memcontrol.c 146.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
82

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
93
	"rss_huge",
94
	"mapped_file",
95
	"dirty",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
139 140 141 142 143
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
144

145 146 147
/*
 * cgroup_event represents events which userspace want to receive.
 */
148
struct mem_cgroup_event {
149
	/*
150
	 * memcg which the event belongs to.
151
	 */
152
	struct mem_cgroup *memcg;
153 154 155 156 157 158 159 160
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
161 162 163 164 165
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
166
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
167
			      struct eventfd_ctx *eventfd, const char *args);
168 169 170 171 172
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
173
	void (*unregister_event)(struct mem_cgroup *memcg,
174
				 struct eventfd_ctx *eventfd);
175 176 177 178 179 180 181 182 183 184
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

185 186
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187

188 189
/* Stuffs for move charges at task migration. */
/*
190
 * Types of charges to be moved.
191
 */
192 193 194
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195

196 197
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
198
	spinlock_t	  lock; /* for from, to */
199 200
	struct mem_cgroup *from;
	struct mem_cgroup *to;
201
	unsigned long flags;
202
	unsigned long precharge;
203
	unsigned long moved_charge;
204
	unsigned long moved_swap;
205 206 207
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
208
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 210
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
211

212 213 214 215
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
216
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
217
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
218

219 220
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
223
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
224 225 226
	NR_CHARGE_TYPE,
};

227
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
228 229 230 231
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
232
	_KMEM,
G
Glauber Costa 已提交
233 234
};

235 236
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
237
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
238 239
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
240

241 242 243 244 245 246 247
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

248 249 250 251 252 253 254 255 256 257 258 259 260
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

261 262 263 264 265
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

266 267 268 269 270 271
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
272 273
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
274
	return memcg->css.id;
L
Li Zefan 已提交
275 276
}

277 278 279 280 281 282
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
283 284 285 286
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

287
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
288 289 290
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
291
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
292
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
293 294 295

void sock_update_memcg(struct sock *sk)
{
296 297 298 299 300 301 302 303 304 305
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
306 307 308
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
309
		return;
G
Glauber Costa 已提交
310
	}
311 312 313

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
314 315 316 317
	if (memcg != root_mem_cgroup &&
	    memcg->tcp_mem.active &&
	    css_tryget_online(&memcg->css))
		sk->sk_memcg = memcg;
318
	rcu_read_unlock();
G
Glauber Costa 已提交
319 320 321 322 323
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
324 325
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
G
Glauber Costa 已提交
326
}
G
Glauber Costa 已提交
327

328 329
/**
 * mem_cgroup_charge_skmem - charge socket memory
330
 * @memcg: memcg to charge
331 332
 * @nr_pages: number of pages to charge
 *
333 334
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
335
 */
336
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
337 338 339
{
	struct page_counter *counter;

340
	if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
341
				    nr_pages, &counter)) {
342
		memcg->tcp_mem.memory_pressure = 0;
343 344
		return true;
	}
345 346
	page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
	memcg->tcp_mem.memory_pressure = 1;
347 348 349 350 351
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
352
 * @memcg - memcg to uncharge
353 354
 * @nr_pages - number of pages to uncharge
 */
355
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
356
{
357
	page_counter_uncharge(&memcg->tcp_mem.memory_allocated, nr_pages);
358 359
}

360 361
#endif

362
#ifdef CONFIG_MEMCG_KMEM
363
/*
364
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
365 366 367 368 369
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
370
 *
371 372
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
373
 */
374 375
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
376

377 378 379 380 381 382 383 384 385 386 387 388 389
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

390 391 392 393 394 395
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
396
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
397 398
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
399
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
400 401 402
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
403
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
404

405 406 407 408 409 410
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
411
struct static_key memcg_kmem_enabled_key;
412
EXPORT_SYMBOL(memcg_kmem_enabled_key);
413 414 415

#endif /* CONFIG_MEMCG_KMEM */

416
static struct mem_cgroup_per_zone *
417
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
418
{
419 420 421
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

422
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
423 424
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

451
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
452 453 454 455 456 457
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

486
static struct mem_cgroup_per_zone *
487
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
488
{
489 490
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
491

492
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
493 494
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

510 511
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
512
					 unsigned long new_usage_in_excess)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

542 543
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
544 545 546 547 548 549 550
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

551 552
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
553
{
554 555 556
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
557
	__mem_cgroup_remove_exceeded(mz, mctz);
558
	spin_unlock_irqrestore(&mctz->lock, flags);
559 560
}

561 562 563
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
564
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
565 566 567 568 569 570 571
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
572 573 574

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
575
	unsigned long excess;
576 577 578
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

579
	mctz = soft_limit_tree_from_page(page);
580 581 582 583 584
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
585
		mz = mem_cgroup_page_zoneinfo(memcg, page);
586
		excess = soft_limit_excess(memcg);
587 588 589 590 591
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
592 593 594
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
595 596
			/* if on-tree, remove it */
			if (mz->on_tree)
597
				__mem_cgroup_remove_exceeded(mz, mctz);
598 599 600 601
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
602
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
603
			spin_unlock_irqrestore(&mctz->lock, flags);
604 605 606 607 608 609 610
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
611 612
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
613

614 615 616 617
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
618
			mem_cgroup_remove_exceeded(mz, mctz);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
641
	__mem_cgroup_remove_exceeded(mz, mctz);
642
	if (!soft_limit_excess(mz->memcg) ||
643
	    !css_tryget_online(&mz->memcg->css))
644 645 646 647 648 649 650 651 652 653
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

654
	spin_lock_irq(&mctz->lock);
655
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
656
	spin_unlock_irq(&mctz->lock);
657 658 659
	return mz;
}

660
/*
661 662
 * Return page count for single (non recursive) @memcg.
 *
663 664 665 666 667
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
668
 * a periodic synchronization of counter in memcg's counter.
669 670 671 672 673 674 675 676 677
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
678
 * common workload, threshold and synchronization as vmstat[] should be
679 680
 * implemented.
 */
681 682
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
683
{
684
	long val = 0;
685 686
	int cpu;

687
	/* Per-cpu values can be negative, use a signed accumulator */
688
	for_each_possible_cpu(cpu)
689
		val += per_cpu(memcg->stat->count[idx], cpu);
690 691 692 693 694 695
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
696 697 698
	return val;
}

699
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
700 701 702 703 704
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

705
	for_each_possible_cpu(cpu)
706
		val += per_cpu(memcg->stat->events[idx], cpu);
707 708 709
	return val;
}

710
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
711
					 struct page *page,
712
					 int nr_pages)
713
{
714 715 716 717
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
718
	if (PageAnon(page))
719
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
720
				nr_pages);
721
	else
722
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
723
				nr_pages);
724

