denali.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

32 33
/*
 * We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44

#define DENALI_NAND_NAME    "denali-nand"

45 46 47 48
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
49 50 51 52 53 54 55 56 57 58
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
59

60 61 62 63
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
64
#define CHIP_SELECT_INVALID	-1
65 66 67

#define SUPPORT_8BITECC		1

68 69 70 71
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
72 73
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

74 75
/*
 * this macro allows us to convert from an MTD structure to our own
76 77 78 79
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
87
#define PIPELINE_ACCESS		0x2000
88 89 90 91 92 93 94 95 96

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

97 98 99 100
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
101 102 103 104
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
105 106 107 108
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
109 110
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

111 112 113 114
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
115
 * abstracts this common operation.
116
 */
117 118
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
119
{
120 121
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
122 123 124 125 126 127
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
128
	iowrite32(address, denali->flash_mem);
129 130 131
	*pdata = ioread32(denali->flash_mem + 0x10);
}

132 133 134 135
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

154 155 156 157 158
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
159 160 161 162 163 164
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
165 166
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;
167 168 169

	clear_interrupts(denali);

170
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
171 172

	irq_status = wait_for_irq(denali, irq_mask);
173

174
	if (irq_status & INTR_STATUS__TIME_OUT)
175
		dev_err(denali->dev, "reset bank failed.\n");
176 177 178
}

/* Reset the flash controller */
179
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
180 181 182
{
	uint32_t i;

183
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
184 185
		       __FILE__, __LINE__, __func__);

186
	for (i = 0 ; i < denali->max_banks; i++)
187 188
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
189

190
	for (i = 0 ; i < denali->max_banks; i++) {
191
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
192
		while (!(ioread32(denali->flash_reg +
193 194
				INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195
			cpu_relax();
196 197
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
198
			dev_dbg(denali->dev,
199 200 201
			"NAND Reset operation timed out on bank %d\n", i);
	}

202
	for (i = 0; i < denali->max_banks; i++)
203 204
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
			denali->flash_reg + INTR_STATUS(i));
205 206 207 208

	return PASS;
}

209 210
/*
 * this routine calculates the ONFI timing values for a given mode and
211 212
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
213
 */
214
static void nand_onfi_timing_set(struct denali_nand_info *denali,
215
								uint16_t mode)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

237
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
274
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

302 303 304 305 306 307 308 309
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
310 311 312 313 314 315
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
316 317 318

	/*
	 * we needn't to do a reset here because driver has already
319
	 * reset all the banks before
320
	 */
321 322 323 324 325
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
326 327
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
328 329 330
			break;
	}

331
	nand_onfi_timing_set(denali, i);
332

333 334 335 336
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
337 338 339 340 341 342
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

343 344
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
345
{
346
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
347
		/* Set timing register values according to datasheet */
348 349 350 351 352 353 354
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
355 356 357 358 359 360 361
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

362 363 364 365
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
366 367
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
368
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
369 370
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
371
		iowrite32(tmp,
372
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
373
#if SUPPORT_15BITECC
374
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
375
#elif SUPPORT_8BITECC
376
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
377 378 379 380
#endif
	}
}

381 382
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
383 384 385
{
	uint32_t main_size, spare_size;

386
	switch (device_id) {
387 388
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
389 390 391
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
392 393 394 395
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
396
		iowrite32(main_size,
397
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
398
		iowrite32(spare_size,
399
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
400
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
401
#if SUPPORT_15BITECC
402
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
403
#elif SUPPORT_8BITECC
404
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
405 406 407
#endif
		break;
	default:
408
		dev_warn(denali->dev,
409 410
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
411
			device_id);
412 413 414
	}
}

415 416
/*
 * determines how many NAND chips are connected to the controller. Note for
417
 * Intel CE4100 devices we don't support more than one device.
418 419 420
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
421
	uint32_t id[denali->max_banks];
422 423 424
	int i;

	denali->total_used_banks = 1;
425
	for (i = 0; i < denali->max_banks; i++) {
426 427
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
428 429
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
430

