denali.c 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
			INTR__ECC_TRANSACTION_DONE | \
			INTR__ECC_ERR | \
			INTR__PROGRAM_FAIL | \
			INTR__LOAD_COMP | \
			INTR__PROGRAM_COMP | \
			INTR__TIME_OUT | \
			INTR__ERASE_FAIL | \
			INTR__RST_COMP | \
			INTR__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64

65 66 67 68
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
69 70
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

71 72
/*
 * this macro allows us to convert from an MTD structure to our own
73 74
 * device context (denali) structure.
 */
75 76 77 78
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
79

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86 87 88 89 90
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

91 92 93 94
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
95 96 97 98
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
99 100 101 102
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
103 104
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

105 106 107 108
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
109
 * abstracts this common operation.
110
 */
111 112
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
113
{
114 115
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
116 117 118 119 120 121
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
122
	iowrite32(address, denali->flash_mem);
123 124 125
	*pdata = ioread32(denali->flash_mem + 0x10);
}

126 127 128 129
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
130 131 132 133 134 135 136 137 138 139 140 141 142
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
143
	uint32_t cmd;
144 145 146 147

	/* initialize the data buffer to store status */
	reset_buf(denali);

148 149 150 151 152
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
153 154 155 156 157
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
158
	uint32_t irq_status;
159
	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
160 161 162

	clear_interrupts(denali);

163
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
164 165

	irq_status = wait_for_irq(denali, irq_mask);
166

167
	if (irq_status & INTR__TIME_OUT)
168
		dev_err(denali->dev, "reset bank failed.\n");
169 170 171
}

/* Reset the flash controller */
172
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
173
{
174
	int i;
175

176
	for (i = 0; i < denali->max_banks; i++)
177
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
178
		denali->flash_reg + INTR_STATUS(i));
179

180
	for (i = 0; i < denali->max_banks; i++) {
181
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
182
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
183
			(INTR__RST_COMP | INTR__TIME_OUT)))
184
			cpu_relax();
185
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
186
			INTR__TIME_OUT)
187
			dev_dbg(denali->dev,
188 189 190
			"NAND Reset operation timed out on bank %d\n", i);
	}

191
	for (i = 0; i < denali->max_banks; i++)
192
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
193
			  denali->flash_reg + INTR_STATUS(i));
194 195 196 197

	return PASS;
}

198 199
/*
 * this routine calculates the ONFI timing values for a given mode and
200 201
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
202
 */
203
static void nand_onfi_timing_set(struct denali_nand_info *denali,
204
								uint16_t mode)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

243 244
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
245 246 247 248 249 250 251 252 253

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

254
	while (acc_clks * CLK_X - Trea[mode] < 3)
255 256
		acc_clks++;

257
	if (data_invalid - acc_clks * CLK_X < 2)
258
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259
			 __FILE__, __LINE__);
260 261 262 263 264 265 266 267 268 269

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
270
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
271 272 273 274 275 276 277 278 279
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
280 281
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
282 283
		acc_clks = 6;

284 285 286 287 288 289 290 291
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
292 293 294 295 296 297
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
298 299 300

	/*
	 * we needn't to do a reset here because driver has already
301
	 * reset all the banks before
302
	 */
303 304 305 306 307
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
308 309
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
310 311 312
			break;
	}

313
	nand_onfi_timing_set(denali, i);
314

315 316 317 318
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
319 320 321 322 323 324
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

325 326
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
327
{
328
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
329
		/* Set timing register values according to datasheet */
330 331 332 333 334 335 336
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
337 338 339
	}
}

340 341
/*
 * determines how many NAND chips are connected to the controller. Note for
342
 * Intel CE4100 devices we don't support more than one device.
343 344 345
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
346
	uint32_t id[denali->max_banks];
347 348 349
	int i;

	denali->total_used_banks = 1;
350
	for (i = 0; i < denali->max_banks; i++) {
351 352
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
353
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
354

