denali.c 50.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31 32
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

33
/* We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
			INTR_STATUS0__ECC_TRANSACTION_DONE | \
			INTR_STATUS0__ECC_ERR | \
			INTR_STATUS0__PROGRAM_FAIL | \
			INTR_STATUS0__LOAD_COMP | \
			INTR_STATUS0__PROGRAM_COMP | \
			INTR_STATUS0__TIME_OUT | \
			INTR_STATUS0__ERASE_FAIL | \
			INTR_STATUS0__RST_COMP | \
			INTR_STATUS0__ERASE_COMP)

58
/* indicates whether or not the internal value for the flash bank is
59
 * valid or not */
60
#define CHIP_SELECT_INVALID	-1
61 62 63

#define SUPPORT_8BITECC		1

64
/* This macro divides two integers and rounds fractional values up
65 66 67 68 69 70 71 72 73
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
74
 * configuration options. */
75 76 77 78 79 80 81 82 83 84 85 86
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

87
/* this is a helper macro that allows us to
88 89 90 91 92 93 94 95 96 97 98
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};


99
/* these are static lookup tables that give us easy access to
100
 * registers in the NAND controller.
101
 */
102 103 104
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
						  INTR_STATUS1,
						  INTR_STATUS2,
105 106 107
						  INTR_STATUS3};

static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
108 109 110
							DEVICE_RESET__BANK1,
							DEVICE_RESET__BANK2,
							DEVICE_RESET__BANK3};
111 112

static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
113 114 115
							INTR_STATUS1__TIME_OUT,
							INTR_STATUS2__TIME_OUT,
							INTR_STATUS3__TIME_OUT};
116 117

static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
118 119 120
							INTR_STATUS1__RST_COMP,
							INTR_STATUS2__RST_COMP,
							INTR_STATUS3__RST_COMP};
121 122 123

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
124 125 126 127
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
128 129
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

130 131 132 133 134
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
135
*/
136 137
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
138
{
139 140
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
141 142 143 144 145 146
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
147
	iowrite32(address, denali->flash_mem);
148 149 150
	*pdata = ioread32(denali->flash_mem + 0x10);
}

151
/* We need to buffer some data for some of the NAND core routines.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

172 173 174 175 176
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
177 178 179 180 181 182
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
183
	uint32_t irq_mask = reset_complete[denali->flash_bank] |
184 185 186 187 188 189
			    operation_timeout[denali->flash_bank];
	int bank = 0;

	clear_interrupts(denali);

	bank = device_reset_banks[denali->flash_bank];
190
	iowrite32(bank, denali->flash_reg + DEVICE_RESET);
191 192

	irq_status = wait_for_irq(denali, irq_mask);
193

194
	if (irq_status & operation_timeout[denali->flash_bank])
195
		dev_err(&denali->dev->dev, "reset bank failed.\n");
196 197 198
}

/* Reset the flash controller */
199
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
200 201 202
{
	uint32_t i;

203
	dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
204 205 206
		       __FILE__, __LINE__, __func__);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
207
		iowrite32(reset_complete[i] | operation_timeout[i],
208 209 210
		denali->flash_reg + intr_status_addresses[i]);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
211
		iowrite32(device_reset_banks[i],
212 213
				denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg +
214
				intr_status_addresses[i]) &
215
			(reset_complete[i] | operation_timeout[i])))
216
			cpu_relax();
217 218
		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
			operation_timeout[i])
219
			dev_dbg(&denali->dev->dev,
220 221 222 223
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
224
		iowrite32(reset_complete[i] | operation_timeout[i],
225 226 227 228 229
			denali->flash_reg + intr_status_addresses[i]);

	return PASS;
}

230 231 232
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
233
 */
234
static void nand_onfi_timing_set(struct denali_nand_info *denali,
235
								uint16_t mode)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

257
	dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
294
		dev_warn(&denali->dev->dev, "%s, Line %d: Warning!\n",
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

322 323 324 325 326 327 328 329
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
330 331 332 333 334 335
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
336 337 338
	/* we needn't to do a reset here because driver has already
	 * reset all the banks before
	 * */
339 340 341 342 343
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
344 345
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
346 347 348
			break;
	}