431
		dev_dbg(denali->dev,
432 433 434 435 436 437 438 439 440 441 442 443 444
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

445
	if (denali->platform == INTEL_CE4100) {
446 447
		/*
		 * Platform limitations of the CE4100 device limit
448
		 * users to a single chip solution for NAND.
449 450
		 * Multichip support is not enabled.
		 */
451
		if (denali->total_used_banks != 1) {
452
			dev_err(denali->dev,
453
					"Sorry, Intel CE4100 only supports "
454 455 456 457
					"a single NAND device.\n");
			BUG();
		}
	}
458
	dev_dbg(denali->dev,
459 460 461
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

462 463 464 465 466 467 468 469 470 471 472
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

473 474
static void detect_partition_feature(struct denali_nand_info *denali)
{
475 476
	/*
	 * For MRST platform, denali->fwblks represent the
477 478 479 480
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
481
	 */
482
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
483 484
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
485
			denali->fwblks =
486 487
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
488
			     denali->blksperchip)
489
			    +
490 491
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
492 493 494 495
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
496 497
}

498
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
499 500
{
	uint16_t status = PASS;
501
	uint32_t id_bytes[8], addr;
502
	uint8_t i, maf_id, device_id;
503

504
	dev_dbg(denali->dev,
505 506
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
507

508 509 510 511 512
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
513 514 515
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
516
	for (i = 0; i < 8; i++)
517 518 519
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
520 521 522 523 524

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
525
	} else if (maf_id == 0xEC) { /* Samsung NAND */
526
		get_samsung_nand_para(denali, device_id);
527
	} else if (maf_id == 0x98) { /* Toshiba NAND */
528
		get_toshiba_nand_para(denali);
529 530
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
531 532
	}

533
	dev_info(denali->dev,
534 535 536
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
537 538 539
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
540
			ioread32(denali->flash_reg + RE_2_RE),
541 542 543 544 545 546 547 548 549 550
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

551 552
	/*
	 * If the user specified to override the default timings
553
	 * with a specific ONFI mode, we apply those changes here.
554 555
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
556
		nand_onfi_timing_set(denali, onfi_timing_mode);
557 558 559 560

	return status;
}

561
static void denali_set_intr_modes(struct denali_nand_info *denali,
562 563
					uint16_t INT_ENABLE)
{
564
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
565 566 567
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
568
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
569
	else
570
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
571 572
}

573 574
/*
 * validation function to verify that the controlling software is making
575
 * a valid request
576 577 578
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
579
	return (flash_bank >= 0 && flash_bank < 4);
580 581 582 583 584
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;
585
	int i;
586 587

	/* Disable global interrupts */
588
	denali_set_intr_modes(denali, false);
589 590 591 592

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
593
	for (i = 0; i < denali->max_banks; ++i)
594
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
595 596 597 598 599 600

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
601
	denali_set_intr_modes(denali, false);
602 603 604
	free_irq(irqnum, denali);
}

605 606
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
607
{
608 609
	int i;

610
	for (i = 0; i < denali->max_banks; ++i)
611
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
612 613
}

614 615
/*
 * This function only returns when an interrupt that this driver cares about
616
 * occurs. This is to reduce the overhead of servicing interrupts
617 618 619
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
620
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
621 622 623
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
624 625
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
626 627 628
{
	uint32_t intr_status_reg = 0;

629
	intr_status_reg = INTR_STATUS(denali->flash_bank);
630

631
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
632 633 634 635 636 637 638 639
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
640
	clear_interrupt(denali, status);
641 642 643 644 645 646 647 648 649

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

650
	intr_status_reg = INTR_STATUS(denali->flash_bank);
651 652 653 654

	return ioread32(denali->flash_reg + intr_status_reg);
}

655 656 657
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
658 659 660 661 662 663 664 665 666
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

667
	/* check to see if a valid NAND chip has been selected. */
668
	if (is_flash_bank_valid(denali->flash_bank)) {
669 670 671 672
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
673 674
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
675 676 677
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
678 679 680 681
			/*
			 * store the status in the device context for someone
			 * to read
			 */
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