725 726 727 728
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

729 730
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
731
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
732
	else {
733
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
734 735
		nr_pages = -nr_pages; /* for event */
	}
736

737
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
738 739
}

740 741 742
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
743
{
744
	unsigned long nr = 0;
745 746
	int zid;

747
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
748

749 750 751 752 753 754 755 756 757 758 759 760
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
761
}
762

763
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
764
			unsigned int lru_mask)
765
{
766
	unsigned long nr = 0;
767
	int nid;
768

769
	for_each_node_state(nid, N_MEMORY)
770 771
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
772 773
}

774 775
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
776 777 778
{
	unsigned long val, next;

779
	val = __this_cpu_read(memcg->stat->nr_page_events);
780
	next = __this_cpu_read(memcg->stat->targets[target]);
781
	/* from time_after() in jiffies.h */
782 783 784 785 786
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
787 788 789
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
790 791 792 793 794 795 796 797
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
798
	}
799
	return false;
800 801 802 803 804 805
}

/*
 * Check events in order.
 *
 */
806
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
807 808
{
	/* threshold event is triggered in finer grain than soft limit */
809 810
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
811
		bool do_softlimit;
812
		bool do_numainfo __maybe_unused;
813

814 815
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
816 817 818 819
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
820
		mem_cgroup_threshold(memcg);
821 822
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
823
#if MAX_NUMNODES > 1
824
		if (unlikely(do_numainfo))
825
			atomic_inc(&memcg->numainfo_events);
826
#endif
827
	}
828 829
}

830
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
831
{
832 833 834 835 836 837 838 839
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

840
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
841
}
M
Michal Hocko 已提交
842
EXPORT_SYMBOL(mem_cgroup_from_task);
843

844
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
845
{
846
	struct mem_cgroup *memcg = NULL;
847

848 849
	rcu_read_lock();
	do {
850 851 852 853 854 855
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
856
			memcg = root_mem_cgroup;
857 858 859 860 861
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
862
	} while (!css_tryget_online(&memcg->css));
863
	rcu_read_unlock();
864
	return memcg;
865 866
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
884
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
885
				   struct mem_cgroup *prev,
886
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
887
{
M
Michal Hocko 已提交
888
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
889
	struct cgroup_subsys_state *css = NULL;
890
	struct mem_cgroup *memcg = NULL;
891
	struct mem_cgroup *pos = NULL;
892

893 894
	if (mem_cgroup_disabled())
		return NULL;
895

896 897
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
898

899
	if (prev && !reclaim)
900
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
901

902 903
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
904
			goto out;
905
		return root;
906
	}
K
KAMEZAWA Hiroyuki 已提交
907

908
	rcu_read_lock();
M
Michal Hocko 已提交
909

910 911 912 913 914 915 916 917 918
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

919
		while (1) {
920
			pos = READ_ONCE(iter->position);
921 922
			if (!pos || css_tryget(&pos->css))
				break;
923
			/*
924 925 926 927 928 929
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
930
			 */
931 932
			(void)cmpxchg(&iter->position, pos, NULL);
		}
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
950
		}
K
KAMEZAWA Hiroyuki 已提交
951

952 953 954 955 956 957
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
958

959 960
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
961

962
		if (css_tryget(css)) {
963 964 965 966 967 968 969
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
970

971
			css_put(css);
972
		}
973

974
		memcg = NULL;
975
	}
976 977 978

	if (reclaim) {
		/*
979 980 981
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
982
		 */
983 984
		(void)cmpxchg(&iter->position, pos, memcg);

985 986 987 988 989 990 991
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
992
	}
993

994 995
out_unlock:
	rcu_read_unlock();
996
out:
997 998 999
	if (prev && prev != root)
		css_put(&prev->css);

1000
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1001
}
K
KAMEZAWA Hiroyuki 已提交
1002

1003 1004 1005 1006 1007 1008 1009
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1010 1011 1012 1013 1014 1015
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

1039 1040 1041 1042 1043 1044
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1045
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1046
	     iter != NULL;				\
1047
	     iter = mem_cgroup_iter(root, iter, NULL))
1048

1049
#define for_each_mem_cgroup(iter)			\
1050
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1051
	     iter != NULL;				\
1052
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1053

1054 1055 1056
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1057
 * @memcg: memcg of the wanted lruvec
1058 1059 1060 1061 1062 1063 1064 1065 1066
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1067
	struct lruvec *lruvec;
1068

1069 1070 1071 1072
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1073

1074
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1085 1086 1087
}

/**
1088
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1089
 * @page: the page
1090
 * @zone: zone of the page
1091 1092 1093 1094
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1095
 */
1096
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1097 1098
{
	struct mem_cgroup_per_zone *mz;
1099
	struct mem_cgroup *memcg;
1100
	struct lruvec *lruvec;
1101

1102 1103 1104 1105
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1106

1107
	memcg = page->mem_cgroup;
1108
	/*
1109
	 * Swapcache readahead pages are added to the LRU - and
1110
	 * possibly migrated - before they are charged.
1111
	 */
1112 1113
	if (!memcg)
		memcg = root_mem_cgroup;
1114

1115
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1126
}
1127

1128
/**
1129 1130 1131 1132
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1133
 *
1134 1135
 * This function must be called when a page is added to or removed from an
 * lru list.
1136
 */
1137 1138
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1139 1140
{
	struct mem_cgroup_per_zone *mz;
1141
	unsigned long *lru_size;
1142 1143 1144 1145

	if (mem_cgroup_disabled())
		return;

1146 1147 1148 1149
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1150
}
1151

1152
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1153
{
1154
	struct mem_cgroup *task_memcg;
1155
	struct task_struct *p;
1156
	bool ret;
1157

1158
	p = find_lock_task_mm(task);
1159
	if (p) {
1160
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1161 1162 1163 1164 1165 1166 1167
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1168
		rcu_read_lock();
1169 1170
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1171
		rcu_read_unlock();
1172
	}
1173 1174
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1175 1176 1177
	return ret;
}

1178
#define mem_cgroup_from_counter(counter, member)	\
1179 1180
	container_of(counter, struct mem_cgroup, member)

1181
/**
1182
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1183
 * @memcg: the memory cgroup
1184
 *
1185
 * Returns the maximum amount of memory @mem can be charged with, in
1186
 * pages.
1187
 */
1188
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1189
{
1190 1191 1192
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1193

1194
	count = page_counter_read(&memcg->memory);
1195
	limit = READ_ONCE(memcg->memory.limit);
1196 1197 1198 1199 1200
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1201
		limit = READ_ONCE(memcg->memsw.limit);
1202 1203 1204 1205 1206
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1207 1208
}

