs_to_jiffies(1000);

628
	do {
629 630
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
631 632 633
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

634
		if (intr_status & irq_mask) {
635 636 637 638 639
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
640 641 642 643 644 645

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
646 647
	} while (comp_res != 0);

648
	if (comp_res == 0) {
649
		/* timeout */
650
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
651
				intr_status, irq_mask);
652 653 654 655 656 657

		intr_status = 0;
	}
	return intr_status;
}

658 659 660 661
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
662
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
663 664
				bool transfer_spare)
{
665
	int ecc_en_flag, transfer_spare_flag;
666 667 668 669 670 671

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
672
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
673
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
674 675
}

676 677
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
678
 * controller's user guide for more information (section 4.2.3.6).
679
 */
680
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
681 682
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
683 684
{
	int status = PASS;
685
	uint32_t addr, cmd;
686 687 688

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

689
	clear_interrupts(denali);
690 691 692

	addr = BANK(denali->flash_bank) | denali->page;

693
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
694
		cmd = MODE_01 | addr;
695
		iowrite32(cmd, denali->flash_mem);
696
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
697
		/* read spare area */
698
		cmd = MODE_10 | addr;
699
		index_addr(denali, cmd, access_type);
700

701
		cmd = MODE_01 | addr;
702
		iowrite32(cmd, denali->flash_mem);
703
	} else if (op == DENALI_READ) {
704
		/* setup page read request for access type */
705
		cmd = MODE_10 | addr;
706
		index_addr(denali, cmd, access_type);
707

708 709
		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
710 711 712 713 714
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
715
static int write_data_to_flash_mem(struct denali_nand_info *denali,
716
				   const uint8_t *buf, int len)
717
{
718 719
	uint32_t *buf32;
	int i;
720

721 722 723 724
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
725 726 727 728 729
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
730
		iowrite32(*buf32++, denali->flash_mem + 0x10);
731
	return i * 4; /* intent is to return the number of bytes read */
732 733 734
}

/* helper function that simply reads a buffer from the flash */
735
static int read_data_from_flash_mem(struct denali_nand_info *denali,
736
				    uint8_t *buf, int len)
737
{
738 739
	uint32_t *buf32;
	int i;
740

741 742 743 744 745
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
746 747 748 749 750 751 752
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
753
	return i * 4; /* intent is to return the number of bytes read */
754 755 756 757 758 759
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
760
	uint32_t irq_status;
761
	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
762 763 764 765
	int status = 0;

	denali->page = page;

766
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
767
							DENALI_WRITE) == PASS) {
768 769 770 771 772
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

773
		if (irq_status == 0) {
774
			dev_err(denali->dev, "OOB write failed\n");
775 776
			status = -EIO;
		}
777
	} else {
778
		dev_err(denali->dev, "unable to send pipeline command\n");
779
		status = -EIO;
780 781 782 783 784 785 786 787
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
788
	uint32_t irq_mask = INTR__LOAD_COMP;
789
	uint32_t irq_status, addr, cmd;
790 791 792

	denali->page = page;

793
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
794
							DENALI_READ) == PASS) {
795
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
796

797 798 799 800 801
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
802 803 804
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
805
			dev_err(denali->dev, "page on OOB timeout %d\n",
806
					denali->page);
807

808 809
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
810 811 812
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
813
		 * if you are in MAIN_ACCESS.
814 815
		 */
		addr = BANK(denali->flash_bank) | denali->page;
816
		cmd = MODE_10 | addr;
817
		index_addr(denali, cmd, MAIN_ACCESS);
818 819 820
	}
}

821 822 823 824
static int denali_check_erased_page(struct mtd_info *mtd,
				    struct nand_chip *chip, uint8_t *buf,
				    unsigned long uncor_ecc_flags,
				    unsigned int max_bitflips)
825
{
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	uint8_t *ecc_code = chip->buffers->ecccode;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int i, ret, stat;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; i < ecc_steps; i++) {
		if (!(uncor_ecc_flags & BIT(i)))
			continue;

		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
						  ecc_code, ecc_bytes,
						  NULL, 0,
						  chip->ecc.strength);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}

		buf += ecc_size;
		ecc_code += ecc_bytes;
	}
855

856
	return max_bitflips;
857
}
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bank = denali->flash_bank;
	uint32_t ecc_cor;
	unsigned int max_bitflips;

	ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);