701
	do {
702 703
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
704 705 706
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

707
		if (intr_status & irq_mask) {
708 709 710 711
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
712
		} else {
713 714 715 716
			/*
			 * these are not the interrupts you are looking for -
			 * need to wait again
			 */
717 718 719 720 721
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

722
	if (comp_res == 0) {
723
		/* timeout */
724
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
725
				intr_status, irq_mask);
726 727 728 729 730 731

		intr_status = 0;
	}
	return intr_status;
}

732 733 734 735
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
736
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
737 738
				bool transfer_spare)
{
739
	int ecc_en_flag = 0, transfer_spare_flag = 0;
740 741 742 743 744 745

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
746 747
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
748
			denali->flash_reg + TRANSFER_SPARE_REG);
749 750
}

751 752
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
753
 * controller's user guide for more information (section 4.2.3.6).
754
 */
755 756 757 758 759
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
760 761
{
	int status = PASS;
762
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
763 764
		 irq_mask = 0;

765
	if (op == DENALI_READ)
766
		irq_mask = INTR_STATUS__LOAD_COMP;
767 768 769 770
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
771 772 773

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

774
	clear_interrupts(denali);
775 776 777

	addr = BANK(denali->flash_bank) | denali->page;

778
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
779
		cmd = MODE_01 | addr;
780
		iowrite32(cmd, denali->flash_mem);
781
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
782
		/* read spare area */
783
		cmd = MODE_10 | addr;
784 785
		index_addr(denali, (uint32_t)cmd, access_type);

786
		cmd = MODE_01 | addr;
787
		iowrite32(cmd, denali->flash_mem);
788
	} else if (op == DENALI_READ) {
789
		/* setup page read request for access type */
790
		cmd = MODE_10 | addr;
791 792
		index_addr(denali, (uint32_t)cmd, access_type);

793 794 795 796
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
797
		 */
798
		if (access_type == SPARE_ACCESS) {
799
			cmd = MODE_01 | addr;
800
			iowrite32(cmd, denali->flash_mem);
801
		} else {
802
			index_addr(denali, (uint32_t)cmd,
803
					PIPELINE_ACCESS | op | page_count);
804

805 806
			/*
			 * wait for command to be accepted
807
			 * can always use status0 bit as the
808 809
			 * mask is identical for each bank.
			 */
810 811
			irq_status = wait_for_irq(denali, irq_mask);

812
			if (irq_status == 0) {
813
				dev_err(denali->dev,
814 815 816
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
817
				status = FAIL;
818
			} else {
819
				cmd = MODE_01 | addr;
820
				iowrite32(cmd, denali->flash_mem);
821 822 823 824 825 826 827
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
828 829 830
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
831 832 833
{
	uint32_t i = 0, *buf32;

834 835 836 837
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
838 839 840 841 842
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
843
		iowrite32(*buf32++, denali->flash_mem + 0x10);
844
	return i*4; /* intent is to return the number of bytes read */
845 846 847
}

/* helper function that simply reads a buffer from the flash */
848 849 850
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
851 852 853
{
	uint32_t i = 0, *buf32;

854 855 856 857 858
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
859 860 861 862 863 864 865
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
866
	return i*4; /* intent is to return the number of bytes read */
867 868 869 870 871 872 873
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
874 875
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
876 877 878 879
	int status = 0;

	denali->page = page;

880
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
881
							DENALI_WRITE) == PASS) {
882 883 884 885 886
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

887
		if (irq_status == 0) {
888
			dev_err(denali->dev, "OOB write failed\n");
889 890
			status = -EIO;
		}
891
	} else {
892
		dev_err(denali->dev, "unable to send pipeline command\n");
893
		status = -EIO;
894 895 896 897 898 899 900 901
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
902
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
903
			 irq_status = 0, addr = 0x0, cmd = 0x0;
904 905 906

	denali->page = page;

907
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
908
							DENALI_READ) == PASS) {
909
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
910

