denali.c 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
D
David Miller 已提交
24
#include <linux/slab.h>
25 26 27 28 29 30 31 32
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

33
/* We define a module parameter that allows the user to override
34 35 36 37 38 39
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
40 41
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
			" -1 indicates use default timings");
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

#define DENALI_NAND_NAME    "denali-nand"

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \
			INTR_STATUS0__ECC_TRANSACTION_DONE | \
			INTR_STATUS0__ECC_ERR | \
			INTR_STATUS0__PROGRAM_FAIL | \
			INTR_STATUS0__LOAD_COMP | \
			INTR_STATUS0__PROGRAM_COMP | \
			INTR_STATUS0__TIME_OUT | \
			INTR_STATUS0__ERASE_FAIL | \
			INTR_STATUS0__RST_COMP | \
			INTR_STATUS0__ERASE_COMP)

58
/* indicates whether or not the internal value for the flash bank is
59
 * valid or not */
60
#define CHIP_SELECT_INVALID	-1
61 62 63

#define SUPPORT_8BITECC		1

64
/* This macro divides two integers and rounds fractional values up
65 66 67 68 69 70 71 72 73
 * to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

/* this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)

/* These constants are defined by the driver to enable common driver
74
 * configuration options. */
75 76 77 78 79 80 81 82 83 84 85 86
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

87
/* this is a helper macro that allows us to
88 89 90 91 92 93 94 95 96 97 98
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* List of platforms this NAND controller has be integrated into */
static const struct pci_device_id denali_pci_ids[] = {
	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
	{ /* end: all zeroes */ }
};


99
/* these are static lookup tables that give us easy access to
100
 * registers in the NAND controller.
101
 */
102 103 104
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
						  INTR_STATUS1,
						  INTR_STATUS2,
105 106 107
						  INTR_STATUS3};

static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
108 109 110
							DEVICE_RESET__BANK1,
							DEVICE_RESET__BANK2,
							DEVICE_RESET__BANK3};
111 112

static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
113 114 115
							INTR_STATUS1__TIME_OUT,
							INTR_STATUS2__TIME_OUT,
							INTR_STATUS3__TIME_OUT};
116 117

static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
118 119 120
							INTR_STATUS1__RST_COMP,
							INTR_STATUS2__RST_COMP,
							INTR_STATUS3__RST_COMP};
121 122 123

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
124 125 126 127
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
128 129
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

130 131 132 133 134
/* Certain operations for the denali NAND controller use
 * an indexed mode to read/write data. The operation is
 * performed by writing the address value of the command
 * to the device memory followed by the data. This function
 * abstracts this common operation.
135
*/
136 137
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
138
{
139 140
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
141 142 143 144 145 146
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
147
	iowrite32(address, denali->flash_mem);
148 149 150
	*pdata = ioread32(denali->flash_mem + 0x10);
}

151
/* We need to buffer some data for some of the NAND core routines.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
	uint32_t cmd = 0x0;

	/* initialize the data buffer to store status */
	reset_buf(denali);

	/* initiate a device status read */
173
	cmd = MODE_11 | BANK(denali->flash_bank);
174
	index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
175
	iowrite32(cmd | STATUS_CYCLE, denali->flash_mem);
176 177 178 179 180 181 182 183 184

	/* update buffer with status value */
	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status = 0;
185
	uint32_t irq_mask = reset_complete[denali->flash_bank] |
186 187 188 189 190 191
			    operation_timeout[denali->flash_bank];
	int bank = 0;

	clear_interrupts(denali);

	bank = device_reset_banks[denali->flash_bank];
192
	iowrite32(bank, denali->flash_reg + DEVICE_RESET);
193 194

	irq_status = wait_for_irq(denali, irq_mask);
195

196
	if (irq_status & operation_timeout[denali->flash_bank])
197
		dev_err(&denali->dev->dev, "reset bank failed.\n");
198 199 200
}

/* Reset the flash controller */
201
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
202 203 204
{
	uint32_t i;

205
	dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
206 207 208
		       __FILE__, __LINE__, __func__);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
209
		iowrite32(reset_complete[i] | operation_timeout[i],
210 211 212
		denali->flash_reg + intr_status_addresses[i]);