355
		dev_dbg(denali->dev,
356 357 358 359 360 361 362 363 364 365 366 367 368
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

369
	if (denali->platform == INTEL_CE4100) {
370 371
		/*
		 * Platform limitations of the CE4100 device limit
372
		 * users to a single chip solution for NAND.
373 374
		 * Multichip support is not enabled.
		 */
375
		if (denali->total_used_banks != 1) {
376
			dev_err(denali->dev,
377
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
378 379 380
			BUG();
		}
	}
381
	dev_dbg(denali->dev,
382 383 384
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

385 386 387 388 389 390 391 392
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

393 394 395 396 397
	denali->max_banks = 1 << (features & FEATURES__N_BANKS);

	/* the encoding changed from rev 5.0 to 5.1 */
	if (denali->revision < 0x0501)
		denali->max_banks <<= 1;
398 399
}

400
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
401 402
{
	uint16_t status = PASS;
403
	uint32_t id_bytes[8], addr;
404 405
	uint8_t maf_id, device_id;
	int i;
406

407 408 409 410 411
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
412 413 414
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
415
	for (i = 0; i < 8; i++)
416 417 418
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
419 420 421 422 423

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
424
	} else if (maf_id == 0xEC) { /* Samsung NAND */
425
		get_samsung_nand_para(denali, device_id);
426 427
	}

428
	dev_info(denali->dev,
429
			"Dump timing register values:\n"
430 431
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
432 433 434
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
435
			ioread32(denali->flash_reg + RE_2_RE),
436 437 438 439 440 441 442 443
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

444 445
	/*
	 * If the user specified to override the default timings
446
	 * with a specific ONFI mode, we apply those changes here.
447 448
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
449
		nand_onfi_timing_set(denali, onfi_timing_mode);
450 451 452 453

	return status;
}

454
static void denali_set_intr_modes(struct denali_nand_info *denali,
455 456 457
					uint16_t INT_ENABLE)
{
	if (INT_ENABLE)
458
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
459
	else
460
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
461 462
}

463 464
/*
 * validation function to verify that the controlling software is making
465
 * a valid request
466 467 468
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
469
	return flash_bank >= 0 && flash_bank < 4;
470 471 472 473
}

static void denali_irq_init(struct denali_nand_info *denali)
{
474
	uint32_t int_mask;
475
	int i;
476 477

	/* Disable global interrupts */
478
	denali_set_intr_modes(denali, false);
479 480 481 482

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
483
	for (i = 0; i < denali->max_banks; ++i)
484
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
485 486 487 488 489 490

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
491
	denali_set_intr_modes(denali, false);
492 493
}

494 495
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
496
{
497 498
	int i;

499
	for (i = 0; i < denali->max_banks; ++i)
500
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
501 502
}

503 504
/*
 * This function only returns when an interrupt that this driver cares about
505
 * occurs. This is to reduce the overhead of servicing interrupts
506 507 508
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
509
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
510 511 512
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
513 514
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
515
{
516
	uint32_t intr_status_reg;
517

518
	intr_status_reg = INTR_STATUS(denali->flash_bank);
519

520
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
521 522 523 524
}

static void clear_interrupts(struct denali_nand_info *denali)
{
525 526
	uint32_t status;

527 528 529
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
530
	clear_interrupt(denali, status);
531 532 533 534 535 536 537

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
538
	uint32_t intr_status_reg;
539

540
	intr_status_reg = INTR_STATUS(denali->flash_bank);
541 542 543 544

	return ioread32(denali->flash_reg + intr_status_reg);
}

545 546 547
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
548 549 550 551
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
552
	uint32_t irq_status;
553 554 555 556
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

557
	/* check to see if a valid NAND chip has been selected. */
558
	if (is_flash_bank_valid(denali->flash_bank)) {
559 560 561 562
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
563 564
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
565 566 567
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
568 569 570 571
			/*
			 * store the status in the device context for someone
			 * to read
			 */
572 573 574 575 576 577 578 579 580 581 582 583 584
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
585 586
	unsigned long comp_res;
	uint32_t intr_status;
587 588
	unsigned long timeout = msecs_to_jiffies(1000);

