denali.c 46.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
			INTR__ECC_TRANSACTION_DONE | \
			INTR__ECC_ERR | \
			INTR__PROGRAM_FAIL | \
			INTR__LOAD_COMP | \
			INTR__PROGRAM_COMP | \
			INTR__TIME_OUT | \
			INTR__ERASE_FAIL | \
			INTR__RST_COMP | \
			INTR__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64

65 66 67 68
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
69 70
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

71 72
/*
 * this macro allows us to convert from an MTD structure to our own
73 74
 * device context (denali) structure.
 */
75 76 77 78
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
79

80 81 82 83
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
84 85 86 87 88 89 90
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_READ	0
#define DENALI_WRITE	0x100

91 92 93 94
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
95 96 97 98
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
99 100 101 102
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
103 104
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

105 106 107 108
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
109
 * abstracts this common operation.
110
 */
111 112
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
113
{
114 115
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
116 117 118 119 120 121
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
122
	iowrite32(address, denali->flash_mem);
123 124 125
	*pdata = ioread32(denali->flash_mem + 0x10);
}

126 127 128 129
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
130 131 132 133 134 135 136 137 138 139 140 141 142
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
143
	uint32_t cmd;
144 145 146 147

	/* initialize the data buffer to store status */
	reset_buf(denali);

148 149 150 151 152
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
153 154 155 156 157
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
158
	uint32_t irq_status;
159
	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
160 161 162

	clear_interrupts(denali);

163
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
164 165

	irq_status = wait_for_irq(denali, irq_mask);
166

167
	if (irq_status & INTR__TIME_OUT)
168
		dev_err(denali->dev, "reset bank failed.\n");
169 170 171
}

/* Reset the flash controller */
172
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
173
{
174
	int i;
175

176
	for (i = 0; i < denali->max_banks; i++)
177
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
178
		denali->flash_reg + INTR_STATUS(i));
179

180
	for (i = 0; i < denali->max_banks; i++) {
181
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
182
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
183
			(INTR__RST_COMP | INTR__TIME_OUT)))
184
			cpu_relax();
185
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
186
			INTR__TIME_OUT)
187
			dev_dbg(denali->dev,
188 189 190
			"NAND Reset operation timed out on bank %d\n", i);
	}

191
	for (i = 0; i < denali->max_banks; i++)
192
		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
193
			  denali->flash_reg + INTR_STATUS(i));
194 195 196 197

	return PASS;
}

198 199
/*
 * this routine calculates the ONFI timing values for a given mode and
200 201
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
202
 */
203
static void nand_onfi_timing_set(struct denali_nand_info *denali,
204
								uint16_t mode)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

243 244
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
245 246 247 248 249 250 251 252 253

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

254
	while (acc_clks * CLK_X - Trea[mode] < 3)
255 256
		acc_clks++;

257
	if (data_invalid - acc_clks * CLK_X < 2)
258
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259
			 __FILE__, __LINE__);
260 261 262 263 264 265 266 267 268 269

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
270
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
271 272 273 274 275 276 277 278 279
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
280 281
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
282 283
		acc_clks = 6;

284 285 286 287 288 289 290 291
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
292 293 294 295 296 297
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
298 299 300

	/*
	 * we needn't to do a reset here because driver has already
301
	 * reset all the banks before
302
	 */
303 304 305 306 307
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
308 309
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
310 311 312
			break;
	}

313
	nand_onfi_timing_set(denali, i);
314

315 316 317 318
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
319 320 321 322 323 324
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

325 326
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
327
{
328
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
329
		/* Set timing register values according to datasheet */
330 331 332 333 334 335 336
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
337 338 339 340 341
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
342 343 344 345
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
346
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
347
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
348
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
349 350
}

351 352
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
353
{
354
	switch (device_id) {
355 356
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
357 358 359 360
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
361 362
		break;
	default:
363
		dev_warn(denali->dev,
364
			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
365 366
			 "Will use default parameter values instead.\n",
			 device_id);
367 368 369
	}
}