	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
213
		iowrite32(device_reset_banks[i],
214 215 216
				denali->flash_reg + DEVICE_RESET);
		while (!(ioread32(denali->flash_reg +
						intr_status_addresses[i]) &
217 218 219 220
			(reset_complete[i] | operation_timeout[i])))
			;
		if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
			operation_timeout[i])
221
			dev_dbg(&denali->dev->dev,
222 223 224 225
			"NAND Reset operation timed out on bank %d\n", i);
	}

	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
226
		iowrite32(reset_complete[i] | operation_timeout[i],
227 228 229 230 231
			denali->flash_reg + intr_status_addresses[i]);

	return PASS;
}

232 233 234
/* this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
235
 */
236
static void nand_onfi_timing_set(struct denali_nand_info *denali,
237
								uint16_t mode)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t TclsRising = 1;
	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

259
	dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		       __FILE__, __LINE__, __func__);

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
296
		dev_warn(&denali->dev->dev, "%s, Line %d: Warning!\n",
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
			__FILE__, __LINE__);

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (!TclsRising)
		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

324 325 326 327 328 329 330 331
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
332 333 334 335 336 337
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
338 339 340
	/* we needn't to do a reset here because driver has already
	 * reset all the banks before
	 * */
341 342 343 344 345
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
346 347
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
348 349 350
			break;
	}

351
	nand_onfi_timing_set(denali, i);
352 353 354 355 356 357 358 359 360

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

361 362
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
363
{
364
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
365
		/* Set timing register values according to datasheet */
366 367 368 369 370 371 372
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
373 374 375 376 377 378 379 380 381 382 383
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
384
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
385 386
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
387
		iowrite32(tmp,
388
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
389
#if SUPPORT_15BITECC
390
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
391
#elif SUPPORT_8BITECC
392
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
393 394 395 396
#endif
	}
}

397 398
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
399 400 401
{
	uint32_t main_size, spare_size;

402
	switch (device_id) {
403 404
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
405 406 407
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
408 409 410 411
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
412
		iowrite32(main_size,
413
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
414
		iowrite32(spare_size,
415
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
416
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
417
#if SUPPORT_15BITECC
418
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
419
#elif SUPPORT_8BITECC
420
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
421 422 423
#endif
		break;
	default:
424
		dev_warn(&denali->dev->dev,
425 426
			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
			"Will use default parameter values instead.\n",
427
			device_id);
428 429 430 431
	}
}

/* determines how many NAND chips are connected to the controller. Note for
432
 * Intel CE4100 devices we don't support more than one device.
433 434 435 436 437 438 439 440 441 442
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[LLD_MAX_FLASH_BANKS];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
443 444
		index_addr_read_data(denali,
				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
445

446
		dev_dbg(&denali->dev->dev,
447 448 449 450 451 452 453 454 455 456 457 458 459
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

460
	if (denali->platform == INTEL_CE4100) {
461 462
		/* Platform limitations of the CE4100 device limit
		 * users to a single chip solution for NAND.
463 464
		 * Multichip support is not enabled.
		 */
465
		if (denali->total_used_banks != 1) {
466 467
			dev_err(&denali->dev->dev,
					"Sorry, Intel CE4100 only supports "
468 469 470 471
					"a single NAND device.\n");
			BUG();
		}
	}
472
	dev_dbg(&denali->dev->dev,
473 474 475 476 477
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
478 479 480 481 482 483
	/* For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 * */
484 485 486
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
487
			denali->fwblks =
488 489
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
			      MIN_MAX_BANK_1__MIN_VALUE) *
490
			     denali->blksperchip)
491 492 493
			    +
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
			    MIN_BLK_ADDR_1__VALUE);
494 495 496 497
		} else
			denali->fwblks = SPECTRA_START_BLOCK;
	} else
		denali->fwblks = SPECTRA_START_BLOCK;
498 499
}

500
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
501 502
{
	uint16_t status = PASS;
503 504
	uint32_t id_bytes[5], addr;
	uint8_t i, maf_id, device_id;
505

506 507 508
	dev_dbg(&denali->dev->dev,
			"%s, Line %d, Function: %s\n",
			__FILE__, __LINE__, __func__);
509

510 511 512 513 514 515 516 517 518 519 520 521
	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
522 523 524 525 526