589
	do {
590 591
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
592 593 594
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

595
		if (intr_status & irq_mask) {
596 597 598 599 600
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
601 602 603 604 605 606

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
607 608
	} while (comp_res != 0);

609
	if (comp_res == 0) {
610
		/* timeout */
611
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
612
				intr_status, irq_mask);
613 614 615 616 617 618

		intr_status = 0;
	}
	return intr_status;
}

619 620 621 622
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
623
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
624 625
				bool transfer_spare)
{
626
	int ecc_en_flag, transfer_spare_flag;
627 628 629 630 631 632

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
633
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
634
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
635 636
}

637 638
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
639
 * controller's user guide for more information (section 4.2.3.6).
640
 */
641
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
642 643
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
644 645
{
	int status = PASS;
646
	uint32_t addr, cmd;
647 648 649

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

650
	clear_interrupts(denali);
651 652 653

	addr = BANK(denali->flash_bank) | denali->page;

654
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
655
		cmd = MODE_01 | addr;
656
		iowrite32(cmd, denali->flash_mem);
657
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
658
		/* read spare area */
659
		cmd = MODE_10 | addr;
660
		index_addr(denali, cmd, access_type);
661

662
		cmd = MODE_01 | addr;
663
		iowrite32(cmd, denali->flash_mem);
664
	} else if (op == DENALI_READ) {
665
		/* setup page read request for access type */
666
		cmd = MODE_10 | addr;
667
		index_addr(denali, cmd, access_type);
668

669 670
		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
671 672 673 674 675
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
676
static int write_data_to_flash_mem(struct denali_nand_info *denali,
677
				   const uint8_t *buf, int len)
678
{
679 680
	uint32_t *buf32;
	int i;
681

682 683 684 685
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
686 687 688 689 690
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
691
		iowrite32(*buf32++, denali->flash_mem + 0x10);
692
	return i * 4; /* intent is to return the number of bytes read */
693 694 695
}

/* helper function that simply reads a buffer from the flash */
696
static int read_data_from_flash_mem(struct denali_nand_info *denali,
697
				    uint8_t *buf, int len)
698
{
699 700
	uint32_t *buf32;
	int i;
701

702 703 704 705 706
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
707 708 709 710 711 712 713
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
714
	return i * 4; /* intent is to return the number of bytes read */
715 716 717 718 719 720
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
721
	uint32_t irq_status;
722
	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
723 724 725 726
	int status = 0;

	denali->page = page;

727
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
728
							DENALI_WRITE) == PASS) {
729 730 731 732 733
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

734
		if (irq_status == 0) {
735
			dev_err(denali->dev, "OOB write failed\n");
736 737
			status = -EIO;
		}
738
	} else {
739
		dev_err(denali->dev, "unable to send pipeline command\n");
740
		status = -EIO;
741 742 743 744 745 746 747 748
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
749
	uint32_t irq_mask = INTR__LOAD_COMP;
750
	uint32_t irq_status, addr, cmd;
751 752 753

	denali->page = page;

754
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
755
							DENALI_READ) == PASS) {
756
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
757

758 759 760 761 762
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
763 764 765
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
766
			dev_err(denali->dev, "page on OOB timeout %d\n",
767
					denali->page);
768

769 770
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
771 772 773
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
774
		 * if you are in MAIN_ACCESS.
775 776
		 */
		addr = BANK(denali->flash_bank) | denali->page;
777
		cmd = MODE_10 | addr;
778
		index_addr(denali, cmd, MAIN_ACCESS);
779 780 781
	}
}