1209
/*
Q
Qiang Huang 已提交
1210
 * A routine for checking "mem" is under move_account() or not.
1211
 *
Q
Qiang Huang 已提交
1212 1213 1214
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1215
 */
1216
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1217
{
1218 1219
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1220
	bool ret = false;
1221 1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1230

1231 1232
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1233 1234
unlock:
	spin_unlock(&mc.lock);
1235 1236 1237
	return ret;
}

1238
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1239 1240
{
	if (mc.moving_task && current != mc.moving_task) {
1241
		if (mem_cgroup_under_move(memcg)) {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1254
#define K(x) ((x) << (PAGE_SHIFT-10))
1255
/**
1256
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1257 1258 1259 1260 1261 1262 1263 1264
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1265
	/* oom_info_lock ensures that parallel ooms do not interleave */
1266
	static DEFINE_MUTEX(oom_info_lock);
1267 1268
	struct mem_cgroup *iter;
	unsigned int i;
1269

1270
	mutex_lock(&oom_info_lock);
1271 1272
	rcu_read_lock();

1273 1274 1275 1276 1277 1278 1279 1280
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1281
	pr_cont_cgroup_path(memcg->css.cgroup);
1282
	pr_cont("\n");
1283 1284 1285

	rcu_read_unlock();

1286 1287 1288 1289 1290 1291 1292 1293 1294
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1295 1296

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1297 1298
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1299 1300 1301 1302 1303
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
1304
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1305 1306 1307 1308 1309 1310 1311 1312 1313
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1314
	mutex_unlock(&oom_info_lock);
1315 1316
}

1317 1318 1319 1320
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1321
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1322 1323
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1324 1325
	struct mem_cgroup *iter;

1326
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1327
		num++;
1328 1329 1330
	return num;
}

D
David Rientjes 已提交
1331 1332 1333
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1334
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1335
{
1336
	unsigned long limit;
1337

1338
	limit = memcg->memory.limit;
1339
	if (mem_cgroup_swappiness(memcg)) {
1340
		unsigned long memsw_limit;
1341

1342 1343
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1344 1345
	}
	return limit;
D
David Rientjes 已提交
1346 1347
}

1348 1349
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1350
{
1351 1352 1353 1354 1355 1356
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1357 1358 1359 1360 1361 1362
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1363 1364
	mutex_lock(&oom_lock);

1365
	/*
1366 1367 1368
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1369
	 */
1370
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1371
		mark_oom_victim(current);
1372
		goto unlock;
1373 1374
	}

1375
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1376
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1377
	for_each_mem_cgroup_tree(iter, memcg) {
1378
		struct css_task_iter it;
1379 1380
		struct task_struct *task;

1381 1382
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1383
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1394
				css_task_iter_end(&it);
1395 1396 1397
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1398
				goto unlock;
1399 1400 1401 1402
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1415
		}
1416
		css_task_iter_end(&it);
1417 1418
	}

1419 1420
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1421 1422
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1423 1424 1425
	}
unlock:
	mutex_unlock(&oom_lock);
1426 1427
}

1428 1429
#if MAX_NUMNODES > 1

1430 1431
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1432
 * @memcg: the target memcg
1433 1434 1435 1436 1437 1438 1439
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1440
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1441 1442
		int nid, bool noswap)
{
1443
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1444 1445 1446
		return true;
	if (noswap || !total_swap_pages)
		return false;
1447
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1448 1449 1450 1451
		return true;
	return false;

}
1452 1453 1454 1455 1456 1457 1458

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1459
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1460 1461
{
	int nid;
1462 1463 1464 1465
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1466
	if (!atomic_read(&memcg->numainfo_events))
1467
		return;
1468
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1469 1470 1471
		return;

	/* make a nodemask where this memcg uses memory from */
1472
	memcg->scan_nodes = node_states[N_MEMORY];
1473

1474
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1475

1476 1477
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1478
	}
1479

1480 1481
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1496
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1497 1498 1499
{
	int node;

1500 1501
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1502

1503
	node = next_node(node, memcg->scan_nodes);
1504
	if (node == MAX_NUMNODES)
1505
		node = first_node(memcg->scan_nodes);
1506 1507 1508 1509 1510 1511 1512 1513 1514
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1515
	memcg->last_scanned_node = node;
1516 1517 1518
	return node;
}
#else
1519
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1520 1521 1522 1523 1524
{
	return 0;
}
#endif

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1540
	excess = soft_limit_excess(root_memcg);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1569
		if (!soft_limit_excess(root_memcg))
1570
			break;
1571
	}
1572 1573
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1574 1575
}

1576 1577 1578 1579 1580 1581
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1582 1583
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1584 1585 1586 1587
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1588
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1589
{
1590
	struct mem_cgroup *iter, *failed = NULL;
1591

1592 1593
	spin_lock(&memcg_oom_lock);

1594
	for_each_mem_cgroup_tree(iter, memcg) {
1595
		if (iter->oom_lock) {
1596 1597 1598 1599 1600
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1601 1602
			mem_cgroup_iter_break(memcg, iter);
			break;
1603 1604
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1605
	}
K
KAMEZAWA Hiroyuki 已提交
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1618
		}
1619 1620
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1621 1622 1623 1624

	spin_unlock(&memcg_oom_lock);

	return !failed;
1625
}
1626

1627
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1628
{
K
KAMEZAWA Hiroyuki 已提交
1629 1630
	struct mem_cgroup *iter;

1631
	spin_lock(&memcg_oom_lock);
1632
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1633
	for_each_mem_cgroup_tree(iter, memcg)
1634
		iter->oom_lock = false;
1635
	spin_unlock(&memcg_oom_lock);
1636 1637
}

1638
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1639 1640 1641
{
	struct mem_cgroup *iter;

1642
	spin_lock(&memcg_oom_lock);
1643
	for_each_mem_cgroup_tree(iter, memcg)
1644 1645
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1646 1647
}

1648
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1649 1650 1651
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1652 1653
	/*
	 * When a new child is created while the hierarchy is under oom,
1654
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1655
	 */
1656
	spin_lock(&memcg_oom_lock);
1657
	for_each_mem_cgroup_tree(iter, memcg)
1658 1659 1660
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1661 1662
}

K
KAMEZAWA Hiroyuki 已提交
1663 1664
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1665
struct oom_wait_info {
1666
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1667 1668 1669 1670 1671 1672
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1673 1674
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1675 1676 1677
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1678
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1679

1680 1681
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1682 1683 1684 1685
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1686
static void memcg_oom_recover(struct mem_cgroup *memcg)
1687
{
1688 1689 1690 1691 1692 1693 1694 1695 1696
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1697
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1698 1699
}

