denali.c 44.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
			INTR__ECC_TRANSACTION_DONE | \
			INTR__ECC_ERR | \
			INTR__PROGRAM_FAIL | \
			INTR__LOAD_COMP | \
			INTR__PROGRAM_COMP | \
			INTR__TIME_OUT | \
			INTR__ERASE_FAIL | \
			INTR__RST_COMP | \
			INTR__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64 65 66

#define SUPPORT_8BITECC		1

67 68 69 70
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
71 72
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

73 74
/*
 * this macro allows us to convert from an MTD structure to our own
75 76
 * device context (denali) structure.
 */
77 78 79 80
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
81

82 83 84 85
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
86 87 88
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
89
#define PIPELINE_ACCESS		0x2000
90 91 92 93

#define DENALI_READ	0
#define DENALI_WRITE	0x100

94 95 96 97
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
98 99 100 101
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
102 103 104 105
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
106 107
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

108 109 110 111
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
112
 * abstracts this common operation.
113
 */
114 115
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
116
{
117 118
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
119 120 121 122 123 124
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
125
	iowrite32(address, denali->flash_mem);
126 127 128
	*pdata = ioread32(denali->flash_mem + 0x10);
}

129 130 131 132
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
133 134 135 136 137 138 139 140 141 142 143 144 145
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
146
	uint32_t cmd;
147 148 149 150

	/* initialize the data buffer to store status */
	reset_buf(denali);

151 152 153 154 155
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
156 157 158 159 160
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
161
	uint32_t irq_status;
162
	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
163 164 165

	clear_interrupts(denali);

166
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
167 168

	irq_status = wait_for_irq(denali, irq_mask);
169

170
	if (irq_status & INTR__TIME_OUT)
171
		dev_err(denali->dev, "reset bank failed.\n");
172 173 174
}

/* Reset the flash controller */
175
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
176
{
177
	int i;
178

179
	for (i = 0; i < denali->max_banks; i++)
180
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
181
		denali->flash_reg + INTR_STATUS(i));
182

183
	for (i = 0; i < denali->max_banks; i++) {
184
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
185
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
186
			(INTR__RST_COMP | INTR__TIME_OUT)))
187
			cpu_relax();
188
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
189
			INTR__TIME_OUT)
190
			dev_dbg(denali->dev,
191 192 193
			"NAND Reset operation timed out on bank %d\n", i);
	}

194
	for (i = 0; i < denali->max_banks; i++)
195
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
196
			  denali->flash_reg + INTR_STATUS(i));
197 198 199 200

	return PASS;
}

201 202
/*
 * this routine calculates the ONFI timing values for a given mode and
203 204
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
205
 */
206
static void nand_onfi_timing_set(struct denali_nand_info *denali,
207
								uint16_t mode)
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

246 247
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
248 249 250 251 252 253 254 255 256

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

257
	while (acc_clks * CLK_X - Trea[mode] < 3)
258 259
		acc_clks++;

260
	if (data_invalid - acc_clks * CLK_X < 2)
261
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
262
			 __FILE__, __LINE__);
263 264 265 266 267 268 269 270 271 272

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
273
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
274 275 276 277 278 279 280 281 282
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
283 284
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
285 286
		acc_clks = 6;

287 288 289 290 291 292 293 294
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
295 296 297 298 299 300
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
301 302 303

	/*
	 * we needn't to do a reset here because driver has already
304
	 * reset all the banks before
305
	 */
306 307 308 309 310
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
311 312
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
313 314 315
			break;
	}

316
	nand_onfi_timing_set(denali, i);
317

318 319 320 321
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
322 323 324 325 326 327
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

328 329
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
330
{
331
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
332
		/* Set timing register values according to datasheet */
333 334 335 336 337 338 339
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
340 341 342 343 344 345 346
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

347 348 349 350
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
351 352
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
353
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
354 355
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
356
		iowrite32(tmp,
357
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
358
#if SUPPORT_15BITECC
359
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
360
#elif SUPPORT_8BITECC
361
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
362 363 364 365
#endif
	}
}

366 367
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
368 369 370
{
	uint32_t main_size, spare_size;

371
	switch (device_id) {
372 373
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
374 375 376
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
377 378 379 380
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
381
		iowrite32(main_size,
382
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
383
		iowrite32(spare_size,
384
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
385
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
386
#if SUPPORT_15BITECC
387
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
388
#elif SUPPORT_8BITECC
389
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
390 391 392
#endif
		break;
	default:
393
		dev_warn(denali->dev,
394
			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
395 396
			 "Will use default parameter values instead.\n",
			 device_id);
397 398 399
	}
}