782 783 784 785
static int denali_check_erased_page(struct mtd_info *mtd,
				    struct nand_chip *chip, uint8_t *buf,
				    unsigned long uncor_ecc_flags,
				    unsigned int max_bitflips)
786
{
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	uint8_t *ecc_code = chip->buffers->ecccode;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int i, ret, stat;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; i < ecc_steps; i++) {
		if (!(uncor_ecc_flags & BIT(i)))
			continue;

		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
						  ecc_code, ecc_bytes,
						  NULL, 0,
						  chip->ecc.strength);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}

		buf += ecc_size;
		ecc_code += ecc_bytes;
	}
816

817
	return max_bitflips;
818
}
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bank = denali->flash_bank;
	uint32_t ecc_cor;
	unsigned int max_bitflips;

	ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);

	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
		/*
		 * This flag is set when uncorrectable error occurs at least in
		 * one ECC sector.  We can not know "how many sectors", or
		 * "which sector(s)".  We need erase-page check for all sectors.
		 */
		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
		return 0;
	}

	max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;

	/*
	 * The register holds the maximum of per-sector corrected bitflips.
	 * This is suitable for the return value of the ->read_page() callback.
	 * Unfortunately, we can not know the total number of corrected bits in
	 * the page.  Increase the stats by max_bitflips. (compromised solution)
	 */
	mtd->ecc_stats.corrected += max_bitflips;

	return max_bitflips;
}

855 856 857
#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
858
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
859
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
860 861
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

862 863 864
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags, uint8_t *buf)
865
{
866
	unsigned int ecc_size = denali->nand.ecc.size;
867
	unsigned int bitflips = 0;
868 869 870 871 872
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	/* read the ECC errors. we'll ignore them for now */
	denali_set_intr_modes(denali, false);

	do {
		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
		err_sector = ECC_SECTOR(err_addr);
		err_byte = ECC_BYTE(err_addr);

		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
		err_device = ECC_ERR_DEVICE(err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
			/*
892 893
			 * Check later if this is a real ECC error, or
			 * an erased sector.
894
			 */
895
			*uncor_ecc_flags |= BIT(err_sector);
896
		} else if (err_byte < ecc_size) {
897
			/*
898
			 * If err_byte is larger than ecc_size, means error
899 900 901 902 903 904 905 906
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

907
			offset = (err_sector * ecc_size + err_byte) *
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
						denali->devnum + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!ECC_LAST_ERR(err_cor_info));

	/*
	 * Once handle all ecc errors, controller will trigger a
	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
	 * a while for this interrupt
	 */
	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
		cpu_relax();
	clear_interrupts(denali);
	denali_set_intr_modes(denali, true);

	return max_bitflips;
933 934 935
}

/* programs the controller to either enable/disable DMA transfers */
936
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
937
{
938
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
939 940 941
	ioread32(denali->flash_reg + DMA_ENABLE);
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static void denali_setup_dma64(struct denali_nand_info *denali, int op)
{
	uint32_t mode;
	const int page_count = 1;
	uint64_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;

	/* DMA is a three step process */

	/*
	 * 1. setup transfer type, interrupt when complete,
	 *    burst len = 64 bytes, the number of pages
	 */
	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);

	/* 2. set memory low address */
	index_addr(denali, mode, addr);

	/* 3. set memory high address */
	index_addr(denali, mode, addr >> 32);
}

static void denali_setup_dma32(struct denali_nand_info *denali, int op)
966
{
967
	uint32_t mode;
968
	const int page_count = 1;
969
	uint32_t addr = denali->buf.dma_buf;
970 971 972 973 974 975 976 977 978

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
979
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
980 981

	/* 3. set memory low address bits 23:8 */
982
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
983

984
	/* 4. interrupt when complete, burst len = 64 bytes */
985 986 987
	index_addr(denali, mode | 0x14000, 0x2400);
}

988 989 990 991 992 993 994 995
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
	if (denali->caps & DENALI_CAP_DMA_64BIT)
		denali_setup_dma64(denali, op);
	else
		denali_setup_dma32(denali, op);
}