1700
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1701
{
T
Tejun Heo 已提交
1702
	if (!current->memcg_may_oom)
1703
		return;
K
KAMEZAWA Hiroyuki 已提交
1704
	/*
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1717
	 */
1718
	css_get(&memcg->css);
T
Tejun Heo 已提交
1719 1720 1721
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1722 1723 1724 1725
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1726
 * @handle: actually kill/wait or just clean up the OOM state
1727
 *
1728 1729
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1730
 *
1731
 * Memcg supports userspace OOM handling where failed allocations must
1732 1733 1734 1735
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1736
 * the end of the page fault to complete the OOM handling.
1737 1738
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1739
 * completed, %false otherwise.
1740
 */
1741
bool mem_cgroup_oom_synchronize(bool handle)
1742
{
T
Tejun Heo 已提交
1743
	struct mem_cgroup *memcg = current->memcg_in_oom;
1744
	struct oom_wait_info owait;
1745
	bool locked;
1746 1747 1748

	/* OOM is global, do not handle */
	if (!memcg)
1749
		return false;
1750

1751
	if (!handle || oom_killer_disabled)
1752
		goto cleanup;
1753 1754 1755 1756 1757 1758

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1759

1760
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1771 1772
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1773
	} else {
1774
		schedule();
1775 1776 1777 1778 1779
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1780 1781 1782 1783 1784 1785 1786 1787
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1788
cleanup:
T
Tejun Heo 已提交
1789
	current->memcg_in_oom = NULL;
1790
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1791
	return true;
1792 1793
}

1794 1795 1796
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1797
 *
1798 1799 1800
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1801
 *
1802
 *   memcg = mem_cgroup_begin_page_stat(page);
1803 1804
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1805
 *   mem_cgroup_end_page_stat(memcg);
1806
 */
1807
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1808 1809
{
	struct mem_cgroup *memcg;
1810
	unsigned long flags;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1824 1825 1826 1827
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1828
again:
1829
	memcg = page->mem_cgroup;
1830
	if (unlikely(!memcg))
1831 1832
		return NULL;

Q
Qiang Huang 已提交
1833
	if (atomic_read(&memcg->moving_account) <= 0)
1834
		return memcg;
1835

1836
	spin_lock_irqsave(&memcg->move_lock, flags);
1837
	if (memcg != page->mem_cgroup) {
1838
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1839 1840
		goto again;
	}
1841 1842 1843 1844 1845 1846 1847 1848

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1849 1850

	return memcg;
1851
}
1852
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1853

1854 1855 1856 1857
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1858
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1859
{
1860 1861 1862 1863 1864 1865 1866 1867
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1868

1869
	rcu_read_unlock();
1870
}
1871
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1872

1873 1874 1875 1876
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1877
#define CHARGE_BATCH	32U
1878 1879
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1880
	unsigned int nr_pages;
1881
	struct work_struct work;
1882
	unsigned long flags;
1883
#define FLUSHING_CACHED_CHARGE	0
1884 1885
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1886
static DEFINE_MUTEX(percpu_charge_mutex);
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1898
 */
1899
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1900 1901
{
	struct memcg_stock_pcp *stock;
1902
	bool ret = false;
1903

1904
	if (nr_pages > CHARGE_BATCH)
1905
		return ret;
1906

1907
	stock = &get_cpu_var(memcg_stock);
1908
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1909
		stock->nr_pages -= nr_pages;
1910 1911
		ret = true;
	}
1912 1913 1914 1915 1916
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1917
 * Returns stocks cached in percpu and reset cached information.
1918 1919 1920 1921 1922
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1923
	if (stock->nr_pages) {
1924
		page_counter_uncharge(&old->memory, stock->nr_pages);
1925
		if (do_swap_account)
1926
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1927
		css_put_many(&old->css, stock->nr_pages);
1928
		stock->nr_pages = 0;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1939
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1940
	drain_stock(stock);
1941
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1942 1943 1944
}

/*
1945
 * Cache charges(val) to local per_cpu area.
1946
 * This will be consumed by consume_stock() function, later.
1947
 */
1948
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1949 1950 1951
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1952
	if (stock->cached != memcg) { /* reset if necessary */
1953
		drain_stock(stock);
1954
		stock->cached = memcg;
1955
	}
1956
	stock->nr_pages += nr_pages;
1957 1958 1959 1960
	put_cpu_var(memcg_stock);
}

/*
1961
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1962
 * of the hierarchy under it.
1963
 */
1964
static void drain_all_stock(struct mem_cgroup *root_memcg)
1965
{
1966
	int cpu, curcpu;
1967

1968 1969 1970
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1971 1972
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1973
	curcpu = get_cpu();
1974 1975
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1976
		struct mem_cgroup *memcg;
1977

1978 1979
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1980
			continue;
1981
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1982
			continue;
1983 1984 1985 1986 1987 1988
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1989
	}
1990
	put_cpu();
A
Andrew Morton 已提交
1991
	put_online_cpus();
1992
	mutex_unlock(&percpu_charge_mutex);
1993 1994
}

1995
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1996 1997 1998 1999 2000 2001
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

2002
	if (action == CPU_ONLINE)
2003 2004
		return NOTIFY_OK;

2005
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2006
		return NOTIFY_OK;
2007

2008 2009 2010 2011 2012
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg, *pos;

	if (likely(!nr_pages))
		return;

	pos = memcg = get_mem_cgroup_from_mm(current->mm);

	do {
		if (page_counter_read(&pos->memory) <= pos->high)
			continue;
		mem_cgroup_events(pos, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
	} while ((pos = parent_mem_cgroup(pos)));

	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2038 2039
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2040
{
2041
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2042
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2043
	struct mem_cgroup *mem_over_limit;
2044
	struct page_counter *counter;
2045
	unsigned long nr_reclaimed;
2046 2047
	bool may_swap = true;
	bool drained = false;
2048

2049
	if (mem_cgroup_is_root(memcg))
2050
		return 0;
2051
retry:
2052
	if (consume_stock(memcg, nr_pages))
2053
		return 0;
2054

2055
	if (!do_swap_account ||
2056 2057
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2058
			goto done_restock;
2059
		if (do_swap_account)
2060 2061
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2062
	} else {
2063
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2064
		may_swap = false;
2065
	}
2066

2067 2068 2069 2070
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2081
		goto force;
2082 2083 2084 2085

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2086
	if (!gfpflags_allow_blocking(gfp_mask))
2087
		goto nomem;
2088

2089 2090
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2091 2092
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2093

2094
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2095
		goto retry;
2096