349
	nand_onfi_timing_set(denali, i);
350 351 352 353 354 355 356 357 358

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

359 360
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
361
{
362
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
363
		/* Set timing register values according to datasheet */
364 365 366 367 368 369 370
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
371 372 373 374 375 376 377 378 379 380 381
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
382
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
383 384
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
385
		iowrite32(tmp,
386
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
387
#if SUPPORT_15BITECC
388
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
389
#elif SUPPORT_8BITECC
390
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
391 392 393 394
#endif
	}
}

395 396
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
397 398 399
{
	uint32_t main_size, spare_size;

400
	switch (device_id) {
401 402
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
403 404 405
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
406 407 408 409
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
410
		iowrite32(main_size,
411
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
412
		iowrite32(spare_size,
413
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
414
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
415
#if SUPPORT_15BITECC
416
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
417
#elif SUPPORT_8BITECC
418
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
419 420 421
#endif
		break;
	default:
422
		dev_warn(&denali->dev->dev,
423 424
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
425
			device_id);
426 427 428 429
	}
}

/* determines how many NAND chips are connected to the controller. Note for
430
 * Intel CE4100 devices we don't support more than one device.
431 432 433 434 435 436 437 438 439 440
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[LLD_MAX_FLASH_BANKS];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
441 442
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
443

444
		dev_dbg(&denali->dev->dev,
445 446 447 448 449 450 451 452 453 454 455 456 457
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

458
	if (denali->platform == INTEL_CE4100) {
459 460
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
461 462
		 * Multichip support is not enabled.
		 */
463
		if (denali->total_used_banks != 1) {
464 465
			dev_err(&denali->dev->dev,
					"Sorry, Intel CE4100 only supports "
466 467 468 469
					"a single NAND device.\n");
			BUG();
		}
	}
470
	dev_dbg(&denali->dev->dev,
471 472 473 474 475
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
476 477 478 479 480 481
	/* For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 * */
482 483 484
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
485
			denali->fwblks =
486 487
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			      MIN_MAX_BANK_1__MIN_VALUE) *
488
			     denali->blksperchip)
489 490 491
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
			    MIN_BLK_ADDR_1__VALUE);
492 493 494 495
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
496 497
}

498
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
499 500
{
	uint16_t status = PASS;
501 502
	uint32_t id_bytes[5], addr;
	uint8_t i, maf_id, device_id;
503

504 505 506
	dev_dbg(&denali->dev->dev,
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
507

508 509 510 511 512 513 514 515 516 517 518 519
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
520 521 522 523 524

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
525
	} else if (maf_id == 0xEC) { /* Samsung NAND */
526
		get_samsung_nand_para(denali, device_id);
527
	} else if (maf_id == 0x98) { /* Toshiba NAND */
528
		get_toshiba_nand_para(denali);
529 530
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
531 532
	}

533 534 535 536
	dev_info(&denali->dev->dev,
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
537 538 539
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
540
			ioread32(denali->flash_reg + RE_2_RE),
541 542 543 544 545 546 547 548 549 550 551
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
552
	 * with a specific ONFI mode, we apply those changes here.
553 554
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
555
		nand_onfi_timing_set(denali, onfi_timing_mode);
556 557 558 559

	return status;
}

560
static void denali_set_intr_modes(struct denali_nand_info *denali,
561 562
					uint16_t INT_ENABLE)
{
563
	dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
564 565 566
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
567
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
568
	else
569
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
570 571 572
}

/* validation function to verify that the controlling software is making
573
 * a valid request
574 575 576
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
577
	return (flash_bank >= 0 && flash_bank < 4);
578 579 580 581 582 583 584
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;

	/* Disable global interrupts */
585
	denali_set_intr_modes(denali, false);
586 587 588 589

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
590 591 592 593
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
594 595 596 597 598 599

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
600
	denali_set_intr_modes(denali, false);
601 602 603
	free_irq(irqnum, denali);
}

604 605
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
606
{
607 608 609 610
	iowrite32(int_mask, denali->flash_reg + INTR_EN0);
	iowrite32(int_mask, denali->flash_reg + INTR_EN1);
	iowrite32(int_mask, denali->flash_reg + INTR_EN2);
	iowrite32(int_mask, denali->flash_reg + INTR_EN3);
611 612 613
}