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
527
	} else if (maf_id == 0xEC) { /* Samsung NAND */
528
		get_samsung_nand_para(denali, device_id);
529
	} else if (maf_id == 0x98) { /* Toshiba NAND */
530
		get_toshiba_nand_para(denali);
531 532
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
533 534
	}

535 536 537 538
	dev_info(&denali->dev->dev,
			"Dump timing register values:"
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
539 540 541
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
542
			ioread32(denali->flash_reg + RE_2_RE),
543 544 545 546 547 548 549 550 551 552 553
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
554
	 * with a specific ONFI mode, we apply those changes here.
555 556
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
557
		nand_onfi_timing_set(denali, onfi_timing_mode);
558 559 560 561

	return status;
}

562
static void denali_set_intr_modes(struct denali_nand_info *denali,
563 564
					uint16_t INT_ENABLE)
{
565
	dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
566 567 568
		       __FILE__, __LINE__, __func__);

	if (INT_ENABLE)
569
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
570
	else
571
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
572 573 574
}

/* validation function to verify that the controlling software is making
575
 * a valid request
576 577 578
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
579
	return (flash_bank >= 0 && flash_bank < 4);
580 581 582 583 584 585 586
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;

	/* Disable global interrupts */
587
	denali_set_intr_modes(denali, false);
588 589 590 591

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
592 593 594 595
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
	iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
596 597 598 599 600 601

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
602
	denali_set_intr_modes(denali, false);
603 604 605
	free_irq(irqnum, denali);
}

606 607
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
608
{
609 610 611 612
	iowrite32(int_mask, denali->flash_reg + INTR_EN0);
	iowrite32(int_mask, denali->flash_reg + INTR_EN1);
	iowrite32(int_mask, denali->flash_reg + INTR_EN2);
	iowrite32(int_mask, denali->flash_reg + INTR_EN3);
613 614 615
}

/* This function only returns when an interrupt that this driver cares about
616
 * occurs. This is to reduce the overhead of servicing interrupts
617 618 619
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
620
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
621 622 623
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
624 625
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
626 627 628 629 630
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

631
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
632 633 634 635 636 637 638 639
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status = 0x0;
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
640
	clear_interrupt(denali, status);
641 642 643 644 645 646 647 648 649 650 651 652 653 654

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg = 0;

	intr_status_reg = intr_status_addresses[denali->flash_bank];

	return ioread32(denali->flash_reg + intr_status_reg);
}

655 656 657
/* This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared
 * interrupt.
658 659 660 661 662 663 664 665 666
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
	uint32_t irq_status = 0x0;
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

667 668
	/* check to see if a valid NAND chip has
	 * been selected.
669
	 */
670
	if (is_flash_bank_valid(denali->flash_bank)) {
671
		/* check to see if controller generated
672
		 * the interrupt, since this is a shared interrupt */
673 674
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
			/* store the status in the device context for someone
			   to read */
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long comp_res = 0;
	uint32_t intr_status = 0;
	bool retry = false;
	unsigned long timeout = msecs_to_jiffies(1000);

699
	do {
700 701
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
702 703 704
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

705
		if (intr_status & irq_mask) {
706 707 708 709
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
710
		} else {
711 712
			/* these are not the interrupts you are looking for -
			 * need to wait again */
713 714 715 716 717
			spin_unlock_irq(&denali->irq_lock);
			retry = true;
		}
	} while (comp_res != 0);

718
	if (comp_res == 0) {
719
		/* timeout */
720 721
		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
				intr_status, irq_mask);
722 723 724 725 726 727

		intr_status = 0;
	}
	return intr_status;
}

728
/* This helper function setups the registers for ECC and whether or not
729
 * the spare area will be transfered. */
730
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
731 732
				bool transfer_spare)
{
733
	int ecc_en_flag = 0, transfer_spare_flag = 0;
734 735 736 737 738 739

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
740 741
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	iowrite32(transfer_spare_flag,
742
			denali->flash_reg + TRANSFER_SPARE_REG);
743 744
}

745
/* sends a pipeline command operation to the controller. See the Denali NAND
746
 * controller's user guide for more information (section 4.2.3.6).
747
 */
748 749 750 751 752
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
							bool ecc_en,
							bool transfer_spare,
							int access_type,
							int op)
753 754
{
	int status = PASS;
755
	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
756 757
		 irq_mask = 0;