2097
	if (!drained) {
2098
		drain_all_stock(mem_over_limit);
2099 2100 2101 2102
		drained = true;
		goto retry;
	}

2103 2104
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2105 2106 2107 2108 2109 2110 2111 2112 2113
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2114
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2115 2116 2117 2118 2119 2120 2121 2122
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2123 2124 2125
	if (nr_retries--)
		goto retry;

2126
	if (gfp_mask & __GFP_NOFAIL)
2127
		goto force;
2128

2129
	if (fatal_signal_pending(current))
2130
		goto force;
2131

2132 2133
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2134 2135
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2136
nomem:
2137
	if (!(gfp_mask & __GFP_NOFAIL))
2138
		return -ENOMEM;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2151 2152

done_restock:
2153
	css_get_many(&memcg->css, batch);
2154 2155
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2156

2157
	/*
2158 2159
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2160
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2161 2162 2163 2164
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2165 2166
	 */
	do {
2167
		if (page_counter_read(&memcg->memory) > memcg->high) {
V
Vladimir Davydov 已提交
2168
			current->memcg_nr_pages_over_high += batch;
2169 2170 2171
			set_notify_resume(current);
			break;
		}
2172
	} while ((memcg = parent_mem_cgroup(memcg)));
2173 2174

	return 0;
2175
}
2176

2177
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2178
{
2179 2180 2181
	if (mem_cgroup_is_root(memcg))
		return;

2182
	page_counter_uncharge(&memcg->memory, nr_pages);
2183
	if (do_swap_account)
2184
		page_counter_uncharge(&memcg->memsw, nr_pages);
2185

2186
	css_put_many(&memcg->css, nr_pages);
2187 2188
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2220
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2221
			  bool lrucare)
2222
{
2223
	int isolated;
2224

2225
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2226 2227 2228 2229 2230

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2231 2232
	if (lrucare)
		lock_page_lru(page, &isolated);
2233

2234 2235
	/*
	 * Nobody should be changing or seriously looking at
2236
	 * page->mem_cgroup at this point:
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2248
	page->mem_cgroup = memcg;
2249

2250 2251
	if (lrucare)
		unlock_page_lru(page, isolated);
2252
}
2253

2254
#ifdef CONFIG_MEMCG_KMEM
2255
static int memcg_alloc_cache_id(void)
2256
{
2257 2258 2259
	int id, size;
	int err;

2260
	id = ida_simple_get(&memcg_cache_ida,
2261 2262 2263
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2264

2265
	if (id < memcg_nr_cache_ids)
2266 2267 2268 2269 2270 2271
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2272
	down_write(&memcg_cache_ids_sem);
2273 2274

	size = 2 * (id + 1);
2275 2276 2277 2278 2279
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2280
	err = memcg_update_all_caches(size);
2281 2282
	if (!err)
		err = memcg_update_all_list_lrus(size);
2283 2284 2285 2286 2287
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2288
	if (err) {
2289
		ida_simple_remove(&memcg_cache_ida, id);
2290 2291 2292 2293 2294 2295 2296
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2297
	ida_simple_remove(&memcg_cache_ida, id);
2298 2299
}

2300
struct memcg_kmem_cache_create_work {
2301 2302 2303 2304 2305
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2306
static void memcg_kmem_cache_create_func(struct work_struct *w)
2307
{
2308 2309
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2310 2311
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2312

2313
	memcg_create_kmem_cache(memcg, cachep);
2314

2315
	css_put(&memcg->css);
2316 2317 2318 2319 2320 2321
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2322 2323
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2324
{
2325
	struct memcg_kmem_cache_create_work *cw;
2326

2327
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2328
	if (!cw)
2329
		return;
2330 2331

	css_get(&memcg->css);
2332 2333 2334

	cw->memcg = memcg;
	cw->cachep = cachep;
2335
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2336 2337 2338 2339

	schedule_work(&cw->work);
}

2340 2341
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2342 2343 2344 2345
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2346
	 * in __memcg_schedule_kmem_cache_create will recurse.
2347 2348 2349 2350 2351 2352 2353
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2354
	current->memcg_kmem_skip_account = 1;
2355
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2356
	current->memcg_kmem_skip_account = 0;
2357
}
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2372
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2373 2374
{
	struct mem_cgroup *memcg;
2375
	struct kmem_cache *memcg_cachep;
2376
	int kmemcg_id;
2377

2378
	VM_BUG_ON(!is_root_cache(cachep));
2379

V
Vladimir Davydov 已提交
2380 2381 2382 2383 2384 2385
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2386
	if (current->memcg_kmem_skip_account)
2387 2388
		return cachep;

2389
	memcg = get_mem_cgroup_from_mm(current->mm);
2390
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2391
	if (kmemcg_id < 0)
2392
		goto out;
2393

2394
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2395 2396
	if (likely(memcg_cachep))
		return memcg_cachep;
2397 2398 2399 2400 2401 2402 2403 2404 2405

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2406 2407 2408
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2409
	 */
2410
	memcg_schedule_kmem_cache_create(memcg, cachep);
2411
out:
2412
	css_put(&memcg->css);
2413
	return cachep;
2414 2415
}

2416 2417 2418
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2419
		css_put(&cachep->memcg_params.memcg->css);
2420 2421
}

2422 2423
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2424
{
2425 2426
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2427 2428
	int ret;

2429
	if (!memcg_kmem_is_active(memcg))
2430
		return 0;
2431

2432 2433
	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
		return -ENOMEM;
2434

2435 2436 2437 2438
	ret = try_charge(memcg, gfp, nr_pages);
	if (ret) {
		page_counter_uncharge(&memcg->kmem, nr_pages);
		return ret;
2439 2440
	}

2441
	page->mem_cgroup = memcg;
2442

2443
	return 0;
2444 2445
}

2446
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2447
{
2448 2449
	struct mem_cgroup *memcg;
	int ret;
2450

2451 2452
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2453
	css_put(&memcg->css);
2454
	return ret;
2455 2456
}

2457
void __memcg_kmem_uncharge(struct page *page, int order)
2458
{
2459
	struct mem_cgroup *memcg = page->mem_cgroup;
2460
	unsigned int nr_pages = 1 << order;
2461 2462 2463 2464

	if (!memcg)
		return;

2465
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2466

2467 2468 2469 2470
	page_counter_uncharge(&memcg->kmem, nr_pages);
	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_uncharge(&memcg->memsw, nr_pages);
2471

2472
	page->mem_cgroup = NULL;
2473
	css_put_many(&memcg->css, nr_pages);
2474
}
2475 2476
#endif /* CONFIG_MEMCG_KMEM */