370 371
/*
 * determines how many NAND chips are connected to the controller. Note for
372
 * Intel CE4100 devices we don't support more than one device.
373 374 375
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
376
	uint32_t id[denali->max_banks];
377 378 379
	int i;

	denali->total_used_banks = 1;
380
	for (i = 0; i < denali->max_banks; i++) {
381 382
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
383
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
384

385
		dev_dbg(denali->dev,
386 387 388 389 390 391 392 393 394 395 396 397 398
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

399
	if (denali->platform == INTEL_CE4100) {
400 401
		/*
		 * Platform limitations of the CE4100 device limit
402
		 * users to a single chip solution for NAND.
403 404
		 * Multichip support is not enabled.
		 */
405
		if (denali->total_used_banks != 1) {
406
			dev_err(denali->dev,
407
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
408 409 410
			BUG();
		}
	}
411
	dev_dbg(denali->dev,
412 413 414
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

415 416 417 418 419 420 421 422
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

423 424 425 426 427
	denali->max_banks = 1 << (features & FEATURES__N_BANKS);

	/* the encoding changed from rev 5.0 to 5.1 */
	if (denali->revision < 0x0501)
		denali->max_banks <<= 1;
428 429
}

430
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
431 432
{
	uint16_t status = PASS;
433
	uint32_t id_bytes[8], addr;
434 435
	uint8_t maf_id, device_id;
	int i;
436

437 438 439 440 441
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
442 443 444
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
445
	for (i = 0; i < 8; i++)
446 447 448
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
449 450 451 452 453

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
454
	} else if (maf_id == 0xEC) { /* Samsung NAND */
455
		get_samsung_nand_para(denali, device_id);
456
	} else if (maf_id == 0x98) { /* Toshiba NAND */
457
		get_toshiba_nand_para(denali);
458 459
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
460 461
	}

462
	dev_info(denali->dev,
463
			"Dump timing register values:\n"
464 465
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
466 467 468
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
469
			ioread32(denali->flash_reg + RE_2_RE),
470 471 472 473 474 475 476 477
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

478 479
	/*
	 * If the user specified to override the default timings
480
	 * with a specific ONFI mode, we apply those changes here.
481 482
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
483
		nand_onfi_timing_set(denali, onfi_timing_mode);
484 485 486 487

	return status;
}

488
static void denali_set_intr_modes(struct denali_nand_info *denali,
489 490 491
					uint16_t INT_ENABLE)
{
	if (INT_ENABLE)
492
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
493
	else
494
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
495 496
}

497 498
/*
 * validation function to verify that the controlling software is making
499
 * a valid request
500 501 502
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
503
	return flash_bank >= 0 && flash_bank < 4;
504 505 506 507
}

static void denali_irq_init(struct denali_nand_info *denali)
{
508
	uint32_t int_mask;
509
	int i;
510 511

	/* Disable global interrupts */
512
	denali_set_intr_modes(denali, false);
513 514 515 516

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
517
	for (i = 0; i < denali->max_banks; ++i)
518
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
519 520 521 522 523 524

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
525
	denali_set_intr_modes(denali, false);
526 527
}

528 529
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
530
{
531 532
	int i;

533
	for (i = 0; i < denali->max_banks; ++i)
534
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
535 536
}

537 538
/*
 * This function only returns when an interrupt that this driver cares about
539
 * occurs. This is to reduce the overhead of servicing interrupts
540 541 542
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
543
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
544 545 546
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
547 548
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
549
{
550
	uint32_t intr_status_reg;
551

552
	intr_status_reg = INTR_STATUS(denali->flash_bank);
553

554
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
555 556 557 558
}

static void clear_interrupts(struct denali_nand_info *denali)
{
559 560
	uint32_t status;

561 562 563
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
564
	clear_interrupt(denali, status);
565 566 567 568 569 570 571

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
572
	uint32_t intr_status_reg;
573