	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
		/*
		 * This flag is set when uncorrectable error occurs at least in
		 * one ECC sector.  We can not know "how many sectors", or
		 * "which sector(s)".  We need erase-page check for all sectors.
		 */
		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
		return 0;
	}

	max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;

	/*
	 * The register holds the maximum of per-sector corrected bitflips.
	 * This is suitable for the return value of the ->read_page() callback.
	 * Unfortunately, we can not know the total number of corrected bits in
	 * the page.  Increase the stats by max_bitflips. (compromised solution)
	 */
	mtd->ecc_stats.corrected += max_bitflips;

	return max_bitflips;
}

894 895 896 897 898
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
899
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
900
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
901 902
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

903 904 905
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags, uint8_t *buf)
906
{
907
	unsigned int bitflips = 0;
908 909 910 911 912
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	/* read the ECC errors. we'll ignore them for now */
	denali_set_intr_modes(denali, false);

	do {
		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
		err_sector = ECC_SECTOR(err_addr);
		err_byte = ECC_BYTE(err_addr);

		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
		err_device = ECC_ERR_DEVICE(err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
			/*
932 933
			 * Check later if this is a real ECC error, or
			 * an erased sector.
934
			 */
935
			*uncor_ecc_flags |= BIT(err_sector);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		} else if (err_byte < ECC_SECTOR_SIZE) {
			/*
			 * If err_byte is larger than ECC_SECTOR_SIZE, means error
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

			offset = (err_sector * ECC_SECTOR_SIZE + err_byte) *
						denali->devnum + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!ECC_LAST_ERR(err_cor_info));

	/*
	 * Once handle all ecc errors, controller will trigger a
	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
	 * a while for this interrupt
	 */
	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
		cpu_relax();
	clear_interrupts(denali);
	denali_set_intr_modes(denali, true);

	return max_bitflips;
973 974 975
}

/* programs the controller to either enable/disable DMA transfers */
976
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
977
{
978
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
979 980 981 982
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
983
static void denali_setup_dma(struct denali_nand_info *denali, int op)
984
{
985
	uint32_t mode;
986
	const int page_count = 1;
987
	uint32_t addr = denali->buf.dma_buf;
988 989 990 991 992 993 994 995 996

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
997
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
998 999

	/* 3. set memory low address bits 23:8 */
1000
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1001

1002
	/* 4. interrupt when complete, burst len = 64 bytes */
1003 1004 1005
	index_addr(denali, mode | 0x14000, 0x2400);
}

1006 1007 1008 1009
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1010
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1011 1012 1013 1014
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1015
	size_t size = mtd->writesize + mtd->oobsize;
1016
	uint32_t irq_status;
1017
	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
1018

1019 1020
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1021 1022 1023 1024 1025 1026 1027 1028
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1029
	if (raw_xfer) {
1030
		/* transfer the data to the spare area */
1031 1032 1033
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1034 1035
	}

1036
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1037 1038

	clear_interrupts(denali);
1039
	denali_enable_dma(denali, true);
1040

1041
	denali_setup_dma(denali, DENALI_WRITE);
1042 1043 1044 1045

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1046
	if (irq_status == 0) {
1047 1048
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1049
		denali->status = NAND_STATUS_FAIL;
1050 1051
	}

1052
	denali_enable_dma(denali, false);
1053
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1054 1055

	return 0;
1056 1057 1058 1059
}

/* NAND core entry points */

1060 1061
/*
 * this is the callback that the NAND core calls to write a page. Since
1062 1063
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1064
 */
1065
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1066
				const uint8_t *buf, int oob_required, int page)
1067
{
1068 1069 1070 1071
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1072
	return write_page(mtd, chip, buf, false);
1073 1074
}

1075 1076
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1077
 * raw access is similar to ECC page writes, so all the work is done in the
1078
 * write_page() function above.
1079
 */
1080
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1081 1082
				 const uint8_t *buf, int oob_required,
				 int page)
1083
{
1084 1085 1086 1087
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1088
	return write_page(mtd, chip, buf, true);
1089 1090
}

1091
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1092 1093
			    int page)
{
1094
	return write_oob_data(mtd, chip->oob_poi, page);
1095 1096
}

1097
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1098
			   int page)
1099 1100 1101
{
	read_oob_data(mtd, chip->oob_poi, page);