400 401
/*
 * determines how many NAND chips are connected to the controller. Note for
402
 * Intel CE4100 devices we don't support more than one device.
403 404 405
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
406
	uint32_t id[denali->max_banks];
407 408 409
	int i;

	denali->total_used_banks = 1;
410
	for (i = 0; i < denali->max_banks; i++) {
411 412
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
413
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
414

415
		dev_dbg(denali->dev,
416 417 418 419 420 421 422 423 424 425 426 427 428
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

429
	if (denali->platform == INTEL_CE4100) {
430 431
		/*
		 * Platform limitations of the CE4100 device limit
432
		 * users to a single chip solution for NAND.
433 434
		 * Multichip support is not enabled.
		 */
435
		if (denali->total_used_banks != 1) {
436
			dev_err(denali->dev,
437
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
438 439 440
			BUG();
		}
	}
441
	dev_dbg(denali->dev,
442 443 444
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

445 446 447 448 449 450 451
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
452 453 454 455 456 457
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
458

459 460 461 462
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
463 464
}

465
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
466 467
{
	uint16_t status = PASS;
468
	uint32_t id_bytes[8], addr;
469 470
	uint8_t maf_id, device_id;
	int i;
471

472 473 474 475 476
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
477 478 479
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
480
	for (i = 0; i < 8; i++)
481 482 483
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
484 485 486 487 488

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
489
	} else if (maf_id == 0xEC) { /* Samsung NAND */
490
		get_samsung_nand_para(denali, device_id);
491
	} else if (maf_id == 0x98) { /* Toshiba NAND */
492
		get_toshiba_nand_para(denali);
493 494
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
495 496
	}

497
	dev_info(denali->dev,
498
			"Dump timing register values:\n"
499 500
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
501 502 503
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
504
			ioread32(denali->flash_reg + RE_2_RE),
505 506 507 508 509 510 511 512
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

513 514
	/*
	 * If the user specified to override the default timings
515
	 * with a specific ONFI mode, we apply those changes here.
516 517
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
518
		nand_onfi_timing_set(denali, onfi_timing_mode);
519 520 521 522

	return status;
}

523
static void denali_set_intr_modes(struct denali_nand_info *denali,
524 525 526
					uint16_t INT_ENABLE)
{
	if (INT_ENABLE)
527
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
528
	else
529
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
530 531
}

532 533
/*
 * validation function to verify that the controlling software is making
534
 * a valid request
535 536 537
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
538
	return flash_bank >= 0 && flash_bank < 4;
539 540 541 542
}

static void denali_irq_init(struct denali_nand_info *denali)
{
543
	uint32_t int_mask;
544
	int i;
545 546

	/* Disable global interrupts */
547
	denali_set_intr_modes(denali, false);
548 549 550 551

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
552
	for (i = 0; i < denali->max_banks; ++i)
553
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
554 555 556 557 558 559

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
560
	denali_set_intr_modes(denali, false);
561 562
}

563 564
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
565
{
566 567
	int i;

568
	for (i = 0; i < denali->max_banks; ++i)
569
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
570 571
}

572 573
/*
 * This function only returns when an interrupt that this driver cares about
574
 * occurs. This is to reduce the overhead of servicing interrupts
575 576 577
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
578
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
579 580 581
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
582 583
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
584
{
585
	uint32_t intr_status_reg;
586

587
	intr_status_reg = INTR_STATUS(denali->flash_bank);
588

589
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
590 591 592 593
}

static void clear_interrupts(struct denali_nand_info *denali)
{
594 595
	uint32_t status;

596 597 598
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
599
	clear_interrupt(denali, status);
600 601 602 603 604 605 606

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
607
	uint32_t intr_status_reg;
608

609
	intr_status_reg = INTR_STATUS(denali->flash_bank);
610 611 612 613

	return ioread32(denali->flash_reg + intr_status_reg);
}

614 615 616
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
617 618 619 620
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
621
	uint32_t irq_status;
622 623 624 625
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

626
	/* check to see if a valid NAND chip has been selected. */
627
	if (is_flash_bank_valid(denali->flash_bank)) {
628 629 630 631
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
632 633
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
634 635 636
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
637 638 639 640
			/*
			 * store the status in the device context for someone
			 * to read
			 */
641 642 643 644 645 646 647 648 649 650 651 652 653
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
654 655
	unsigned long comp_res;
	uint32_t intr_status;
656 657
	unsigned long timeout = msecs_to_jiffies(1000);