996 997 998 999
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1000
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1001 1002 1003 1004
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1005
	size_t size = mtd->writesize + mtd->oobsize;
1006
	uint32_t irq_status;
1007
	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
1008

1009 1010
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1011 1012 1013 1014 1015 1016 1017 1018
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1019
	if (raw_xfer) {
1020
		/* transfer the data to the spare area */
1021 1022 1023
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1024 1025
	}

1026
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1027 1028

	clear_interrupts(denali);
1029
	denali_enable_dma(denali, true);
1030

1031
	denali_setup_dma(denali, DENALI_WRITE);
1032 1033 1034 1035

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1036
	if (irq_status == 0) {
1037 1038
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1039
		denali->status = NAND_STATUS_FAIL;
1040 1041
	}

1042
	denali_enable_dma(denali, false);
1043
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1044 1045

	return 0;
1046 1047 1048 1049
}

/* NAND core entry points */

1050 1051
/*
 * this is the callback that the NAND core calls to write a page. Since
1052 1053
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1054
 */
1055
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1056
				const uint8_t *buf, int oob_required, int page)
1057
{
1058 1059 1060 1061
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1062
	return write_page(mtd, chip, buf, false);
1063 1064
}

1065 1066
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1067
 * raw access is similar to ECC page writes, so all the work is done in the
1068
 * write_page() function above.
1069
 */
1070
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1071 1072
				 const uint8_t *buf, int oob_required,
				 int page)
1073
{
1074 1075 1076 1077
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1078
	return write_page(mtd, chip, buf, true);
1079 1080
}

1081
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1082 1083
			    int page)
{
1084
	return write_oob_data(mtd, chip->oob_poi, page);
1085 1086
}

1087
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1088
			   int page)
1089 1090 1091
{
	read_oob_data(mtd, chip->oob_poi, page);

1092
	return 0;
1093 1094 1095
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1096
			    uint8_t *buf, int oob_required, int page)
1097 1098 1099
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1100
	size_t size = mtd->writesize + mtd->oobsize;
1101
	uint32_t irq_status;
1102 1103 1104
	uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
				INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
				INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1105 1106
	unsigned long uncor_ecc_flags = 0;
	int stat = 0;
1107

1108
	if (page != denali->page) {
1109 1110 1111
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1112 1113 1114
		BUG();
	}

1115 1116
	setup_ecc_for_xfer(denali, true, false);

1117
	denali_enable_dma(denali, true);
1118
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1119 1120

	clear_interrupts(denali);
1121
	denali_setup_dma(denali, DENALI_READ);
1122 1123 1124 1125

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1126
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1127 1128

	memcpy(buf, denali->buf.buf, mtd->writesize);
1129

1130 1131 1132 1133
	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
	else if (irq_status & INTR__ECC_ERR)
		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
1134
	denali_enable_dma(denali, false);
1135

1136 1137 1138 1139
	if (stat < 0)
		return stat;

	if (uncor_ecc_flags) {
1140
		read_oob_data(mtd, chip->oob_poi, denali->page);
1141

1142 1143
		stat = denali_check_erased_page(mtd, chip, buf,
						uncor_ecc_flags, stat);
1144
	}
1145 1146

	return stat;
1147 1148 1149
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1150
				uint8_t *buf, int oob_required, int page)
1151 1152 1153
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1154
	size_t size = mtd->writesize + mtd->oobsize;
1155
	uint32_t irq_mask = INTR__DMA_CMD_COMP;
1156

1157
	if (page != denali->page) {
1158 1159 1160
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1161 1162 1163
		BUG();
	}

1164
	setup_ecc_for_xfer(denali, false, true);
1165
	denali_enable_dma(denali, true);
1166

1167
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1168 1169

	clear_interrupts(denali);
1170
	denali_setup_dma(denali, DENALI_READ);
1171 1172

	/* wait for operation to complete */
1173
	wait_for_irq(denali, irq_mask);
1174

1175
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1176

1177
	denali_enable_dma(denali, false);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1209