574
	intr_status_reg = INTR_STATUS(denali->flash_bank);
575 576 577 578

	return ioread32(denali->flash_reg + intr_status_reg);
}

579 580 581
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
582 583 584 585
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
586
	uint32_t irq_status;
587 588 589 590
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

591
	/* check to see if a valid NAND chip has been selected. */
592
	if (is_flash_bank_valid(denali->flash_bank)) {
593 594 595 596
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
597 598
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
599 600 601
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
602 603 604 605
			/*
			 * store the status in the device context for someone
			 * to read
			 */
606 607 608 609 610 611 612 613 614 615 616 617 618
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
619 620
	unsigned long comp_res;
	uint32_t intr_status;
621 622
	unsigned long timeout = msecs_to_jiffies(1000);

623
	do {
624 625
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
626 627 628
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

629
		if (intr_status & irq_mask) {
630 631 632 633 634
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
635 636 637 638 639 640

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
641 642
	} while (comp_res != 0);

643
	if (comp_res == 0) {
644
		/* timeout */
645
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
646
				intr_status, irq_mask);
647 648 649 650 651 652

		intr_status = 0;
	}
	return intr_status;
}

653 654 655 656
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
657
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
658 659
				bool transfer_spare)
{
660
	int ecc_en_flag, transfer_spare_flag;
661 662 663 664 665 666

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
667
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
668
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
669 670
}

671 672
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
673
 * controller's user guide for more information (section 4.2.3.6).
674
 */
675
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
676 677
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
678 679
{
	int status = PASS;
680
	uint32_t addr, cmd;
681 682 683

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

684
	clear_interrupts(denali);
685 686 687

	addr = BANK(denali->flash_bank) | denali->page;

688
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
689
		cmd = MODE_01 | addr;
690
		iowrite32(cmd, denali->flash_mem);
691
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
692
		/* read spare area */
693
		cmd = MODE_10 | addr;
694
		index_addr(denali, cmd, access_type);
695

696
		cmd = MODE_01 | addr;
697
		iowrite32(cmd, denali->flash_mem);
698
	} else if (op == DENALI_READ) {
699
		/* setup page read request for access type */
700
		cmd = MODE_10 | addr;
701
		index_addr(denali, cmd, access_type);
702

703 704
		cmd = MODE_01 | addr;
		iowrite32(cmd, denali->flash_mem);
705 706 707 708 709
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
710
static int write_data_to_flash_mem(struct denali_nand_info *denali,
711
				   const uint8_t *buf, int len)
712
{
713 714
	uint32_t *buf32;
	int i;
715

716 717 718 719
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
720 721 722 723 724
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
725
		iowrite32(*buf32++, denali->flash_mem + 0x10);
726
	return i * 4; /* intent is to return the number of bytes read */
727 728 729
}

/* helper function that simply reads a buffer from the flash */
730
static int read_data_from_flash_mem(struct denali_nand_info *denali,
731
				    uint8_t *buf, int len)
732
{
733 734
	uint32_t *buf32;
	int i;
735

736 737 738 739 740
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
741 742 743 744 745 746 747
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
748
	return i * 4; /* intent is to return the number of bytes read */
749 750 751 752 753 754
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
755
	uint32_t irq_status;
756
	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
757 758 759 760
	int status = 0;

	denali->page = page;

761
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
762
							DENALI_WRITE) == PASS) {
763 764 765 766 767
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

768
		if (irq_status == 0) {
769
			dev_err(denali->dev, "OOB write failed\n");
770 771
			status = -EIO;
		}
772
	} else {
773
		dev_err(denali->dev, "unable to send pipeline command\n");
774
		status = -EIO;
775 776 777 778 779 780 781 782
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
783
	uint32_t irq_mask = INTR__LOAD_COMP;
784
	uint32_t irq_status, addr, cmd;
785 786 787

	denali->page = page;

788
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
789
							DENALI_READ) == PASS) {
790
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
791

792 793 794 795 796
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
797 798 799
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
800
			dev_err(denali->dev, "page on OOB timeout %d\n",
801
					denali->page);
802