2477 2478 2479 2480
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2481 2482 2483
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2484
 */
2485
void mem_cgroup_split_huge_fixup(struct page *head)
2486
{
2487
	int i;
2488

2489 2490
	if (mem_cgroup_disabled())
		return;
2491

2492
	for (i = 1; i < HPAGE_PMD_NR; i++)
2493
		head[i].mem_cgroup = head->mem_cgroup;
2494

2495
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2496
		       HPAGE_PMD_NR);
2497
}
2498
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2499

A
Andrew Morton 已提交
2500
#ifdef CONFIG_MEMCG_SWAP
2501 2502
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2503
{
2504 2505
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2506
}
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2519
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2520 2521 2522
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2523
				struct mem_cgroup *from, struct mem_cgroup *to)
2524 2525 2526
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2527 2528
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2529 2530 2531

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2532
		mem_cgroup_swap_statistics(to, true);
2533 2534 2535 2536 2537 2538
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2539
				struct mem_cgroup *from, struct mem_cgroup *to)
2540 2541 2542
{
	return -EINVAL;
}
2543
#endif
K
KAMEZAWA Hiroyuki 已提交
2544

2545
static DEFINE_MUTEX(memcg_limit_mutex);
2546

2547
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2548
				   unsigned long limit)
2549
{
2550 2551 2552
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2553
	int retry_count;
2554
	int ret;
2555 2556 2557 2558 2559 2560

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2561 2562
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2563

2564
	oldusage = page_counter_read(&memcg->memory);
2565

2566
	do {
2567 2568 2569 2570
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2571 2572 2573 2574

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2575
			ret = -EINVAL;
2576 2577
			break;
		}
2578 2579 2580 2581
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2582 2583 2584 2585

		if (!ret)
			break;

2586 2587
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2588
		curusage = page_counter_read(&memcg->memory);
2589
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2590
		if (curusage >= oldusage)
2591 2592 2593
			retry_count--;
		else
			oldusage = curusage;
2594 2595
	} while (retry_count);

2596 2597
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2598

2599 2600 2601
	return ret;
}

L
Li Zefan 已提交
2602
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2603
					 unsigned long limit)
2604
{
2605 2606 2607
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2608
	int retry_count;
2609
	int ret;
2610

2611
	/* see mem_cgroup_resize_res_limit */
2612 2613 2614 2615 2616 2617
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2618 2619 2620 2621
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2622 2623 2624 2625

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2626 2627 2628
			ret = -EINVAL;
			break;
		}
2629 2630 2631 2632
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2633 2634 2635 2636

		if (!ret)
			break;

2637 2638
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2639
		curusage = page_counter_read(&memcg->memsw);
2640
		/* Usage is reduced ? */
2641
		if (curusage >= oldusage)
2642
			retry_count--;
2643 2644
		else
			oldusage = curusage;
2645 2646
	} while (retry_count);

2647 2648
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2649

2650 2651 2652
	return ret;
}

2653 2654 2655 2656 2657 2658 2659 2660 2661
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2662
	unsigned long excess;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2687
		spin_lock_irq(&mctz->lock);
2688
		__mem_cgroup_remove_exceeded(mz, mctz);
2689 2690 2691 2692 2693 2694

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2695 2696 2697
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2698
		excess = soft_limit_excess(mz->memcg);
2699 2700 2701 2702 2703 2704 2705 2706 2707
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2708
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2709
		spin_unlock_irq(&mctz->lock);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2727 2728 2729 2730 2731 2732
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2733 2734
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2735 2736
	bool ret;

2737
	/*
2738 2739 2740 2741
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2742
	 */
2743 2744 2745 2746 2747 2748
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2749 2750
}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2761 2762
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2763
	/* try to free all pages in this cgroup */
2764
	while (nr_retries && page_counter_read(&memcg->memory)) {
2765
		int progress;
2766

2767 2768 2769
		if (signal_pending(current))
			return -EINTR;

2770 2771
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2772
		if (!progress) {
2773
			nr_retries--;
2774
			/* maybe some writeback is necessary */
2775
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2776
		}
2777 2778

	}
2779 2780

	return 0;
2781 2782
}

2783 2784 2785
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2786
{
2787
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2788

2789 2790
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2791
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2792 2793
}

2794 2795
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2796
{
2797
	return mem_cgroup_from_css(css)->use_hierarchy;
2798 2799
}

2800 2801
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2802 2803
{
	int retval = 0;
2804
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2805
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2806

2807
	mutex_lock(&memcg_create_mutex);
2808 2809 2810 2811

	if (memcg->use_hierarchy == val)
		goto out;

2812
	/*
2813
	 * If parent's use_hierarchy is set, we can't make any modifications
2814 2815 2816 2817 2818 2819
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2820
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2821
				(val == 1 || val == 0)) {
2822
		if (!memcg_has_children(memcg))
2823
			memcg->use_hierarchy = val;
2824 2825 2826 2827
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2828 2829

out:
2830
	mutex_unlock(&memcg_create_mutex);
2831 2832 2833 2834

	return retval;
}

2835 2836
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2837 2838
{
	struct mem_cgroup *iter;
2839
	unsigned long val = 0;
2840 2841 2842 2843 2844 2845 2846

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2847
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2848
{
2849
	unsigned long val;
2850

2851 2852 2853 2854 2855 2856
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2857
		if (!swap)
2858
			val = page_counter_read(&memcg->memory);
2859
		else
2860
			val = page_counter_read(&memcg->memsw);
2861
	}
2862
	return val;
2863 2864
}

2865 2866 2867 2868 2869 2870 2871
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2872

2873
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2874
			       struct cftype *cft)
B
Balbir Singh 已提交
2875
{
2876
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2877
	struct page_counter *counter;
2878

2879
	switch (MEMFILE_TYPE(cft->private)) {
2880
	case _MEM:
2881 2882
		counter = &memcg->memory;
		break;
2883
	case _MEMSWAP:
2884 2885
		counter = &memcg->memsw;
		break;
2886
	case _KMEM:
2887
		counter = &memcg->kmem;
2888
		break;
2889 2890 2891
	default:
		BUG();
	}
2892 2893 2894 2895

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2896
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2897
		if (counter == &memcg->memsw)
2898
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2911
}
2912 2913

#ifdef CONFIG_MEMCG_KMEM
2914 2915
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2916 2917 2918 2919
{
	int err = 0;
	int memcg_id;

2920
	BUG_ON(memcg->kmemcg_id >= 0);
2921
	BUG_ON(memcg->kmem_acct_activated);
2922
	BUG_ON(memcg->kmem_acct_active);
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2936
	mutex_lock(&memcg_create_mutex);
2937
	if (cgroup_is_populated(memcg->css.cgroup) ||
2938
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2939 2940 2941 2942
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2943