758 759 760 761 762 763
	if (op == DENALI_READ)
		irq_mask = INTR_STATUS0__LOAD_COMP;
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
764 765 766 767

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	/* clear interrupts */
768
	clear_interrupts(denali);
769 770 771

	addr = BANK(denali->flash_bank) | denali->page;

772
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
773
		cmd = MODE_01 | addr;
774
		iowrite32(cmd, denali->flash_mem);
775
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
776
		/* read spare area */
777
		cmd = MODE_10 | addr;
778 779
		index_addr(denali, (uint32_t)cmd, access_type);

780
		cmd = MODE_01 | addr;
781
		iowrite32(cmd, denali->flash_mem);
782
	} else if (op == DENALI_READ) {
783
		/* setup page read request for access type */
784
		cmd = MODE_10 | addr;
785 786 787
		index_addr(denali, (uint32_t)cmd, access_type);

		/* page 33 of the NAND controller spec indicates we should not
788
		   use the pipeline commands in Spare area only mode. So we
789 790
		   don't.
		 */
791
		if (access_type == SPARE_ACCESS) {
792
			cmd = MODE_01 | addr;
793
			iowrite32(cmd, denali->flash_mem);
794
		} else {
795 796
			index_addr(denali, (uint32_t)cmd,
					0x2000 | op | page_count);
797 798

			/* wait for command to be accepted
799 800
			 * can always use status0 bit as the
			 * mask is identical for each
801 802 803
			 * bank. */
			irq_status = wait_for_irq(denali, irq_mask);

804
			if (irq_status == 0) {
805 806 807 808
				dev_err(&denali->dev->dev,
						"cmd, page, addr on timeout "
						"(0x%x, 0x%x, 0x%x)\n",
						cmd, denali->page, addr);
809
				status = FAIL;
810
			} else {
811
				cmd = MODE_01 | addr;
812
				iowrite32(cmd, denali->flash_mem);
813 814 815 816 817 818 819
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
820 821 822
static int write_data_to_flash_mem(struct denali_nand_info *denali,
							const uint8_t *buf,
							int len)
823 824 825
{
	uint32_t i = 0, *buf32;

826 827
	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
828 829 830 831 832
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
833
		iowrite32(*buf32++, denali->flash_mem + 0x10);
834
	return i*4; /* intent is to return the number of bytes read */
835 836 837
}

/* helper function that simply reads a buffer from the flash */
838 839 840
static int read_data_from_flash_mem(struct denali_nand_info *denali,
								uint8_t *buf,
								int len)
841 842 843 844 845
{
	uint32_t i = 0, *buf32;

	/* we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
846 847 848
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
849 850 851 852 853 854 855 856 857
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
858
	return i*4; /* intent is to return the number of bytes read */
859 860 861 862 863 864 865
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status = 0;
866
	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
867 868 869 870 871
						INTR_STATUS0__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

872
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
873
							DENALI_WRITE) == PASS) {
874 875 876 877 878
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

879
		if (irq_status == 0) {
880
			dev_err(&denali->dev->dev, "OOB write failed\n");
881 882
			status = -EIO;
		}
883
	} else {
884
		dev_err(&denali->dev->dev, "unable to send pipeline command\n");
885
		status = -EIO;
886 887 888 889 890 891 892 893
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
894 895
	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
			 irq_status = 0, addr = 0x0, cmd = 0x0;
896 897 898

	denali->page = page;

899
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
900
							DENALI_READ) == PASS) {
901
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
902

903
		/* wait for command to be accepted
904 905 906 907 908
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
909
			dev_err(&denali->dev->dev, "page on OOB timeout %d\n",
910
					denali->page);
911 912 913 914 915

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
916
		 * if you are in MAIN_ACCESS.
917 918
		 */
		addr = BANK(denali->flash_bank) | denali->page;
919
		cmd = MODE_10 | addr;
920 921 922 923
		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
	}
}

924
/* this function examines buffers to see if they contain data that
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
 * indicate that the buffer is part of an erased region of flash.
 */
bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
940 941
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
942 943
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

944
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
945
					uint32_t irq_status)
946 947 948
{
	bool check_erased_page = false;