803 804
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
805 806 807
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
808
		 * if you are in MAIN_ACCESS.
809 810
		 */
		addr = BANK(denali->flash_bank) | denali->page;
811
		cmd = MODE_10 | addr;
812
		index_addr(denali, cmd, MAIN_ACCESS);
813 814 815
	}
}

816 817 818 819
static int denali_check_erased_page(struct mtd_info *mtd,
				    struct nand_chip *chip, uint8_t *buf,
				    unsigned long uncor_ecc_flags,
				    unsigned int max_bitflips)
820
{
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	uint8_t *ecc_code = chip->buffers->ecccode;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int i, ret, stat;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; i < ecc_steps; i++) {
		if (!(uncor_ecc_flags & BIT(i)))
			continue;

		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
						  ecc_code, ecc_bytes,
						  NULL, 0,
						  chip->ecc.strength);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}

		buf += ecc_size;
		ecc_code += ecc_bytes;
	}
850

851
	return max_bitflips;
852
}
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bank = denali->flash_bank;
	uint32_t ecc_cor;
	unsigned int max_bitflips;

	ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);

	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
		/*
		 * This flag is set when uncorrectable error occurs at least in
		 * one ECC sector.  We can not know "how many sectors", or
		 * "which sector(s)".  We need erase-page check for all sectors.
		 */
		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
		return 0;
	}

	max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;

	/*
	 * The register holds the maximum of per-sector corrected bitflips.
	 * This is suitable for the return value of the ->read_page() callback.
	 * Unfortunately, we can not know the total number of corrected bits in
	 * the page.  Increase the stats by max_bitflips. (compromised solution)
	 */
	mtd->ecc_stats.corrected += max_bitflips;

	return max_bitflips;
}

889 890 891
#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
892
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
893
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
894 895
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

896 897 898
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags, uint8_t *buf)
899
{
900
	unsigned int ecc_size = denali->nand.ecc.size;
901
	unsigned int bitflips = 0;
902 903 904 905 906
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	/* read the ECC errors. we'll ignore them for now */
	denali_set_intr_modes(denali, false);

	do {
		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
		err_sector = ECC_SECTOR(err_addr);
		err_byte = ECC_BYTE(err_addr);

		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
		err_device = ECC_ERR_DEVICE(err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
			/*
926 927
			 * Check later if this is a real ECC error, or
			 * an erased sector.
928
			 */
929
			*uncor_ecc_flags |= BIT(err_sector);
930
		} else if (err_byte < ecc_size) {
931
			/*
932
			 * If err_byte is larger than ecc_size, means error
933 934 935 936 937 938 939 940
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

941
			offset = (err_sector * ecc_size + err_byte) *
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
						denali->devnum + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!ECC_LAST_ERR(err_cor_info));

	/*
	 * Once handle all ecc errors, controller will trigger a
	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
	 * a while for this interrupt
	 */
	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
		cpu_relax();
	clear_interrupts(denali);
	denali_set_intr_modes(denali, true);

	return max_bitflips;
967 968 969
}

/* programs the controller to either enable/disable DMA transfers */
970
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
971
{
972
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
973 974 975
	ioread32(denali->flash_reg + DMA_ENABLE);
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
static void denali_setup_dma64(struct denali_nand_info *denali, int op)
{
	uint32_t mode;
	const int page_count = 1;
	uint64_t addr = denali->buf.dma_buf;

	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;

	/* DMA is a three step process */

	/*
	 * 1. setup transfer type, interrupt when complete,
	 *    burst len = 64 bytes, the number of pages
	 */
	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);

	/* 2. set memory low address */
	index_addr(denali, mode, addr);

	/* 3. set memory high address */
	index_addr(denali, mode, addr >> 32);
}

static void denali_setup_dma32(struct denali_nand_info *denali, int op)
1000
{
1001
	uint32_t mode;
1002
	const int page_count = 1;
1003
	uint32_t addr = denali->buf.dma_buf;
1004 1005 1006 1007 1008 1009 1010 1011 1012