/* This function only returns when an interrupt that this driver cares about
614
 * occurs. This is to reduce the overhead of servicing interrupts
615 616 617
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
618
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
619 620 621
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
622 623
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
624 625 626 627 628
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

629
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
630 631 632 633 634 635 636 637
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
638
	clear_interrupt(denali, status);
639 640 641 642 643 644 645 646 647 648 649 650 651 652

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	return ioread32(denali->flash_reg + intr_status_reg);
}

653 654 655
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
656 657 658 659 660 661 662 663 664
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

665 666
	/* check to see if a valid NAND chip has
	 * been selected.
667
	 */
668
	if (is_flash_bank_valid(denali->flash_bank)) {
669
		/* check to see if controller generated
670
		 * the interrupt, since this is a shared interrupt */
671 672
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

697
	do {
698 699
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
700 701 702
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

703
		if (intr_status & irq_mask) {
704 705 706 707
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
708
		} else {
709 710
			/* these are not the interrupts you are looking for -
			 * need to wait again */
711 712 713 714 715
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

716
	if (comp_res == 0) {
717
		/* timeout */
718 719
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
720 721 722 723 724 725

		intr_status = 0;
	}
	return intr_status;
}

726
/* This helper function setups the registers for ECC and whether or not
L
Lucas De Marchi 已提交
727
 * the spare area will be transferred. */
728
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
729 730
				bool transfer_spare)
{
731
	int ecc_en_flag = 0, transfer_spare_flag = 0;
732 733 734 735 736 737

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
738 739
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
740
			denali->flash_reg + TRANSFER_SPARE_REG);
741 742
}

743
/* sends a pipeline command operation to the controller. See the Denali NAND
744
 * controller's user guide for more information (section 4.2.3.6).
745
 */
746 747 748 749 750
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
751 752
{
	int status = PASS;
753
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
754 755
		 irq_mask = 0;

756 757 758 759 760 761
	if (op == DENALI_READ)
		irq_mask = INTR_STATUS0__LOAD_COMP;
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
762 763 764 765

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	/* clear interrupts */
766
	clear_interrupts(denali);
767 768 769

	addr = BANK(denali->flash_bank) | denali->page;

770
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
771
		cmd = MODE_01 | addr;
772
		iowrite32(cmd, denali->flash_mem);
773
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
774
		/* read spare area */
775
		cmd = MODE_10 | addr;
776 777
		index_addr(denali, (uint32_t)cmd, access_type);

778
		cmd = MODE_01 | addr;
779
		iowrite32(cmd, denali->flash_mem);
780
	} else if (op == DENALI_READ) {
781
		/* setup page read request for access type */
782
		cmd = MODE_10 | addr;
783 784 785
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
786
		   use the pipeline commands in Spare area only mode. So we
787 788
		   don't.
		 */
789
		if (access_type == SPARE_ACCESS) {
790
			cmd = MODE_01 | addr;
791
			iowrite32(cmd, denali->flash_mem);
792
		} else {
793 794
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
795 796

			/* wait for command to be accepted
797 798
			 * can always use status0 bit as the
			 * mask is identical for each
799 800 801
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

802
			if (irq_status == 0) {
803 804 805 806
				dev_err(&denali->dev->dev,
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
807
				status = FAIL;
808
			} else {
809
				cmd = MODE_01 | addr;
810
				iowrite32(cmd, denali->flash_mem);
811 812 813 814 815 816 817
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
818 819 820
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
821 822 823
{
	uint32_t i = 0, *buf32;

824 825
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
826 827 828 829 830
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
831
		iowrite32(*buf32++, denali->flash_mem + 0x10);
832
	return i*4; /* intent is to return the number of bytes read */
833 834 835
}

/* helper function that simply reads a buffer from the flash */
836 837 838
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
839 840 841 842 843
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
844 845 846
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
847 848 849 850 851 852 853 854 855
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
856
	return i*4; /* intent is to return the number of bytes read */
857 858 859 860 861 862 863
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
864
	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
865 866 867 868 869
						INTR_STATUS0__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

870
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
871
							DENALI_WRITE) == PASS) {
872 873 874 875 876
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