911 912 913 914 915
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
916 917 918
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
919
			dev_err(denali->dev, "page on OOB timeout %d\n",
920
					denali->page);
921

922 923
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
924 925 926
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
927
		 * if you are in MAIN_ACCESS.
928 929
		 */
		addr = BANK(denali->flash_bank) | denali->page;
930
		cmd = MODE_10 | addr;
931 932 933 934
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
	}
}

935 936
/*
 * this function examines buffers to see if they contain data that
937 938
 * indicate that the buffer is part of an erased region of flash.
 */
939
static bool is_erased(uint8_t *buf, int len)
940 941 942 943 944 945 946 947 948 949 950 951
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
952 953
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
954 955
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

956
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
957
		       uint32_t irq_status, unsigned int *max_bitflips)
958 959
{
	bool check_erased_page = false;
960
	unsigned int bitflips = 0;
961

962
	if (irq_status & INTR_STATUS__ECC_ERR) {
963 964 965 966
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
967
		denali_set_intr_modes(denali, false);
968

969
		do {
970
			err_address = ioread32(denali->flash_reg +
971 972 973 974
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

975
			err_correction_info = ioread32(denali->flash_reg +
976
						ERR_CORRECTION_INFO);
977
			err_correction_value =
978 979 980
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

981
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
982 983
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
984
				 * means error happened in OOB, so we ignore
985 986 987 988
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
989
				 */
990 991 992 993 994 995 996
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
997 998 999
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
1000
					bitflips++;
1001
				}
1002
			} else {
1003 1004
				/*
				 * if the error is not correctable, need to
1005 1006
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
1007
				 */
1008 1009 1010
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
1011 1012
		/*
		 * Once handle all ecc errors, controller will triger
1013 1014
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
1015
		 */
1016
		while (!(read_interrupt_status(denali) &
1017
				INTR_STATUS__ECC_TRANSACTION_DONE))
1018 1019 1020
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1021
	}
1022
	*max_bitflips = bitflips;
1023 1024 1025 1026
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1027
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1028 1029 1030
{
	uint32_t reg_val = 0x0;

1031 1032
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1033

1034
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1035 1036 1037 1038
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1039
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

1058
	/* 4. interrupt when complete, burst len = 64 bytes */
1059 1060 1061
	index_addr(denali, mode | 0x14000, 0x2400);
}

1062 1063 1064 1065
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1066
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1067 1068 1069 1070 1071 1072 1073 1074
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1075 1076
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1077

1078 1079
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1080 1081 1082 1083 1084 1085 1086 1087
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1088
	if (raw_xfer) {
1089
		/* transfer the data to the spare area */
1090 1091 1092
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1093 1094
	}

1095
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1096 1097

	clear_interrupts(denali);
1098
	denali_enable_dma(denali, true);
1099

1100
	denali_setup_dma(denali, DENALI_WRITE);
1101 1102 1103 1104

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1105
	if (irq_status == 0) {
1106
		dev_err(denali->dev,
1107 1108
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1109
		denali->status = NAND_STATUS_FAIL;
1110 1111
	}

1112
	denali_enable_dma(denali, false);
1113
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1114 1115

	return 0;
1116 1117 1118 1119
}

/* NAND core entry points */

1120 1121
/*
 * this is the callback that the NAND core calls to write a page. Since
1122 1123
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1124
 */
1125
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1126
				const uint8_t *buf, int oob_required)
1127
{
1128 1129 1130 1131
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1132
	return write_page(mtd, chip, buf, false);
1133 1134
}

1135 1136
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1137
 * raw access is similar to ECC page writes, so all the work is done in the
1138
 * write_page() function above.
1139
 */
1140
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1141
					const uint8_t *buf, int oob_required)
1142
{
1143 1144 1145 1146
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1147
	return write_page(mtd, chip, buf, true);
1148 1149
}

1150
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1151 1152
			    int page)
{
1153
	return write_oob_data(mtd, chip->oob_poi, page);
1154 1155
}