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1013
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1014 1015

	/* 3. set memory low address bits 23:8 */
1016
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1017

1018
	/* 4. interrupt when complete, burst len = 64 bytes */
1019 1020 1021
	index_addr(denali, mode | 0x14000, 0x2400);
}

1022 1023 1024 1025 1026 1027 1028 1029
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
	if (denali->caps & DENALI_CAP_DMA_64BIT)
		denali_setup_dma64(denali, op);
	else
		denali_setup_dma32(denali, op);
}

1030 1031 1032 1033
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1034
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1035 1036 1037 1038
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1039
	size_t size = mtd->writesize + mtd->oobsize;
1040
	uint32_t irq_status;
1041
	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
1042

1043 1044
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1045 1046 1047 1048 1049 1050 1051 1052
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1053
	if (raw_xfer) {
1054
		/* transfer the data to the spare area */
1055 1056 1057
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1058 1059
	}

1060
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1061 1062

	clear_interrupts(denali);
1063
	denali_enable_dma(denali, true);
1064

1065
	denali_setup_dma(denali, DENALI_WRITE);
1066 1067 1068 1069

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1070
	if (irq_status == 0) {
1071 1072
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1073
		denali->status = NAND_STATUS_FAIL;
1074 1075
	}

1076
	denali_enable_dma(denali, false);
1077
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1078 1079

	return 0;
1080 1081 1082 1083
}

/* NAND core entry points */

1084 1085
/*
 * this is the callback that the NAND core calls to write a page. Since
1086 1087
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1088
 */
1089
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1090
				const uint8_t *buf, int oob_required, int page)
1091
{
1092 1093 1094 1095
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1096
	return write_page(mtd, chip, buf, false);
1097 1098
}

1099 1100
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1101
 * raw access is similar to ECC page writes, so all the work is done in the
1102
 * write_page() function above.
1103
 */
1104
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1105 1106
				 const uint8_t *buf, int oob_required,
				 int page)
1107
{
1108 1109 1110 1111
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1112
	return write_page(mtd, chip, buf, true);
1113 1114
}

1115
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1116 1117
			    int page)
{
1118
	return write_oob_data(mtd, chip->oob_poi, page);
1119 1120
}

1121
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1122
			   int page)
1123 1124 1125
{
	read_oob_data(mtd, chip->oob_poi, page);

1126
	return 0;
1127 1128 1129
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1130
			    uint8_t *buf, int oob_required, int page)
1131 1132 1133
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1134
	size_t size = mtd->writesize + mtd->oobsize;
1135
	uint32_t irq_status;
1136 1137 1138
	uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
				INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
				INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
1139 1140
	unsigned long uncor_ecc_flags = 0;
	int stat = 0;
1141

1142
	if (page != denali->page) {
1143 1144 1145
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1146 1147 1148
		BUG();
	}

1149 1150
	setup_ecc_for_xfer(denali, true, false);

1151
	denali_enable_dma(denali, true);
1152
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1153 1154

	clear_interrupts(denali);
1155
	denali_setup_dma(denali, DENALI_READ);
1156 1157 1158 1159

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1160
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1161 1162

	memcpy(buf, denali->buf.buf, mtd->writesize);
1163

1164 1165 1166 1167
	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
	else if (irq_status & INTR__ECC_ERR)
		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
1168
	denali_enable_dma(denali, false);
1169

1170 1171 1172 1173
	if (stat < 0)
		return stat;

	if (uncor_ecc_flags) {
1174
		read_oob_data(mtd, chip->oob_poi, denali->page);
1175

1176 1177
		stat = denali_check_erased_page(mtd, chip, buf,
						uncor_ecc_flags, stat);
1178
	}
1179 1180

	return stat;
1181 1182 1183
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1184
				uint8_t *buf, int oob_required, int page)
1185 1186 1187
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1188
	size_t size = mtd->writesize + mtd->oobsize;
1189
	uint32_t irq_mask = INTR__DMA_CMD_COMP;
1190