1102
	return 0;
1103 1104 1105
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1106
			    uint8_t *buf, int oob_required, int page)
1107 1108 1109
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1110
	size_t size = mtd->writesize + mtd->oobsize;
1111
	uint32_t irq_status;
1112 1113 1114
	uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
				INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
				INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1115 1116
	unsigned long uncor_ecc_flags = 0;
	int stat = 0;
1117

1118
	if (page != denali->page) {
1119 1120 1121
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1122 1123 1124
		BUG();
	}

1125 1126
	setup_ecc_for_xfer(denali, true, false);

1127
	denali_enable_dma(denali, true);
1128
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1129 1130

	clear_interrupts(denali);
1131
	denali_setup_dma(denali, DENALI_READ);
1132 1133 1134 1135

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1136
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1137 1138

	memcpy(buf, denali->buf.buf, mtd->writesize);
1139

1140 1141 1142 1143
	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
	else if (irq_status & INTR__ECC_ERR)
		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
1144
	denali_enable_dma(denali, false);
1145

1146 1147 1148 1149
	if (stat < 0)
		return stat;

	if (uncor_ecc_flags) {
1150
		read_oob_data(mtd, chip->oob_poi, denali->page);
1151

1152 1153
		stat = denali_check_erased_page(mtd, chip, buf,
						uncor_ecc_flags, stat);
1154
	}
1155 1156

	return stat;
1157 1158 1159
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1160
				uint8_t *buf, int oob_required, int page)
1161 1162 1163
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1164
	size_t size = mtd->writesize + mtd->oobsize;
1165
	uint32_t irq_mask = INTR__DMA_CMD_COMP;
1166

1167
	if (page != denali->page) {
1168 1169 1170
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1171 1172 1173
		BUG();
	}

1174
	setup_ecc_for_xfer(denali, false, true);
1175
	denali_enable_dma(denali, true);
1176

1177
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1178 1179

	clear_interrupts(denali);
1180
	denali_setup_dma(denali, DENALI_READ);
1181 1182

	/* wait for operation to complete */
1183
	wait_for_irq(denali, irq_mask);
1184

1185
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1186

1187
	denali_enable_dma(denali, false);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1219

1220 1221 1222 1223 1224
	denali->status = 0;

	return status;
}

1225
static int denali_erase(struct mtd_info *mtd, int page)
1226 1227 1228
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1229
	uint32_t cmd, irq_status;
1230

1231
	clear_interrupts(denali);
1232 1233 1234

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1235
	index_addr(denali, cmd, 0x1);
1236 1237

	/* wait for erase to complete or failure to occur */
1238
	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1239

1240
	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1241 1242
}

1243
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1244 1245 1246
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1247 1248
	uint32_t addr, id;
	int i;
1249

1250
	switch (cmd) {
1251 1252 1253 1254 1255 1256
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1257
	case NAND_CMD_PARAM:
1258
		reset_buf(denali);
1259 1260
		/*
		 * sometimes ManufactureId read from register is not right
1261 1262
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1263
		 */
1264 1265
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1266
		index_addr(denali, addr | 1, col);
1267
		for (i = 0; i < 8; i++) {
1268
			index_addr_read_data(denali, addr | 2, &id);
1269
			write_byte_to_buf(denali, id);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1283
		pr_err(": unsupported command received 0x%x\n", cmd);
1284
		break;
1285 1286 1287 1288 1289 1290 1291
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1292 1293
	/*
	 * tell driver how many bit controller will skip before
1294 1295 1296
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1297
	 */
1298 1299
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1300
	detect_max_banks(denali);
1301
	denali_nand_reset(denali);
1302 1303
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1304
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1305

1306
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1307 1308

	/* Should set value for these registers when init */
1309 1310
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1311 1312
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1313 1314
}

1315 1316
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1317 1318
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1319
 */
1320 1321
#define ECC_8BITS	14
#define ECC_15BITS	26
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1381
/* initialize driver data structures */
1382
static void denali_drv_init(struct denali_nand_info *denali)
1383
{
1384 1385 1386 1387
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1388 1389
	init_completion(&denali->complete);

1390 1391 1392 1393
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1394 1395 1396 1397 1398 1399 1400 1401 1402
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1403
static int denali_multidev_fixup(struct denali_nand_info *denali)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