1156
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1157
			   int page)
1158 1159 1160
{
	read_oob_data(mtd, chip->oob_poi, page);

1161
	return 0;
1162 1163 1164
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1165
			    uint8_t *buf, int oob_required, int page)
1166
{
1167
	unsigned int max_bitflips;
1168 1169 1170 1171 1172 1173
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1174 1175
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1176 1177
	bool check_erased_page = false;

1178
	if (page != denali->page) {
1179
		dev_err(denali->dev, "IN %s: page %d is not"
1180 1181 1182 1183 1184
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1185 1186
	setup_ecc_for_xfer(denali, true, false);

1187
	denali_enable_dma(denali, true);
1188
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1189 1190

	clear_interrupts(denali);
1191
	denali_setup_dma(denali, DENALI_READ);
1192 1193 1194 1195

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1196
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1197 1198

	memcpy(buf, denali->buf.buf, mtd->writesize);
1199

1200
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1201
	denali_enable_dma(denali, false);
1202

1203
	if (check_erased_page) {
1204 1205 1206
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1207
		if (check_erased_page) {
1208 1209 1210 1211
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1212
		}
1213
	}
1214
	return max_bitflips;
1215 1216 1217
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1218
				uint8_t *buf, int oob_required, int page)
1219 1220 1221 1222 1223 1224 1225
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1226
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1227

1228
	if (page != denali->page) {
1229
		dev_err(denali->dev, "IN %s: page %d is not"
1230 1231 1232 1233 1234
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1235
	setup_ecc_for_xfer(denali, false, true);
1236
	denali_enable_dma(denali, true);
1237

1238
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1239 1240

	clear_interrupts(denali);
1241
	denali_setup_dma(denali, DENALI_READ);
1242 1243 1244 1245

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1246
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1247

1248
	denali_enable_dma(denali, false);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

1285
static int denali_erase(struct mtd_info *mtd, int page)
1286 1287 1288 1289 1290
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

1291
	clear_interrupts(denali);
1292 1293 1294 1295 1296 1297

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1298 1299
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1300

1301
	return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
1302 1303
}

1304
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1305 1306 1307
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1308 1309
	uint32_t addr, id;
	int i;
1310

1311
	switch (cmd) {
1312 1313 1314 1315 1316 1317
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1318
	case NAND_CMD_PARAM:
1319
		reset_buf(denali);
1320 1321
		/*
		 * sometimes ManufactureId read from register is not right
1322 1323
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1324
		 */
1325 1326 1327
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
1328
		for (i = 0; i < 8; i++) {
1329 1330 1331 1332
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1346
		pr_err(": unsupported command received 0x%x\n", cmd);
1347
		break;
1348 1349 1350 1351
	}
}

/* stubs for ECC functions not used by the NAND core */
1352
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1353 1354
				uint8_t *ecc_code)
{
1355
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1356
	dev_err(denali->dev,
1357
			"denali_ecc_calculate called unexpectedly\n");
1358 1359 1360 1361
	BUG();
	return -EIO;
}

1362
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1363 1364
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1365
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1366
	dev_err(denali->dev,
1367
			"denali_ecc_correct called unexpectedly\n");
1368 1369 1370 1371 1372 1373
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1374
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1375
	dev_err(denali->dev,
1376
			"denali_ecc_hwctl called unexpectedly\n");
1377 1378 1379 1380 1381 1382 1383
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1384 1385
	/*
	 * tell driver how many bit controller will skip before
1386 1387 1388
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1389
	 */
1390 1391
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1392
	detect_max_banks(denali);
1393
	denali_nand_reset(denali);
1394 1395
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1396
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1397

1398
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1399 1400

	/* Should set value for these registers when init */
1401 1402
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1403 1404
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1405 1406
}

1407 1408
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1409 1410
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1411
 */
1412 1413 1414
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1415 1416
};

1417 1418 1419
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1445
/* initialize driver data structures */
1446
static void denali_drv_init(struct denali_nand_info *denali)
1447 1448 1449 1450
{
	denali->idx = 0;