877
		if (irq_status == 0) {
878
			dev_err(&denali->dev->dev, "OOB write failed\n");
879 880
			status = -EIO;
		}
881
	} else {
882
		dev_err(&denali->dev->dev, "unable to send pipeline command\n");
883
		status = -EIO;
884 885 886 887 888 889 890 891
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
892 893
	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
			 irq_status = 0, addr = 0x0, cmd = 0x0;
894 895 896

	denali->page = page;

897
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
898
							DENALI_READ) == PASS) {
899
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
900

901
		/* wait for command to be accepted
902 903 904 905 906
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
907
			dev_err(&denali->dev->dev, "page on OOB timeout %d\n",
908
					denali->page);
909 910 911 912 913

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
914
		 * if you are in MAIN_ACCESS.
915 916
		 */
		addr = BANK(denali->flash_bank) | denali->page;
917
		cmd = MODE_10 | addr;
918 919 920 921
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
	}
}

922
/* this function examines buffers to see if they contain data that
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
938 939
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
940 941
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

942
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
943
					uint32_t irq_status)
944 945 946
{
	bool check_erased_page = false;

947
	if (irq_status & INTR_STATUS0__ECC_ERR) {
948 949 950 951
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
952
		denali_set_intr_modes(denali, false);
953

954
		do {
955
			err_address = ioread32(denali->flash_reg +
956 957 958 959
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

960
			err_correction_info = ioread32(denali->flash_reg +
961
						ERR_CORRECTION_INFO);
962
			err_correction_value =
963 964 965
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

966
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
967
				/* If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
968
				 * means error happened in OOB, so we ignore
969 970 971 972 973 974 975 976 977 978 979 980
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 * */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
981 982 983 984
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
				}
985
			} else {
986
				/* if the error is not correctable, need to
987 988 989
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
990 991 992
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
993 994 995 996 997 998 999 1000 1001
		/* Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 * */
		while (!(read_interrupt_status(denali) &
				INTR_STATUS0__ECC_TRANSACTION_DONE))
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1002 1003 1004 1005 1006
	}
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1007
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1008 1009 1010
{
	uint32_t reg_val = 0x0;

1011 1012
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1013

1014
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1015 1016 1017 1018
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1019
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1042
/* writes a page. user specifies type, and this function handles the
1043
 * configuration details. */
1044
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1045 1046 1047 1048 1049 1050 1051 1052 1053
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1054
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
						INTR_STATUS0__PROGRAM_FAIL;

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1067
	if (raw_xfer) {
1068
		/* transfer the data to the spare area */
1069 1070 1071
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1072 1073 1074 1075 1076
	}

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);

	clear_interrupts(denali);
1077
	denali_enable_dma(denali, true);
1078

1079
	denali_setup_dma(denali, DENALI_WRITE);
1080 1081 1082 1083

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1084
	if (irq_status == 0) {
1085 1086 1087
		dev_err(&denali->dev->dev,
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1088
		denali->status =
1089 1090
			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
			NAND_STATUS_FAIL : PASS;
1091 1092
	}

1093
	denali_enable_dma(denali, false);
1094 1095 1096 1097 1098
	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}

/* NAND core entry points */

1099
/* this is the callback that the NAND core calls to write a page. Since
1100 1101 1102
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 * */
1103
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1104 1105 1106
				const uint8_t *buf)
{
	/* for regular page writes, we let HW handle all the ECC
1107
	 * data written to the device. */
1108 1109 1110
	write_page(mtd, chip, buf, false);
}

1111
/* This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1112
 * raw access is similar to ECC page writes, so all the work is done in the
1113
 * write_page() function above.
1114
 */
1115
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1116 1117
					const uint8_t *buf)
{
1118
	/* for raw page writes, we want to disable ECC and simply write
1119 1120 1121 1122
	   whatever data is in the buffer. */
	write_page(mtd, chip, buf, true);
}

1123
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1124 1125
			    int page)
{
1126
	return write_oob_data(mtd, chip->oob_poi, page);
1127 1128
}

1129
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1130 1131 1132 1133
			   int page, int sndcmd)
{
	read_oob_data(mtd, chip->oob_poi, page);