949
	if (irq_status & INTR_STATUS0__ECC_ERR) {
950 951 952 953
		/* read the ECC errors. we'll ignore them for now */
		uint32_t err_address = 0, err_correction_info = 0;
		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
		uint32_t err_correction_value = 0;
954
		denali_set_intr_modes(denali, false);
955

956
		do {
957
			err_address = ioread32(denali->flash_reg +
958 959 960 961
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

962
			err_correction_info = ioread32(denali->flash_reg +
963
						ERR_CORRECTION_INFO);
964
			err_correction_value =
965 966 967
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

968
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
969 970 971 972 973 974 975 976 977 978 979 980 981 982
				/* If err_byte is larger than ECC_SECTOR_SIZE,
				 * means error happend in OOB, so we ignore
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
				 * */
				if (err_byte < ECC_SECTOR_SIZE) {
					int offset;
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
983 984 985 986
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
					denali->mtd.ecc_stats.corrected++;
				}
987
			} else {
988
				/* if the error is not correctable, need to
989 990 991
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
				 * */
992 993 994
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
995 996 997 998 999 1000 1001 1002 1003
		/* Once handle all ecc errors, controller will triger
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
		 * */
		while (!(read_interrupt_status(denali) &
				INTR_STATUS0__ECC_TRANSACTION_DONE))
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1004 1005 1006 1007 1008
	}
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1009
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1010 1011 1012
{
	uint32_t reg_val = 0x0;

1013 1014
	if (en)
		reg_val = DMA_ENABLE__FLAG;
1015

1016
	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1017 1018 1019 1020
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1021
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
	uint32_t mode = 0x0;
	const int page_count = 1;
	dma_addr_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
}

1044
/* writes a page. user specifies type, and this function handles the
1045
 * configuration details. */
1046
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1047 1048 1049 1050 1051 1052 1053 1054 1055
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1056
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
						INTR_STATUS0__PROGRAM_FAIL;

	/* if it is a raw xfer, we want to disable ecc, and send
	 * the spare area.
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1069
	if (raw_xfer) {
1070
		/* transfer the data to the spare area */
1071 1072 1073
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1074 1075 1076 1077 1078
	}

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);

	clear_interrupts(denali);
1079
	denali_enable_dma(denali, true);
1080

1081
	denali_setup_dma(denali, DENALI_WRITE);
1082 1083 1084 1085

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1086
	if (irq_status == 0) {
1087 1088 1089
		dev_err(&denali->dev->dev,
				"timeout on write_page (type = %d)\n",
				raw_xfer);
1090
		denali->status =
1091 1092
			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
			NAND_STATUS_FAIL : PASS;
1093 1094
	}

1095
	denali_enable_dma(denali, false);
1096 1097 1098 1099 1100
	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}

/* NAND core entry points */

1101
/* this is the callback that the NAND core calls to write a page. Since
1102 1103 1104
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 * */
1105
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1106 1107 1108
				const uint8_t *buf)
{
	/* for regular page writes, we let HW handle all the ECC
1109
	 * data written to the device. */
1110 1111 1112
	write_page(mtd, chip, buf, false);
}

1113
/* This is the callback that the NAND core calls to write a page without ECC.
1114 1115
 * raw access is similiar to ECC page writes, so all the work is done in the
 * write_page() function above.
1116
 */
1117
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1118 1119
					const uint8_t *buf)
{
1120
	/* for raw page writes, we want to disable ECC and simply write
1121 1122 1123 1124
	   whatever data is in the buffer. */
	write_page(mtd, chip, buf, true);
}

1125
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1126 1127
			    int page)
{
1128
	return write_oob_data(mtd, chip->oob_poi, page);
1129 1130
}

1131
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1132 1133 1134 1135
			   int page, int sndcmd)
{
	read_oob_data(mtd, chip->oob_poi, page);

1136 1137
	return 0; /* notify NAND core to send command to
			   NAND device. */
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
1150
	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1151 1152 1153 1154 1155
			    INTR_STATUS0__ECC_ERR;
	bool check_erased_page = false;

	setup_ecc_for_xfer(denali, true, false);

1156
	denali_enable_dma(denali, true);
1157 1158 1159
	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1160
	denali_setup_dma(denali, DENALI_READ);
1161 1162 1163 1164 1165 1166 1167

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	memcpy(buf, denali->buf.buf, mtd->writesize);
1168