1417 1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devnum == 0) {
		denali->devnum = 1;
		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
	}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (denali->devnum == 1)
		return 0;

	if (denali->devnum != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devnum);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->bbtskipbytes <<= 1;

	return 0;
1452 1453
}

1454
int denali_init(struct denali_nand_info *denali)
1455
{
1456 1457
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1458
	int ret;
1459

1460
	if (denali->platform == INTEL_CE4100) {
1461 1462
		/*
		 * Due to a silicon limitation, we can only support
1463 1464
		 * ONFI timing mode 1 and below.
		 */
1465
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1466 1467
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1468 1469 1470
		}
	}

1471 1472 1473 1474 1475
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1476

1477
	mtd->dev.parent = denali->dev;
1478 1479 1480
	denali_hw_init(denali);
	denali_drv_init(denali);

1481 1482 1483 1484
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1485
		dev_err(denali->dev, "Unable to request IRQ\n");
1486
		return ret;
1487 1488 1489
	}

	/* now that our ISR is registered, we can enable interrupts */
1490
	denali_set_intr_modes(denali, true);
1491
	nand_set_flash_node(chip, denali->dev->of_node);
1492 1493 1494
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";
1495 1496

	/* register the driver with the NAND core subsystem */
1497 1498 1499 1500
	chip->select_chip = denali_select_chip;
	chip->cmdfunc = denali_cmdfunc;
	chip->read_byte = denali_read_byte;
	chip->waitfunc = denali_waitfunc;
1501

1502 1503
	/*
	 * scan for NAND devices attached to the controller
1504
	 * this is the first stage in a two step process to register
1505 1506
	 * with the nand subsystem
	 */
1507 1508
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1509
		goto failed_req_irq;
1510

1511 1512 1513
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1514
			     mtd->writesize + mtd->oobsize,
1515 1516 1517 1518 1519 1520 1521 1522 1523
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
1524
		dev_err(denali->dev, "No usable DMA configuration\n");
1525 1526 1527 1528
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1529
			     mtd->writesize + mtd->oobsize,
1530 1531
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1532
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1533
		ret = -EIO;
1534
		goto failed_req_irq;
1535 1536
	}

1537 1538
	/*
	 * second stage of the NAND scan
1539
	 * this stage requires information regarding ECC and
1540 1541
	 * bad block management.
	 */
1542 1543

	/* Bad block management */
1544 1545
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1546 1547

	/* skip the scan for now until we have OOB read and write support */
1548 1549 1550
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1551

1552
	/* no subpage writes on denali */
1553
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1554

1555 1556
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1557 1558 1559
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1560
	if (!nand_is_slc(chip) &&
1561 1562
			(mtd->oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (mtd->writesize /
1563 1564
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
1565 1566
		chip->ecc.strength = 15;
		chip->ecc.bytes = ECC_15BITS;
1567
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1568 1569
	} else if (mtd->oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (mtd->writesize /
1570
			ECC_SECTOR_SIZE))) {
1571
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1572
		goto failed_req_irq;
1573
	} else {
1574 1575
		chip->ecc.strength = 8;
		chip->ecc.bytes = ECC_8BITS;
1576
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1577 1578
	}

1579
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1580

1581
	/* override the default read operations */
1582
	chip->ecc.size = ECC_SECTOR_SIZE;
1583 1584 1585 1586 1587 1588 1589
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1590

1591 1592 1593
	ret = denali_multidev_fixup(denali);
	if (ret)
		goto failed_req_irq;
1594

1595 1596
	ret = nand_scan_tail(mtd);
	if (ret)
1597
		goto failed_req_irq;
1598

1599
	ret = mtd_device_register(mtd, NULL, 0);
1600
	if (ret) {
1601
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1602
		goto failed_req_irq;
1603 1604 1605
	}
	return 0;

1606
failed_req_irq:
1607 1608
	denali_irq_cleanup(denali->irq, denali);

1609 1610
	return ret;
}
1611
EXPORT_SYMBOL(denali_init);
1612 1613

/* driver exit point */
1614
void denali_remove(struct denali_nand_info *denali)
1615
{
1616
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1617 1618 1619 1620 1621
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1622
	int bufsize = mtd->writesize + mtd->oobsize;
1623

1624
	nand_release(mtd);
1625
	denali_irq_cleanup(denali->irq, denali);
1626
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1627
			 DMA_BIDIRECTIONAL);
1628
}
1629
EXPORT_SYMBOL(denali_remove);