1134 1135
	return 0; /* notify NAND core to send command to
			   NAND device. */
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1148
	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1149 1150 1151
			    INTR_STATUS0__ECC_ERR;
	bool check_erased_page = false;

1152 1153 1154 1155 1156 1157 1158
	if (page != denali->page) {
		dev_err(&denali->dev->dev, "IN %s: page %d is not"
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1159 1160
	setup_ecc_for_xfer(denali, true, false);

1161
	denali_enable_dma(denali, true);
1162 1163 1164
	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1165
	denali_setup_dma(denali, DENALI_READ);
1166 1167 1168 1169 1170 1171 1172

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);
1173

1174
	check_erased_page = handle_ecc(denali, buf, irq_status);
1175
	denali_enable_dma(denali, false);
1176

1177
	if (check_erased_page) {
1178 1179 1180
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1181
		if (check_erased_page) {
1182 1183 1184 1185
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1186
		}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	}
	return 0;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1202

1203 1204 1205 1206 1207 1208 1209
	if (page != denali->page) {
		dev_err(&denali->dev->dev, "IN %s: page %d is not"
				" equal to denali->page %d, investigate!!",
				__func__, page, denali->page);
		BUG();
	}

1210
	setup_ecc_for_xfer(denali, false, true);
1211
	denali_enable_dma(denali, true);
1212 1213 1214 1215

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1216
	denali_setup_dma(denali, DENALI_READ);
1217 1218 1219 1220 1221 1222

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

1223
	denali_enable_dma(denali, false);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1245

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

	/* clear interrupts */
1267
	clear_interrupts(denali);
1268 1269 1270 1271 1272 1273

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1274
	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1275 1276
					INTR_STATUS0__ERASE_FAIL);

1277 1278
	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
						NAND_STATUS_FAIL : PASS;
1279 1280
}

1281
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1282 1283 1284
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1285 1286
	uint32_t addr, id;
	int i;
1287

1288
	switch (cmd) {
1289 1290 1291 1292 1293 1294
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1295
	case NAND_CMD_PARAM:
1296
		reset_buf(denali);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
		for (i = 0; i < 5; i++) {
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		printk(KERN_ERR ": unsupported command"
				" received 0x%x\n", cmd);
		break;
1325 1326 1327 1328
	}
}

/* stubs for ECC functions not used by the NAND core */
1329
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1330 1331
				uint8_t *ecc_code)
{
1332 1333 1334
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dev_err(&denali->dev->dev,
			"denali_ecc_calculate called unexpectedly\n");
1335 1336 1337 1338
	BUG();
	return -EIO;
}

1339
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1340 1341
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1342 1343 1344
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dev_err(&denali->dev->dev,
			"denali_ecc_correct called unexpectedly\n");
1345 1346 1347 1348 1349 1350
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1351 1352 1353
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dev_err(&denali->dev->dev,
			"denali_ecc_hwctl called unexpectedly\n");
1354 1355 1356 1357 1358 1359 1360
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1361 1362 1363 1364 1365 1366 1367
	/* tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 * */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1368
	denali_nand_reset(denali);
1369 1370
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1371
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1372

1373
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1374 1375

	/* Should set value for these registers when init */
1376 1377
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1378 1379
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1380 1381
}

1382 1383 1384 1385 1386 1387 1388
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 * */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1389 1390
};

1391 1392 1393
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1419
/* initialize driver data structures */
1420 1421 1422 1423 1424
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1425
	/* the completion object will be used to notify
1426 1427 1428 1429
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1430
	 * with any element that might be access shared
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1456
		goto failed_alloc_memery;
1457 1458 1459
	}

	if (id->driver_data == INTEL_CE4100) {
1460 1461 1462
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1463
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1464 1465
			printk(KERN_ERR "Intel CE4100 only supports"
					" ONFI timing mode 1 or below\n");
1466
			ret = -EINVAL;
1467
			goto failed_enable_dev;
1468 1469 1470 1471 1472 1473 1474 1475 1476
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
1477
		csr_len = pci_resource_len(dev, 0);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
		}
	}

	/* Is 32-bit DMA supported? */
	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));