1169
	check_erased_page = handle_ecc(denali, buf, irq_status);
1170
	denali_enable_dma(denali, false);
1171

1172
	if (check_erased_page) {
1173 1174 1175
		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);

		/* check ECC failures that may have occurred on erased pages */
1176
		if (check_erased_page) {
1177 1178 1179 1180
			if (!is_erased(buf, denali->mtd.writesize))
				denali->mtd.ecc_stats.failed++;
			if (!is_erased(buf, denali->mtd.oobsize))
				denali->mtd.ecc_stats.failed++;
1181
		}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	}
	return 0;
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct pci_dev *pci_dev = denali->dev;

	dma_addr_t addr = denali->buf.dma_buf;
	size_t size = denali->mtd.writesize + denali->mtd.oobsize;

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1197

1198
	setup_ecc_for_xfer(denali, false, true);
1199
	denali_enable_dma(denali, true);
1200 1201 1202 1203

	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

	clear_interrupts(denali);
1204
	denali_setup_dma(denali, DENALI_READ);
1205 1206 1207 1208 1209 1210

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);

1211
	denali_enable_dma(denali, false);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t cmd = 0x0, irq_status = 0;

	/* clear interrupts */
1255
	clear_interrupts(denali);
1256 1257 1258 1259 1260 1261

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, (uint32_t)cmd, 0x1);

	/* wait for erase to complete or failure to occur */
1262
	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1263 1264
					INTR_STATUS0__ERASE_FAIL);

1265 1266
	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
						NAND_STATUS_FAIL : PASS;
1267 1268
}

1269
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1270 1271 1272
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1273 1274
	uint32_t addr, id;
	int i;
1275

1276
	switch (cmd) {
1277 1278 1279 1280 1281 1282 1283
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
		reset_buf(denali);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		/*sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, (uint32_t)addr | 0, 0x90);
		index_addr(denali, (uint32_t)addr | 1, 0);
		for (i = 0; i < 5; i++) {
			index_addr_read_data(denali,
						(uint32_t)addr | 2,
						&id);
			write_byte_to_buf(denali, id);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
		printk(KERN_ERR ": unsupported command"
				" received 0x%x\n", cmd);
		break;
1312 1313 1314 1315
	}
}

/* stubs for ECC functions not used by the NAND core */
1316
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1317 1318
				uint8_t *ecc_code)
{
1319 1320 1321
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dev_err(&denali->dev->dev,
			"denali_ecc_calculate called unexpectedly\n");
1322 1323 1324 1325
	BUG();
	return -EIO;
}

1326
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1327 1328
				uint8_t *read_ecc, uint8_t *calc_ecc)
{
1329 1330 1331
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dev_err(&denali->dev->dev,
			"denali_ecc_correct called unexpectedly\n");
1332 1333 1334 1335 1336 1337
	BUG();
	return -EIO;
}

static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
1338 1339 1340
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dev_err(&denali->dev->dev,
			"denali_ecc_hwctl called unexpectedly\n");
1341 1342 1343 1344 1345 1346 1347
	BUG();
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1348 1349 1350 1351 1352 1353 1354
	/* tell driver how many bit controller will skip before
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
	 * */
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1355
	denali_irq_init(denali);
1356
	denali_nand_reset(denali);
1357 1358
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1359
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1360

1361 1362
	iowrite32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1363 1364

	/* Should set value for these registers when init */
1365 1366
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1367 1368
}

1369 1370 1371 1372 1373 1374 1375
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
 * */
#define ECC_8BITS	14
static struct nand_ecclayout nand_8bit_oob = {
	.eccbytes = 14,
1376 1377
};

1378 1379 1380
#define ECC_15BITS	26
static struct nand_ecclayout nand_15bit_oob = {
	.eccbytes = 26,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1406
/* initialize driver data structures */
1407 1408 1409 1410 1411
void denali_drv_init(struct denali_nand_info *denali)
{
	denali->idx = 0;

	/* setup interrupt handler */
1412
	/* the completion object will be used to notify
1413 1414 1415 1416
	 * the callee that the interrupt is done */
	init_completion(&denali->complete);

	/* the spinlock will be used to synchronize the ISR
1417
	 * with any element that might be access shared
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	 * data (interrupt status) */
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