658
	do {
659 660
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
661 662 663
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

664
		if (intr_status & irq_mask) {
665 666 667 668 669
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
670 671 672 673 674 675

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
676 677
	} while (comp_res != 0);

678
	if (comp_res == 0) {
679
		/* timeout */
680
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
681
				intr_status, irq_mask);
682 683 684 685 686 687

		intr_status = 0;
	}
	return intr_status;
}

688 689 690 691
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
692
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
693 694
				bool transfer_spare)
{
695
	int ecc_en_flag, transfer_spare_flag;
696 697 698 699 700 701

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
702
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
703
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
704 705
}

706 707
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
708
 * controller's user guide for more information (section 4.2.3.6).
709
 */
710
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
711 712
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
713 714
{
	int status = PASS;
715 716
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
717

718
	if (op == DENALI_READ)
719
		irq_mask = INTR__LOAD_COMP;
720 721 722 723
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
724 725 726

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

727
	clear_interrupts(denali);
728 729 730

	addr = BANK(denali->flash_bank) | denali->page;

731
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
732
		cmd = MODE_01 | addr;
733
		iowrite32(cmd, denali->flash_mem);
734
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
735
		/* read spare area */
736
		cmd = MODE_10 | addr;
737
		index_addr(denali, cmd, access_type);
738

739
		cmd = MODE_01 | addr;
740
		iowrite32(cmd, denali->flash_mem);
741
	} else if (op == DENALI_READ) {
742
		/* setup page read request for access type */
743
		cmd = MODE_10 | addr;
744
		index_addr(denali, cmd, access_type);
745

746 747 748 749
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
750
		 */
751
		if (access_type == SPARE_ACCESS) {
752
			cmd = MODE_01 | addr;
753
			iowrite32(cmd, denali->flash_mem);
754
		} else {
755
			index_addr(denali, cmd,
756
					PIPELINE_ACCESS | op | page_count);
757

758 759
			/*
			 * wait for command to be accepted
760
			 * can always use status0 bit as the
761 762
			 * mask is identical for each bank.
			 */
763 764
			irq_status = wait_for_irq(denali, irq_mask);

765
			if (irq_status == 0) {
766
				dev_err(denali->dev,
767 768
					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
					cmd, denali->page, addr);
769
				status = FAIL;
770
			} else {
771
				cmd = MODE_01 | addr;
772
				iowrite32(cmd, denali->flash_mem);
773 774 775 776 777 778 779
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
780
static int write_data_to_flash_mem(struct denali_nand_info *denali,
781
				   const uint8_t *buf, int len)
782
{
783 784
	uint32_t *buf32;
	int i;
785

786 787 788 789
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
790 791 792 793 794
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
795
		iowrite32(*buf32++, denali->flash_mem + 0x10);
796
	return i * 4; /* intent is to return the number of bytes read */
797 798 799
}

/* helper function that simply reads a buffer from the flash */
800
static int read_data_from_flash_mem(struct denali_nand_info *denali,
801
				    uint8_t *buf, int len)
802
{
803 804
	uint32_t *buf32;
	int i;
805

806 807 808 809 810
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
811 812 813 814 815 816 817
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
818
	return i * 4; /* intent is to return the number of bytes read */
819 820 821 822 823 824
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
825
	uint32_t irq_status;
826
	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
827 828 829 830
	int status = 0;

	denali->page = page;

831
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
832
							DENALI_WRITE) == PASS) {
833 834 835 836 837
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

838
		if (irq_status == 0) {
839
			dev_err(denali->dev, "OOB write failed\n");
840 841
			status = -EIO;
		}
842
	} else {
843
		dev_err(denali->dev, "unable to send pipeline command\n");
844
		status = -EIO;
845 846 847 848 849 850 851 852
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
853
	uint32_t irq_mask = INTR__LOAD_COMP;
854
	uint32_t irq_status, addr, cmd;
855 856 857

	denali->page = page;

858
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
859
							DENALI_READ) == PASS) {
860
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
861

862 863 864 865 866
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
867 868 869
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
870
			dev_err(denali->dev, "page on OOB timeout %d\n",
871
					denali->page);
872

873 874
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
875 876 877
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
878
		 * if you are in MAIN_ACCESS.
879 880
		 */
		addr = BANK(denali->flash_bank) | denali->page;
881
		cmd = MODE_10 | addr;
882
		index_addr(denali, cmd, MAIN_ACCESS);
883 884 885
	}
}