	/* setup interrupt handler */
1451 1452 1453 1454
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1455 1456
	init_completion(&denali->complete);

1457 1458 1459 1460
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1461 1462 1463 1464 1465 1466 1467 1468 1469
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1470
int denali_init(struct denali_nand_info *denali)
1471
{
1472
	int ret;
1473

1474
	if (denali->platform == INTEL_CE4100) {
1475 1476
		/*
		 * Due to a silicon limitation, we can only support
1477 1478
		 * ONFI timing mode 1 and below.
		 */
1479
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1480 1481
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1482 1483 1484
		}
	}

1485 1486 1487 1488 1489
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1490

1491
	denali->mtd.dev.parent = denali->dev;
1492 1493 1494
	denali_hw_init(denali);
	denali_drv_init(denali);

1495 1496 1497 1498
	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
1499
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1500
			DENALI_NAND_NAME, denali)) {
1501 1502
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1503 1504 1505
	}

	/* now that our ISR is registered, we can enable interrupts */
1506
	denali_set_intr_modes(denali, true);
1507
	denali->mtd.name = "denali-nand";
1508 1509 1510 1511 1512 1513 1514 1515 1516
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1517 1518
	/*
	 * scan for NAND devices attached to the controller
1519
	 * this is the first stage in a two step process to register
1520 1521
	 * with the nand subsystem
	 */
1522
	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1523
		ret = -ENXIO;
1524
		goto failed_req_irq;
1525
	}
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
			     denali->mtd.writesize + denali->mtd.oobsize,
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1550
		goto failed_req_irq;
1551 1552
	}

1553 1554 1555 1556
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1572 1573
	/*
	 * second stage of the NAND scan
1574
	 * this stage requires information regarding ECC and
1575 1576
	 * bad block management.
	 */
1577 1578 1579 1580 1581 1582

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1583
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1584
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1585 1586
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1587 1588
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1589 1590 1591
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1592
	if (!nand_is_slc(&denali->nand) &&
1593 1594 1595 1596
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1597
		denali->nand.ecc.strength = 15;
1598 1599
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1600
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1601 1602 1603
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
1604 1605
		pr_err("Your NAND chip OOB is not large enough to \
				contain 8bit ECC correction codes");
1606
		goto failed_req_irq;
1607
	} else {
M
Mike Dunn 已提交
1608
		denali->nand.ecc.strength = 8;
1609 1610
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1611
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1612 1613
	}

1614
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1615
	denali->nand.ecc.strength *= denali->devnum;
1616 1617 1618 1619 1620 1621 1622 1623
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1624 1625 1626 1627 1628
	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
1629 1630 1631 1632
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1633 1634
	/*
	 * These functions are required by the NAND core framework, otherwise,
1635
	 * the NAND core will assert. However, we don't need them, so we'll stub
1636 1637
	 * them out.
	 */
1638 1639 1640 1641 1642
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1643
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1644 1645 1646 1647 1648 1649
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1650
	denali->nand.erase = denali_erase;
1651

1652
	if (nand_scan_tail(&denali->mtd)) {
1653
		ret = -ENXIO;
1654
		goto failed_req_irq;
1655 1656
	}

1657
	ret = mtd_device_register(&denali->mtd, NULL, 0);
1658
	if (ret) {
1659
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1660
				ret);
1661
		goto failed_req_irq;
1662 1663 1664
	}
	return 0;

1665
failed_req_irq:
1666 1667
	denali_irq_cleanup(denali->irq, denali);

1668 1669
	return ret;
}
1670
EXPORT_SYMBOL(denali_init);
1671 1672

/* driver exit point */
1673
void denali_remove(struct denali_nand_info *denali)
1674
{
1675
	denali_irq_cleanup(denali->irq, denali);
1676 1677
	dma_unmap_single(denali->dev, denali->buf.dma_buf,
			denali->mtd.writesize + denali->mtd.oobsize,
1678
			DMA_BIDIRECTIONAL);
1679
}
1680
EXPORT_SYMBOL(denali_remove);