2944
	memcg_id = memcg_alloc_cache_id();
2945 2946 2947 2948 2949 2950
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2951 2952
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2953
	 */
2954
	err = page_counter_limit(&memcg->kmem, nr_pages);
2955 2956 2957 2958
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2959 2960
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2961 2962 2963
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2964
	memcg->kmemcg_id = memcg_id;
2965
	memcg->kmem_acct_activated = true;
2966
	memcg->kmem_acct_active = true;
2967
out:
2968 2969 2970 2971
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2972
				   unsigned long limit)
2973 2974 2975
{
	int ret;

2976
	mutex_lock(&memcg_limit_mutex);
2977
	if (!memcg_kmem_is_active(memcg))
2978
		ret = memcg_activate_kmem(memcg, limit);
2979
	else
2980 2981
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2982 2983 2984
	return ret;
}

2985
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2986
{
2987
	int ret = 0;
2988
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2989

2990 2991
	if (!parent)
		return 0;
2992

2993
	mutex_lock(&memcg_limit_mutex);
2994
	/*
2995 2996
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2997
	 */
2998
	if (memcg_kmem_is_active(parent))
2999 3000
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3001
	return ret;
3002
}
3003 3004
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3005
				   unsigned long limit)
3006 3007 3008
{
	return -EINVAL;
}
3009
#endif /* CONFIG_MEMCG_KMEM */
3010

3011 3012 3013 3014
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3015 3016
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3017
{
3018
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3019
	unsigned long nr_pages;
3020 3021
	int ret;

3022
	buf = strstrip(buf);
3023
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3024 3025
	if (ret)
		return ret;
3026

3027
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3028
	case RES_LIMIT:
3029 3030 3031 3032
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3033 3034 3035
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3036
			break;
3037 3038
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3039
			break;
3040 3041 3042 3043
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3044
		break;
3045 3046 3047
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3048 3049
		break;
	}
3050
	return ret ?: nbytes;
B
Balbir Singh 已提交
3051 3052
}

3053 3054
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3055
{
3056
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3057
	struct page_counter *counter;
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3072

3073
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3074
	case RES_MAX_USAGE:
3075
		page_counter_reset_watermark(counter);
3076 3077
		break;
	case RES_FAILCNT:
3078
		counter->failcnt = 0;
3079
		break;
3080 3081
	default:
		BUG();
3082
	}
3083

3084
	return nbytes;
3085 3086
}

3087
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3088 3089
					struct cftype *cft)
{
3090
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3091 3092
}

3093
#ifdef CONFIG_MMU
3094
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3095 3096
					struct cftype *cft, u64 val)
{
3097
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3098

3099
	if (val & ~MOVE_MASK)
3100
		return -EINVAL;
3101

3102
	/*
3103 3104 3105 3106
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3107
	 */
3108
	memcg->move_charge_at_immigrate = val;
3109 3110
	return 0;
}
3111
#else
3112
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3113 3114 3115 3116 3117
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3118

3119
#ifdef CONFIG_NUMA
3120
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3121
{
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3134
	int nid;
3135
	unsigned long nr;
3136
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3137

3138 3139 3140 3141 3142 3143 3144 3145 3146
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3147 3148
	}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3164 3165 3166 3167 3168 3169
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3170
static int memcg_stat_show(struct seq_file *m, void *v)
3171
{
3172
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3173
	unsigned long memory, memsw;
3174 3175
	struct mem_cgroup *mi;
	unsigned int i;
3176

3177 3178 3179 3180
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3181 3182
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3183
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3184
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3185
			continue;
3186
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3187
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3188
	}
L
Lee Schermerhorn 已提交
3189

3190 3191 3192 3193 3194 3195 3196 3197
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3198
	/* Hierarchical information */
3199 3200 3201 3202
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3203
	}
3204 3205 3206 3207 3208
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3209

3210
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3211
		unsigned long long val = 0;
3212

3213
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3214
			continue;
3215 3216
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3217
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3235
	}
K
KAMEZAWA Hiroyuki 已提交
3236

K
KOSAKI Motohiro 已提交
3237 3238 3239 3240
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3241
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3242 3243 3244 3245 3246
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3247
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3248
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3249

3250 3251 3252 3253
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3254
			}
3255 3256 3257 3258
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3259 3260 3261
	}
#endif

3262 3263 3264
	return 0;
}

3265 3266
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3267
{
3268
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3269

3270
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3271 3272
}

3273 3274
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3275
{
3276
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3277

3278
	if (val > 100)
K
KOSAKI Motohiro 已提交
3279 3280
		return -EINVAL;

3281
	if (css->parent)
3282 3283 3284
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3285

K
KOSAKI Motohiro 已提交
3286 3287 3288
	return 0;
}

3289 3290 3291
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3292
	unsigned long usage;
3293 3294 3295 3296
	int i;

	rcu_read_lock();
	if (!swap)
3297
		t = rcu_dereference(memcg->thresholds.primary);
3298
	else
3299
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3300 3301 3302 3303

	if (!t)
		goto unlock;

3304
	usage = mem_cgroup_usage(memcg, swap);
3305 3306

	/*
3307
	 * current_threshold points to threshold just below or equal to usage.
3308 3309 3310
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3311
	i = t->current_threshold;
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3335
	t->current_threshold = i - 1;
3336 3337 3338 3339 3340 3341
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3342 3343 3344 3345 3346 3347 3348
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3349 3350 3351 3352 3353 3354 3355
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3356 3357 3358 3359 3360 3361 3362
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3363 3364
}

3365
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3366 3367 3368
{
	struct mem_cgroup_eventfd_list *ev;

3369 3370
	spin_lock(&memcg_oom_lock);

3371
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3372
		eventfd_signal(ev->eventfd, 1);
3373 3374

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3375 3376 3377
	return 0;
}

3378
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3379
{
K
KAMEZAWA Hiroyuki 已提交
3380 3381
	struct mem_cgroup *iter;

3382
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3383
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3384 3385
}

3386
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3387
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3388
{
3389 3390
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3391 3392
	unsigned long threshold;
	unsigned long usage;
3393
	int i, size, ret;
3394

3395
	ret = page_counter_memparse(args, "-1", &threshold);
3396 3397 3398 3399
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3400

3401
	if (type == _MEM) {
3402
		thresholds = &memcg->thresholds;
3403
		usage = mem_cgroup_usage(memcg, false);
3404
	} else if (type == _MEMSWAP) {
3405
		thresholds = &memcg->memsw_thresholds;
3406
		usage = mem_cgroup_usage(memcg, true);
3407
	} else
3408 3409 3410
		BUG();