886 887
/*
 * this function examines buffers to see if they contain data that
888 889
 * indicate that the buffer is part of an erased region of flash.
 */
890
static bool is_erased(uint8_t *buf, int len)
891
{
892
	int i;
893

894 895 896 897 898 899 900 901 902 903
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
904 905
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
906 907
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

908
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
909
		       uint32_t irq_status, unsigned int *max_bitflips)
910 911
{
	bool check_erased_page = false;
912
	unsigned int bitflips = 0;
913

914
	if (irq_status & INTR__ECC_ERR) {
915
		/* read the ECC errors. we'll ignore them for now */
916 917
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
918
		denali_set_intr_modes(denali, false);
919

920
		do {
921
			err_address = ioread32(denali->flash_reg +
922 923 924 925
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

926
			err_correction_info = ioread32(denali->flash_reg +
927
						ERR_CORRECTION_INFO);
928
			err_correction_value =
929 930 931
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

932
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
933 934
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
935
				 * means error happened in OOB, so we ignore
936 937 938 939
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
940
				 */
941
				if (err_byte < ECC_SECTOR_SIZE) {
942 943
					struct mtd_info *mtd =
						nand_to_mtd(&denali->nand);
944
					int offset;
945

946 947 948 949 950
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
951 952
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
953
					mtd->ecc_stats.corrected++;
954
					bitflips++;
955
				}
956
			} else {
957 958
				/*
				 * if the error is not correctable, need to
959 960
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
961
				 */
962 963 964
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
965 966
		/*
		 * Once handle all ecc errors, controller will triger
967 968
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
969
		 */
970
		while (!(read_interrupt_status(denali) &
971
				INTR__ECC_TRANSACTION_DONE))
972 973 974
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
975
	}
976
	*max_bitflips = bitflips;
977 978 979 980
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
981
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
982
{
983
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
984 985 986 987
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
988
static void denali_setup_dma(struct denali_nand_info *denali, int op)
989
{
990
	uint32_t mode;
991
	const int page_count = 1;
992
	uint32_t addr = denali->buf.dma_buf;
993 994 995 996 997 998 999 1000 1001

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1002
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1003 1004

	/* 3. set memory low address bits 23:8 */
1005
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1006

1007
	/* 4. interrupt when complete, burst len = 64 bytes */
1008 1009 1010
	index_addr(denali, mode | 0x14000, 0x2400);
}

1011 1012 1013 1014
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1015
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1016 1017 1018 1019
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1020
	size_t size = mtd->writesize + mtd->oobsize;
1021
	uint32_t irq_status;
1022
	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
1023

1024 1025
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1026 1027 1028 1029 1030 1031 1032 1033
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1034
	if (raw_xfer) {
1035
		/* transfer the data to the spare area */
1036 1037 1038
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1039 1040
	}

1041
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1042 1043

	clear_interrupts(denali);
1044
	denali_enable_dma(denali, true);
1045

1046
	denali_setup_dma(denali, DENALI_WRITE);
1047 1048 1049 1050

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1051
	if (irq_status == 0) {
1052 1053
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1054
		denali->status = NAND_STATUS_FAIL;
1055 1056
	}

1057
	denali_enable_dma(denali, false);
1058
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1059 1060

	return 0;
1061 1062 1063 1064
}

/* NAND core entry points */

1065 1066
/*
 * this is the callback that the NAND core calls to write a page. Since
1067 1068
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1069
 */
1070
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1071
				const uint8_t *buf, int oob_required, int page)
1072
{
1073 1074 1075 1076
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1077
	return write_page(mtd, chip, buf, false);
1078 1079
}

1080 1081
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1082
 * raw access is similar to ECC page writes, so all the work is done in the
1083
 * write_page() function above.
1084
 */
1085
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1086 1087
				 const uint8_t *buf, int oob_required,
				 int page)
1088
{
1089 1090 1091 1092
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1093
	return write_page(mtd, chip, buf, true);
1094 1095
}

1096
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1097 1098
			    int page)
{
1099
	return write_oob_data(mtd, chip->oob_poi, page);
1100 1101
}

1102
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1103
			   int page)
1104 1105 1106
{
	read_oob_data(mtd, chip->oob_poi, page);

1107
	return 0;
1108 1109 1110
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1111
			    uint8_t *buf, int oob_required, int page)
1112
{
1113
	unsigned int max_bitflips;
1114 1115 1116
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
1117
	size_t size = mtd->writesize + mtd->oobsize;
1118