1210 1211 1212 1213 1214
	denali->status = 0;

	return status;
}

1215
static int denali_erase(struct mtd_info *mtd, int page)
1216 1217 1218
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1219
	uint32_t cmd, irq_status;
1220

1221
	clear_interrupts(denali);
1222 1223 1224

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1225
	index_addr(denali, cmd, 0x1);
1226 1227

	/* wait for erase to complete or failure to occur */
1228
	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1229

1230
	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1231 1232
}

1233
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1234 1235 1236
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1237 1238
	uint32_t addr, id;
	int i;
1239

1240
	switch (cmd) {
1241 1242 1243 1244 1245 1246
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1247
	case NAND_CMD_PARAM:
1248
		reset_buf(denali);
1249 1250
		/*
		 * sometimes ManufactureId read from register is not right
1251 1252
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1253
		 */
1254 1255
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1256
		index_addr(denali, addr | 1, col);
1257
		for (i = 0; i < 8; i++) {
1258
			index_addr_read_data(denali, addr | 2, &id);
1259
			write_byte_to_buf(denali, id);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1273
		pr_err(": unsupported command received 0x%x\n", cmd);
1274
		break;
1275 1276 1277 1278 1279 1280 1281
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * The REVISION register may not be reliable.  Platforms are allowed to
	 * override it.
	 */
	if (!denali->revision)
		denali->revision =
				swab16(ioread32(denali->flash_reg + REVISION));

1290 1291
	/*
	 * tell driver how many bit controller will skip before
1292 1293 1294
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1295
	 */
1296 1297
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1298
	detect_max_banks(denali);
1299
	denali_nand_reset(denali);
1300 1301
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1302
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1303

1304
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1305 1306

	/* Should set value for these registers when init */
1307 1308
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1309 1310
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
int denali_calc_ecc_bytes(int step_size, int strength)
{
	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);

static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
			    struct denali_nand_info *denali)
{
	int oobavail = mtd->oobsize - denali->bbtskipbytes;
	int ret;

	/*
	 * If .size and .strength are already set (usually by DT),
	 * check if they are supported by this controller.
	 */
	if (chip->ecc.size && chip->ecc.strength)
		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);

	/*
	 * We want .size and .strength closest to the chip's requirement
	 * unless NAND_ECC_MAXIMIZE is requested.
	 */
	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
		if (!ret)
			return 0;
	}

	/* Max ECC strength is the last thing we can do */
	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1405
/* initialize driver data structures */
1406
static void denali_drv_init(struct denali_nand_info *denali)
1407
{
1408 1409 1410 1411
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1412 1413
	init_completion(&denali->complete);

1414 1415 1416 1417
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1418 1419 1420 1421 1422 1423 1424 1425 1426
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1427
static int denali_multidev_fixup(struct denali_nand_info *denali)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

1441 1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devnum == 0) {
		denali->devnum = 1;
		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
	}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	if (denali->devnum == 1)
		return 0;

	if (denali->devnum != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devnum);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->bbtskipbytes <<= 1;

	return 0;
1476 1477
}

1478
int denali_init(struct denali_nand_info *denali)
1479
{
1480 1481
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1482
	int ret;
1483

1484
	if (denali->platform == INTEL_CE4100) {
1485 1486
		/*
		 * Due to a silicon limitation, we can only support
1487 1488
		 * ONFI timing mode 1 and below.
		 */
1489
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1490 1491
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1492 1493 1494
		}
	}

1495 1496 1497 1498 1499
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1500

1501
	mtd->dev.parent = denali->dev;
1502 1503 1504
	denali_hw_init(denali);
	denali_drv_init(denali);

1505 1506 1507 1508
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1509
		dev_err(denali->dev, "Unable to request IRQ\n");
1510
		return ret;
1511 1512 1513
	}