1191
	if (page != denali->page) {
1192 1193 1194
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1195 1196 1197
		BUG();
	}

1198
	setup_ecc_for_xfer(denali, false, true);
1199
	denali_enable_dma(denali, true);
1200

1201
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1202 1203

	clear_interrupts(denali);
1204
	denali_setup_dma(denali, DENALI_READ);
1205 1206

	/* wait for operation to complete */
1207
	wait_for_irq(denali, irq_mask);
1208

1209
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1210

1211
	denali_enable_dma(denali, false);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1243

1244 1245 1246 1247 1248
	denali->status = 0;

	return status;
}

1249
static int denali_erase(struct mtd_info *mtd, int page)
1250 1251 1252
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1253
	uint32_t cmd, irq_status;
1254

1255
	clear_interrupts(denali);
1256 1257 1258

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1259
	index_addr(denali, cmd, 0x1);
1260 1261

	/* wait for erase to complete or failure to occur */
1262
	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
1263

1264
	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1265 1266
}

1267
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1268 1269 1270
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1271 1272
	uint32_t addr, id;
	int i;
1273

1274
	switch (cmd) {
1275 1276 1277 1278 1279 1280
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1281
	case NAND_CMD_PARAM:
1282
		reset_buf(denali);
1283 1284
		/*
		 * sometimes ManufactureId read from register is not right
1285 1286
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1287
		 */
1288 1289
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1290
		index_addr(denali, addr | 1, col);
1291
		for (i = 0; i < 8; i++) {
1292
			index_addr_read_data(denali, addr | 2, &id);
1293
			write_byte_to_buf(denali, id);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1307
		pr_err(": unsupported command received 0x%x\n", cmd);
1308
		break;
1309 1310 1311 1312 1313 1314 1315
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1316 1317 1318 1319 1320 1321 1322 1323
	/*
	 * The REVISION register may not be reliable.  Platforms are allowed to
	 * override it.
	 */
	if (!denali->revision)
		denali->revision =
				swab16(ioread32(denali->flash_reg + REVISION));

1324 1325
	/*
	 * tell driver how many bit controller will skip before
1326 1327 1328
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1329
	 */
1330 1331
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1332
	detect_max_banks(denali);
1333
	denali_nand_reset(denali);
1334 1335
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1336
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1337

1338
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1339 1340

	/* Should set value for these registers when init */
1341 1342
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1343 1344
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
int denali_calc_ecc_bytes(int step_size, int strength)
{
	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);

static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
			    struct denali_nand_info *denali)
{
	int oobavail = mtd->oobsize - denali->bbtskipbytes;
	int ret;

	/*
	 * If .size and .strength are already set (usually by DT),
	 * check if they are supported by this controller.
	 */
	if (chip->ecc.size && chip->ecc.strength)
		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);

	/*
	 * We want .size and .strength closest to the chip's requirement
	 * unless NAND_ECC_MAXIMIZE is requested.
	 */
	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
		if (!ret)
			return 0;
	}

	/* Max ECC strength is the last thing we can do */
	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
}
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1439
/* initialize driver data structures */
1440
static void denali_drv_init(struct denali_nand_info *denali)
1441
{
1442 1443 1444 1445
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1446 1447
	init_completion(&denali->complete);

1448 1449 1450 1451
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1452 1453 1454 1455 1456 1457 1458 1459 1460
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1461
static int denali_multidev_fixup(struct denali_nand_info *denali)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devnum == 0) {
		denali->devnum = 1;
		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
	}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (denali->devnum == 1)
		return 0;

	if (denali->devnum != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devnum);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->bbtskipbytes <<= 1;

	return 0;
1510 1511
}

1512
int denali_init(struct denali_nand_info *denali)
1513
{
1514 1515
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1516
	int ret;
1517

1518
	if (denali->platform == INTEL_CE4100) {
1519 1520
		/*
		 * Due to a silicon limitation, we can only support
1521 1522
		 * ONFI timing mode 1 and below.
		 */
1523
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1524 1525
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1526 1527 1528
		}
	}