1119
	uint32_t irq_status;
1120
	uint32_t irq_mask = INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1121 1122
	bool check_erased_page = false;

1123
	if (page != denali->page) {
1124 1125 1126
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1127 1128 1129
		BUG();
	}

1130 1131
	setup_ecc_for_xfer(denali, true, false);

1132
	denali_enable_dma(denali, true);
1133
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1134 1135

	clear_interrupts(denali);
1136
	denali_setup_dma(denali, DENALI_READ);
1137 1138 1139 1140

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1141
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1142 1143

	memcpy(buf, denali->buf.buf, mtd->writesize);
1144

1145
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1146
	denali_enable_dma(denali, false);
1147

1148
	if (check_erased_page) {
1149
		read_oob_data(mtd, chip->oob_poi, denali->page);
1150 1151

		/* check ECC failures that may have occurred on erased pages */
1152
		if (check_erased_page) {
1153 1154 1155 1156
			if (!is_erased(buf, mtd->writesize))
				mtd->ecc_stats.failed++;
			if (!is_erased(buf, mtd->oobsize))
				mtd->ecc_stats.failed++;
1157
		}
1158
	}
1159
	return max_bitflips;
1160 1161 1162
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1163
				uint8_t *buf, int oob_required, int page)
1164 1165 1166
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1167
	size_t size = mtd->writesize + mtd->oobsize;
1168
	uint32_t irq_mask = INTR__DMA_CMD_COMP;
1169

1170
	if (page != denali->page) {
1171 1172 1173
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1174 1175 1176
		BUG();
	}

1177
	setup_ecc_for_xfer(denali, false, true);
1178
	denali_enable_dma(denali, true);
1179

1180
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1181 1182

	clear_interrupts(denali);
1183
	denali_setup_dma(denali, DENALI_READ);
1184 1185

	/* wait for operation to complete */
1186
	wait_for_irq(denali, irq_mask);
1187

1188
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1189

1190
	denali_enable_dma(denali, false);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1222

1223 1224 1225 1226 1227
	denali->status = 0;

	return status;
}

1228
static int denali_erase(struct mtd_info *mtd, int page)
1229 1230 1231
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1232
	uint32_t cmd, irq_status;
1233

1234
	clear_interrupts(denali);
1235 1236 1237

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1238
	index_addr(denali, cmd, 0x1);
1239 1240

	/* wait for erase to complete or failure to occur */
1241
	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1242

1243
	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1244 1245
}

1246
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1247 1248 1249
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1250 1251
	uint32_t addr, id;
	int i;
1252

1253
	switch (cmd) {
1254 1255 1256 1257 1258 1259
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1260
	case NAND_CMD_PARAM:
1261
		reset_buf(denali);
1262 1263
		/*
		 * sometimes ManufactureId read from register is not right
1264 1265
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1266
		 */
1267 1268
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1269
		index_addr(denali, addr | 1, col);
1270
		for (i = 0; i < 8; i++) {
1271
			index_addr_read_data(denali, addr | 2, &id);
1272
			write_byte_to_buf(denali, id);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1286
		pr_err(": unsupported command received 0x%x\n", cmd);
1287
		break;
1288 1289 1290 1291 1292 1293 1294
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1295 1296
	/*
	 * tell driver how many bit controller will skip before
1297 1298 1299
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1300
	 */
1301 1302
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1303
	detect_max_banks(denali);
1304
	denali_nand_reset(denali);
1305 1306
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1307
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1308

1309
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1310 1311

	/* Should set value for these registers when init */
1312 1313
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1314 1315
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1316 1317
}

1318 1319
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1320 1321
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1322
 */
1323 1324
#define ECC_8BITS	14
#define ECC_15BITS	26
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1384
/* initialize driver data structures */
1385
static void denali_drv_init(struct denali_nand_info *denali)
1386
{
1387 1388 1389 1390
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1391 1392
	init_completion(&denali->complete);

1393 1394 1395 1396
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1397 1398 1399 1400 1401 1402 1403 1404 1405
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
static void denali_multidev_fixup(struct denali_nand_info *denali)
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

	mtd->size <<= denali->devnum - 1;
	mtd->erasesize <<= denali->devnum - 1;
	mtd->writesize <<= denali->devnum - 1;
	mtd->oobsize <<= denali->devnum - 1;
	chip->chipsize <<= denali->devnum - 1;
	chip->page_shift += denali->devnum - 1;
	chip->phys_erase_shift += denali->devnum - 1;
	chip->bbt_erase_shift += denali->devnum - 1;
	chip->chip_shift += denali->devnum - 1;
	chip->pagemask <<= denali->devnum - 1;
	chip->ecc.size *= denali->devnum;
	chip->ecc.bytes *= denali->devnum;
	chip->ecc.strength *= denali->devnum;
	denali->bbtskipbytes *= denali->devnum;
}