	/* now that our ISR is registered, we can enable interrupts */
1514
	denali_set_intr_modes(denali, true);
1515
	nand_set_flash_node(chip, denali->dev->of_node);
1516 1517 1518
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";
1519 1520

	/* register the driver with the NAND core subsystem */
1521 1522 1523 1524
	chip->select_chip = denali_select_chip;
	chip->cmdfunc = denali_cmdfunc;
	chip->read_byte = denali_read_byte;
	chip->waitfunc = denali_waitfunc;
1525 1526
	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
1527

1528 1529
	/*
	 * scan for NAND devices attached to the controller
1530
	 * this is the first stage in a two step process to register
1531 1532
	 * with the nand subsystem
	 */
1533 1534
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1535
		goto failed_req_irq;
1536

1537 1538 1539
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1540
			     mtd->writesize + mtd->oobsize,
1541 1542 1543 1544 1545 1546
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

1547 1548 1549
	ret = dma_set_mask(denali->dev,
			   DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
					64 : 32));
1550
	if (ret) {
1551
		dev_err(denali->dev, "No usable DMA configuration\n");
1552 1553 1554 1555
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1556
			     mtd->writesize + mtd->oobsize,
1557 1558
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1559
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1560
		ret = -EIO;
1561
		goto failed_req_irq;
1562 1563
	}

1564 1565
	/*
	 * second stage of the NAND scan
1566
	 * this stage requires information regarding ECC and
1567 1568
	 * bad block management.
	 */
1569 1570

	/* Bad block management */
1571 1572
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1573 1574

	/* skip the scan for now until we have OOB read and write support */
1575 1576 1577
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1578

1579
	/* no subpage writes on denali */
1580
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1581

1582 1583 1584
	ret = denali_ecc_setup(mtd, chip, denali);
	if (ret) {
		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1585
		goto failed_req_irq;
1586 1587
	}

1588 1589 1590 1591 1592
	dev_dbg(denali->dev,
		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);

	iowrite32(chip->ecc.strength, denali->flash_reg + ECC_CORRECTION);
1593 1594 1595 1596 1597 1598
	iowrite32(mtd->erasesize / mtd->writesize,
		  denali->flash_reg + PAGES_PER_BLOCK);
	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
		  denali->flash_reg + DEVICE_WIDTH);
	iowrite32(mtd->writesize, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	iowrite32(mtd->oobsize, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
1599 1600 1601 1602 1603 1604 1605

	iowrite32(chip->ecc.size, denali->flash_reg + CFG_DATA_BLOCK_SIZE);
	iowrite32(chip->ecc.size, denali->flash_reg + CFG_LAST_DATA_BLOCK_SIZE);
	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
	iowrite32(mtd->writesize / chip->ecc.size,
		  denali->flash_reg + CFG_NUM_DATA_BLOCKS);

1606
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1607

1608 1609 1610 1611 1612 1613 1614
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1615

1616 1617 1618
	ret = denali_multidev_fixup(denali);
	if (ret)
		goto failed_req_irq;
1619

1620 1621
	ret = nand_scan_tail(mtd);
	if (ret)
1622
		goto failed_req_irq;
1623

1624
	ret = mtd_device_register(mtd, NULL, 0);
1625
	if (ret) {
1626
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1627
		goto failed_req_irq;
1628 1629 1630
	}
	return 0;

1631
failed_req_irq:
1632 1633
	denali_irq_cleanup(denali->irq, denali);

1634 1635
	return ret;
}
1636
EXPORT_SYMBOL(denali_init);
1637 1638

/* driver exit point */
1639
void denali_remove(struct denali_nand_info *denali)
1640
{
1641
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1642 1643 1644 1645 1646
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1647
	int bufsize = mtd->writesize + mtd->oobsize;
1648

1649
	nand_release(mtd);
1650
	denali_irq_cleanup(denali->irq, denali);
1651
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1652
			 DMA_BIDIRECTIONAL);
1653
}
1654
EXPORT_SYMBOL(denali_remove);