1489
	if (ret) {
1490
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1491
		goto failed_enable_dev;
1492
	}
1493 1494 1495 1496
	denali->buf.dma_buf =
		pci_map_single(dev, denali->buf.buf,
						DENALI_BUF_SIZE,
						PCI_DMA_BIDIRECTIONAL);
1497

1498
	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1499
		dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1500
		goto failed_enable_dev;
1501 1502 1503 1504
	}

	pci_set_master(dev);
	denali->dev = dev;
1505
	denali->mtd.dev.parent = &dev->dev;
1506 1507 1508 1509

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1510
		goto failed_dma_map;
1511 1512 1513 1514 1515 1516
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
1517
		goto failed_req_regions;
1518 1519 1520 1521 1522 1523
	}

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		ret = -ENOMEM;
1524
		goto failed_remap_reg;
1525 1526 1527 1528 1529
	}

	denali_hw_init(denali);
	denali_drv_init(denali);

1530 1531
	/* denali_isr register is done after all the hardware
	 * initilization is finished*/
1532 1533 1534 1535
	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
1536
		goto failed_remap_mem;
1537 1538 1539
	}

	/* now that our ISR is registered, we can enable interrupts */
1540
	denali_set_intr_modes(denali, true);
1541 1542 1543

	pci_set_drvdata(dev, denali);

1544
	denali->mtd.name = "denali-nand";
1545 1546 1547 1548 1549 1550 1551 1552 1553
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1554
	/* scan for NAND devices attached to the controller
1555
	 * this is the first stage in a two step process to register
1556
	 * with the nand subsystem */
1557
	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
1558
		ret = -ENXIO;
1559
		goto failed_req_irq;
1560
	}
1561

1562 1563 1564 1565 1566 1567 1568
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
	 */
	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
1569
		goto failed_req_irq;
1570 1571
	}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	/* support for multi nand
	 * MTD known nothing about multi nand,
	 * so we should tell it the real pagesize
	 * and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1591 1592 1593
	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1594 1595 1596 1597 1598 1599 1600 1601 1602

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/* Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
	if (denali->nand.cellinfo & 0xc &&
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1614
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1615 1616 1617 1618 1619
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
		printk(KERN_ERR "Your NAND chip OOB is not large enough to"
				" contain 8bit ECC correction codes");
1620
		goto failed_req_irq;
1621 1622 1623
	} else {
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1624
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1625 1626
	}

1627
	denali->nand.ecc.bytes *= denali->devnum;
1628 1629 1630 1631 1632 1633 1634 1635
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Let driver know the total blocks number and
	 * how many blocks contained by each nand chip.
	 * blksperchip will help driver to know how many
	 * blocks is taken by FW.
	 * */
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1645 1646 1647
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1648 1649 1650 1651 1652
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1653
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1654 1655 1656 1657 1658 1659 1660 1661
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

1662
	if (nand_scan_tail(&denali->mtd)) {
1663
		ret = -ENXIO;
1664
		goto failed_req_irq;
1665 1666 1667 1668
	}

	ret = add_mtd_device(&denali->mtd);
	if (ret) {
1669 1670
		dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
				ret);
1671
		goto failed_req_irq;
1672 1673 1674
	}
	return 0;

1675
failed_req_irq:
1676
	denali_irq_cleanup(dev->irq, denali);
1677
failed_remap_mem:
1678
	iounmap(denali->flash_mem);
1679 1680 1681
failed_remap_reg:
	iounmap(denali->flash_reg);
failed_req_regions:
1682
	pci_release_regions(dev);
1683
failed_dma_map:
1684
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1685
							PCI_DMA_BIDIRECTIONAL);
1686 1687 1688
failed_enable_dev:
	pci_disable_device(dev);
failed_alloc_memery:
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_release(&denali->mtd);
	del_mtd_device(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
1707
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
							PCI_DMA_BIDIRECTIONAL);
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

static int __devinit denali_init(void)
{
M
Michal Marek 已提交
1724
	printk(KERN_INFO "Spectra MTD driver\n");
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	return pci_register_driver(&denali_pci_driver);
}

/* Free memory */
static void __devexit denali_exit(void)
{
	pci_unregister_driver(&denali_pci_driver);
}

module_init(denali_init);
module_exit(denali_exit);