1436
int denali_init(struct denali_nand_info *denali)
1437
{
1438 1439
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1440
	int ret;
1441

1442
	if (denali->platform == INTEL_CE4100) {
1443 1444
		/*
		 * Due to a silicon limitation, we can only support
1445 1446
		 * ONFI timing mode 1 and below.
		 */
1447
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1448 1449
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1450 1451 1452
		}
	}

1453 1454 1455 1456 1457
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1458

1459
	mtd->dev.parent = denali->dev;
1460 1461 1462
	denali_hw_init(denali);
	denali_drv_init(denali);

1463 1464 1465 1466
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1467
		dev_err(denali->dev, "Unable to request IRQ\n");
1468
		return ret;
1469 1470 1471
	}

	/* now that our ISR is registered, we can enable interrupts */
1472
	denali_set_intr_modes(denali, true);
1473
	mtd->name = "denali-nand";
1474
	nand_set_flash_node(chip, denali->dev->of_node);
1475 1476

	/* register the driver with the NAND core subsystem */
1477 1478 1479 1480
	chip->select_chip = denali_select_chip;
	chip->cmdfunc = denali_cmdfunc;
	chip->read_byte = denali_read_byte;
	chip->waitfunc = denali_waitfunc;
1481

1482 1483
	/*
	 * scan for NAND devices attached to the controller
1484
	 * this is the first stage in a two step process to register
1485 1486
	 * with the nand subsystem
	 */
1487 1488
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1489
		goto failed_req_irq;
1490

1491 1492 1493
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1494
			     mtd->writesize + mtd->oobsize,
1495 1496 1497 1498 1499 1500 1501 1502 1503
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
1504
		dev_err(denali->dev, "No usable DMA configuration\n");
1505 1506 1507 1508
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1509
			     mtd->writesize + mtd->oobsize,
1510 1511
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1512
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1513
		ret = -EIO;
1514
		goto failed_req_irq;
1515 1516
	}

1517 1518
	/*
	 * second stage of the NAND scan
1519
	 * this stage requires information regarding ECC and
1520 1521
	 * bad block management.
	 */
1522 1523

	/* Bad block management */
1524 1525
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1526 1527

	/* skip the scan for now until we have OOB read and write support */
1528 1529 1530
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1531

1532
	/* no subpage writes on denali */
1533
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1534

1535 1536
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1537 1538 1539
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1540
	if (!nand_is_slc(chip) &&
1541 1542
			(mtd->oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (mtd->writesize /
1543 1544
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
1545 1546
		chip->ecc.strength = 15;
		chip->ecc.bytes = ECC_15BITS;
1547
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1548 1549
	} else if (mtd->oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (mtd->writesize /
1550
			ECC_SECTOR_SIZE))) {
1551
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1552
		goto failed_req_irq;
1553
	} else {
1554 1555
		chip->ecc.strength = 8;
		chip->ecc.bytes = ECC_8BITS;
1556
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1557 1558
	}

1559
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1560

1561
	/* override the default read operations */
1562
	chip->ecc.size = ECC_SECTOR_SIZE;
1563 1564 1565 1566 1567 1568 1569
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1570

1571 1572
	denali_multidev_fixup(denali);

1573 1574
	ret = nand_scan_tail(mtd);
	if (ret)
1575
		goto failed_req_irq;
1576

1577
	ret = mtd_device_register(mtd, NULL, 0);
1578
	if (ret) {
1579
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1580
		goto failed_req_irq;
1581 1582 1583
	}
	return 0;

1584
failed_req_irq:
1585 1586
	denali_irq_cleanup(denali->irq, denali);

1587 1588
	return ret;
}
1589
EXPORT_SYMBOL(denali_init);
1590 1591

/* driver exit point */
1592
void denali_remove(struct denali_nand_info *denali)
1593
{
1594
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1595 1596 1597 1598 1599
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1600
	int bufsize = mtd->writesize + mtd->oobsize;
1601

1602
	nand_release(mtd);
1603
	denali_irq_cleanup(denali->irq, denali);
1604
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1605
			 DMA_BIDIRECTIONAL);
1606
}
1607
EXPORT_SYMBOL(denali_remove);