/* driver entry point */
static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int ret = -ENODEV;
	resource_size_t csr_base, mem_base;
	unsigned long csr_len, mem_len;
	struct denali_nand_info *denali;

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	ret = pci_enable_device(dev);
	if (ret) {
		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1443
		goto failed_alloc_memery;
1444 1445 1446
	}

	if (id->driver_data == INTEL_CE4100) {
1447 1448 1449
		/* Due to a silicon limitation, we can only support
		 * ONFI timing mode 1 and below.
		 */
1450
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1451 1452
			printk(KERN_ERR "Intel CE4100 only supports"
					" ONFI timing mode 1 or below\n");
1453
			ret = -EINVAL;
1454
			goto failed_enable_dev;
1455 1456 1457 1458 1459 1460 1461 1462 1463
		}
		denali->platform = INTEL_CE4100;
		mem_base = pci_resource_start(dev, 0);
		mem_len = pci_resource_len(dev, 1);
		csr_base = pci_resource_start(dev, 1);
		csr_len = pci_resource_len(dev, 1);
	} else {
		denali->platform = INTEL_MRST;
		csr_base = pci_resource_start(dev, 0);
1464
		csr_len = pci_resource_len(dev, 0);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		mem_base = pci_resource_start(dev, 1);
		mem_len = pci_resource_len(dev, 1);
		if (!mem_len) {
			mem_base = csr_base + csr_len;
			mem_len = csr_len;
		}
	}

	/* Is 32-bit DMA supported? */
	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));

1476
	if (ret) {
1477
		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1478
		goto failed_enable_dev;
1479
	}
1480 1481 1482 1483
	denali->buf.dma_buf =
		pci_map_single(dev, denali->buf.buf,
						DENALI_BUF_SIZE,
						PCI_DMA_BIDIRECTIONAL);
1484

1485
	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1486
		dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1487
		goto failed_enable_dev;
1488 1489 1490 1491 1492 1493 1494 1495
	}

	pci_set_master(dev);
	denali->dev = dev;

	ret = pci_request_regions(dev, DENALI_NAND_NAME);
	if (ret) {
		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1496
		goto failed_dma_map;
1497 1498 1499 1500 1501 1502
	}

	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
	if (!denali->flash_reg) {
		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
		ret = -ENOMEM;
1503
		goto failed_req_regions;
1504 1505 1506 1507 1508 1509
	}

	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
	if (!denali->flash_mem) {
		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
		ret = -ENOMEM;
1510
		goto failed_remap_reg;
1511 1512 1513 1514 1515 1516 1517 1518 1519
	}

	denali_hw_init(denali);
	denali_drv_init(denali);

	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
			DENALI_NAND_NAME, denali)) {
		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
		ret = -ENODEV;
1520
		goto failed_remap_mem;
1521 1522 1523
	}

	/* now that our ISR is registered, we can enable interrupts */
1524
	denali_set_intr_modes(denali, true);
1525 1526 1527

	pci_set_drvdata(dev, denali);

1528
	denali_nand_timing_set(denali);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

	denali->mtd.name = "Denali NAND";
	denali->mtd.owner = THIS_MODULE;
	denali->mtd.priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1540
	/* scan for NAND devices attached to the controller
1541
	 * this is the first stage in a two step process to register
1542
	 * with the nand subsystem */
1543
	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
1544
		ret = -ENXIO;
1545
		goto failed_req_irq;
1546
	}
1547

1548 1549 1550 1551 1552 1553 1554
	/* MTD supported page sizes vary by kernel. We validate our
	 * kernel supports the device here.
	 */
	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
		ret = -ENODEV;
		printk(KERN_ERR "Spectra: device size not supported by this "
			"version of MTD.");
1555
		goto failed_req_irq;
1556 1557
	}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	/* support for multi nand
	 * MTD known nothing about multi nand,
	 * so we should tell it the real pagesize
	 * and anything necessery
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
	denali->mtd.writesize <<= (denali->devnum - 1);
	denali->mtd.oobsize <<= (denali->devnum - 1);
	denali->mtd.erasesize <<= (denali->devnum - 1);
	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
	denali->bbtskipbytes *= denali->devnum;

1577 1578 1579
	/* second stage of the NAND scan
	 * this stage requires information regarding ECC and
	 * bad block management. */
1580 1581 1582 1583 1584 1585 1586 1587 1588