1529 1530 1531 1532 1533
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1534

1535
	mtd->dev.parent = denali->dev;
1536 1537 1538
	denali_hw_init(denali);
	denali_drv_init(denali);

1539 1540 1541 1542
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1543
		dev_err(denali->dev, "Unable to request IRQ\n");
1544
		return ret;
1545 1546 1547
	}

	/* now that our ISR is registered, we can enable interrupts */
1548
	denali_set_intr_modes(denali, true);
1549
	nand_set_flash_node(chip, denali->dev->of_node);
1550 1551 1552
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";
1553 1554

	/* register the driver with the NAND core subsystem */
1555 1556 1557 1558
	chip->select_chip = denali_select_chip;
	chip->cmdfunc = denali_cmdfunc;
	chip->read_byte = denali_read_byte;
	chip->waitfunc = denali_waitfunc;
1559 1560
	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
1561

1562 1563
	/*
	 * scan for NAND devices attached to the controller
1564
	 * this is the first stage in a two step process to register
1565 1566
	 * with the nand subsystem
	 */
1567 1568
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1569
		goto failed_req_irq;
1570

1571 1572 1573
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1574
			     mtd->writesize + mtd->oobsize,
1575 1576 1577 1578 1579 1580
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

1581 1582 1583
	ret = dma_set_mask(denali->dev,
			   DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
					64 : 32));
1584
	if (ret) {
1585
		dev_err(denali->dev, "No usable DMA configuration\n");
1586 1587 1588 1589
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1590
			     mtd->writesize + mtd->oobsize,
1591 1592
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1593
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1594
		ret = -EIO;
1595
		goto failed_req_irq;
1596 1597
	}

1598 1599
	/*
	 * second stage of the NAND scan
1600
	 * this stage requires information regarding ECC and
1601 1602
	 * bad block management.
	 */
1603 1604

	/* Bad block management */
1605 1606
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1607 1608

	/* skip the scan for now until we have OOB read and write support */
1609 1610 1611
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1612

1613
	/* no subpage writes on denali */
1614
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1615

1616 1617 1618
	ret = denali_ecc_setup(mtd, chip, denali);
	if (ret) {
		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1619
		goto failed_req_irq;
1620 1621
	}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	dev_dbg(denali->dev,
		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);

	iowrite32(chip->ecc.strength, denali->flash_reg + ECC_CORRECTION);

	iowrite32(chip->ecc.size, denali->flash_reg + CFG_DATA_BLOCK_SIZE);
	iowrite32(chip->ecc.size, denali->flash_reg + CFG_LAST_DATA_BLOCK_SIZE);
	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
	iowrite32(mtd->writesize / chip->ecc.size,
		  denali->flash_reg + CFG_NUM_DATA_BLOCKS);

1634
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1635

1636 1637 1638 1639 1640 1641 1642
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1643

1644 1645 1646
	ret = denali_multidev_fixup(denali);
	if (ret)
		goto failed_req_irq;
1647

1648 1649
	ret = nand_scan_tail(mtd);
	if (ret)
1650
		goto failed_req_irq;
1651

1652
	ret = mtd_device_register(mtd, NULL, 0);
1653
	if (ret) {
1654
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1655
		goto failed_req_irq;
1656 1657 1658
	}
	return 0;

1659
failed_req_irq:
1660 1661
	denali_irq_cleanup(denali->irq, denali);

1662 1663
	return ret;
}
1664
EXPORT_SYMBOL(denali_init);
1665 1666

/* driver exit point */
1667
void denali_remove(struct denali_nand_info *denali)
1668
{
1669
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1670 1671 1672 1673 1674
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1675
	int bufsize = mtd->writesize + mtd->oobsize;
1676

1677
	nand_release(mtd);
1678
	denali_irq_cleanup(denali->irq, denali);
1679
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1680
			 DMA_BIDIRECTIONAL);
1681
}
1682
EXPORT_SYMBOL(denali_remove);