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/* Denali Controller only support 15bit and 8bit ECC in MRST,
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
	if (denali->nand.cellinfo & 0xc &&
			(denali->mtd.oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
		denali->nand.ecc.layout = &nand_15bit_oob;
		denali->nand.ecc.bytes = ECC_15BITS;
1600
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1601 1602 1603 1604 1605
	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (denali->mtd.writesize /
			ECC_SECTOR_SIZE))) {
		printk(KERN_ERR "Your NAND chip OOB is not large enough to"
				" contain 8bit ECC correction codes");
1606
		goto failed_req_irq;
1607 1608 1609
	} else {
		denali->nand.ecc.layout = &nand_8bit_oob;
		denali->nand.ecc.bytes = ECC_8BITS;
1610
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1611 1612
	}

1613
	denali->nand.ecc.bytes *= denali->devnum;
1614 1615 1616 1617 1618 1619 1620 1621
	denali->nand.ecc.layout->eccbytes *=
		denali->mtd.writesize / ECC_SECTOR_SIZE;
	denali->nand.ecc.layout->oobfree[0].offset =
		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
	denali->nand.ecc.layout->oobfree[0].length =
		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
		denali->bbtskipbytes;

1622 1623 1624 1625 1626 1627 1628 1629 1630
	/* Let driver know the total blocks number and
	 * how many blocks contained by each nand chip.
	 * blksperchip will help driver to know how many
	 * blocks is taken by FW.
	 * */
	denali->totalblks = denali->mtd.size >>
				denali->nand.phys_erase_shift;
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1631 1632 1633
	/* These functions are required by the NAND core framework, otherwise,
	 * the NAND core will assert. However, we don't need them, so we'll stub
	 * them out. */
1634 1635 1636 1637 1638
	denali->nand.ecc.calculate = denali_ecc_calculate;
	denali->nand.ecc.correct = denali_ecc_correct;
	denali->nand.ecc.hwctl = denali_ecc_hwctl;

	/* override the default read operations */
1639
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1640 1641 1642 1643 1644 1645 1646 1647
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
	denali->nand.erase_cmd = denali_erase;

1648
	if (nand_scan_tail(&denali->mtd)) {
1649
		ret = -ENXIO;
1650
		goto failed_req_irq;
1651 1652 1653 1654
	}

	ret = add_mtd_device(&denali->mtd);
	if (ret) {
1655 1656
		dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
				ret);
1657
		goto failed_req_irq;
1658 1659 1660
	}
	return 0;

1661
failed_req_irq:
1662
	denali_irq_cleanup(dev->irq, denali);
1663
failed_remap_mem:
1664
	iounmap(denali->flash_mem);
1665 1666 1667
failed_remap_reg:
	iounmap(denali->flash_reg);
failed_req_regions:
1668
	pci_release_regions(dev);
1669
failed_dma_map:
1670
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1671
							PCI_DMA_BIDIRECTIONAL);
1672 1673 1674
failed_enable_dev:
	pci_disable_device(dev);
failed_alloc_memery:
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	kfree(denali);
	return ret;
}

/* driver exit point */
static void denali_pci_remove(struct pci_dev *dev)
{
	struct denali_nand_info *denali = pci_get_drvdata(dev);

	nand_release(&denali->mtd);
	del_mtd_device(&denali->mtd);

	denali_irq_cleanup(dev->irq, denali);

	iounmap(denali->flash_reg);
	iounmap(denali->flash_mem);
	pci_release_regions(dev);
	pci_disable_device(dev);
1693
	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
							PCI_DMA_BIDIRECTIONAL);
	pci_set_drvdata(dev, NULL);
	kfree(denali);
}

MODULE_DEVICE_TABLE(pci, denali_pci_ids);

static struct pci_driver denali_pci_driver = {
	.name = DENALI_NAND_NAME,
	.id_table = denali_pci_ids,
	.probe = denali_pci_probe,
	.remove = denali_pci_remove,
};

static int __devinit denali_init(void)
{
1710 1711
	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
			__DATE__, __TIME__);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	return pci_register_driver(&denali_pci_driver);
}

/* Free memory */
static void __devexit denali_exit(void)
{
	pci_unregister_driver(&denali_pci_driver);
}

module_init(denali_init);
module_exit(denali_exit);