	/* Check if a threshold crossed before adding a new one */
3411
	if (thresholds->primary)
3412 3413
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3414
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3415 3416

	/* Allocate memory for new array of thresholds */
3417
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3418
			GFP_KERNEL);
3419
	if (!new) {
3420 3421 3422
		ret = -ENOMEM;
		goto unlock;
	}
3423
	new->size = size;
3424 3425

	/* Copy thresholds (if any) to new array */
3426 3427
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3428
				sizeof(struct mem_cgroup_threshold));
3429 3430
	}

3431
	/* Add new threshold */
3432 3433
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3434 3435

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3436
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3437 3438 3439
			compare_thresholds, NULL);

	/* Find current threshold */
3440
	new->current_threshold = -1;
3441
	for (i = 0; i < size; i++) {
3442
		if (new->entries[i].threshold <= usage) {
3443
			/*
3444 3445
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3446 3447
			 * it here.
			 */
3448
			++new->current_threshold;
3449 3450
		} else
			break;
3451 3452
	}

3453 3454 3455 3456 3457
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3458

3459
	/* To be sure that nobody uses thresholds */
3460 3461 3462 3463 3464 3465 3466 3467
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3468
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3469 3470
	struct eventfd_ctx *eventfd, const char *args)
{
3471
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3472 3473
}

3474
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3475 3476
	struct eventfd_ctx *eventfd, const char *args)
{
3477
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3478 3479
}

3480
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3481
	struct eventfd_ctx *eventfd, enum res_type type)
3482
{
3483 3484
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3485
	unsigned long usage;
3486
	int i, j, size;
3487 3488

	mutex_lock(&memcg->thresholds_lock);
3489 3490

	if (type == _MEM) {
3491
		thresholds = &memcg->thresholds;
3492
		usage = mem_cgroup_usage(memcg, false);
3493
	} else if (type == _MEMSWAP) {
3494
		thresholds = &memcg->memsw_thresholds;
3495
		usage = mem_cgroup_usage(memcg, true);
3496
	} else
3497 3498
		BUG();

3499 3500 3501
	if (!thresholds->primary)
		goto unlock;

3502 3503 3504 3505
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3506 3507 3508
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3509 3510 3511
			size++;
	}

3512
	new = thresholds->spare;
3513

3514 3515
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3516 3517
		kfree(new);
		new = NULL;
3518
		goto swap_buffers;
3519 3520
	}

3521
	new->size = size;
3522 3523

	/* Copy thresholds and find current threshold */
3524 3525 3526
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3527 3528
			continue;

3529
		new->entries[j] = thresholds->primary->entries[i];
3530
		if (new->entries[j].threshold <= usage) {
3531
			/*
3532
			 * new->current_threshold will not be used
3533 3534 3535
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3536
			++new->current_threshold;
3537 3538 3539 3540
		}
		j++;
	}

3541
swap_buffers:
3542 3543
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3544 3545 3546 3547 3548 3549
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3550
	rcu_assign_pointer(thresholds->primary, new);
3551

3552
	/* To be sure that nobody uses thresholds */
3553
	synchronize_rcu();
3554
unlock:
3555 3556
	mutex_unlock(&memcg->thresholds_lock);
}
3557

3558
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3559 3560
	struct eventfd_ctx *eventfd)
{
3561
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3562 3563
}

3564
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3565 3566
	struct eventfd_ctx *eventfd)
{
3567
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3568 3569
}

3570
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3571
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3572 3573 3574 3575 3576 3577 3578
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3579
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3580 3581 3582 3583 3584

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3585
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3586
		eventfd_signal(eventfd, 1);
3587
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3588 3589 3590 3591

	return 0;
}

3592
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3593
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3594 3595 3596
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3597
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3598

3599
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3600 3601 3602 3603 3604 3605
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3606
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3607 3608
}

3609
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3610
{
3611
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3612

3613
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3614
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3615 3616 3617
	return 0;
}

3618
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3619 3620
	struct cftype *cft, u64 val)
{
3621
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3622 3623

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3624
	if (!css->parent || !((val == 0) || (val == 1)))
3625 3626
		return -EINVAL;

3627
	memcg->oom_kill_disable = val;
3628
	if (!val)
3629
		memcg_oom_recover(memcg);
3630

3631 3632 3633
	return 0;
}

A
Andrew Morton 已提交
3634
#ifdef CONFIG_MEMCG_KMEM
3635
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3636
{
3637 3638 3639 3640 3641
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3642

3643
	return tcp_init_cgroup(memcg, ss);
3644
}
3645

3646 3647
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3648 3649 3650 3651
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3690 3691
}

3692
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3693
{
3694 3695 3696 3697 3698
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3699
	tcp_destroy_cgroup(memcg);
3700
}
3701
#else
3702
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3703 3704 3705
{
	return 0;
}
G
Glauber Costa 已提交
3706

3707 3708 3709 3710
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3711 3712 3713
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3714 3715
#endif

3716 3717 3718 3719 3720 3721 3722
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3733 3734 3735 3736 3737
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3748 3749 3750
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3751 3752
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3753 3754 3755
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3756 3757 3758
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3759
 *
3760 3761 3762 3763 3764
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3765
 */
3766 3767 3768
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3769 3770 3771 3772 3773 3774 3775 3776
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3777 3778 3779
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3780 3781 3782 3783 3784

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3785
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3786 3787 3788 3789
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3801 3802 3803 3804
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3805 3806
#endif	/* CONFIG_CGROUP_WRITEBACK */

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3820 3821 3822 3823 3824
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3825
static void memcg_event_remove(struct work_struct *work)
3826
{
3827 3828
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3829
	struct mem_cgroup *memcg = event->memcg;
3830 3831 3832

	remove_wait_queue(event->wqh, &event->wait);

3833
	event->unregister_event(memcg, event->eventfd);
3834 3835 3836 3837 3838 3839

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3840
	css_put(&memcg->css);
3841 3842 3843 3844 3845 3846 3847
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3848 3849
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3850
{
3851 3852
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3853
	struct mem_cgroup *memcg = event->memcg;
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3866
		spin_lock(&memcg->event_list_lock);
3867 3868 3869 3870 3871 3872 3873 3874
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3875
		spin_unlock(&memcg->event_list_lock);
3876 3877 3878 3879 3880
	}

	return 0;
}

3881
static void memcg_event_ptable_queue_proc(struct file *file,
3882 3883
		wait_queue_head_t *wqh, poll_table *pt)
{
3884 3885
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3886 3887 3888 3889 3890 3891

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3892 3893
 * DO NOT USE IN NEW FILES.
 *
3894 3895 3896 3897 3898
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3899 3900
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3901
{
3902
	struct cgroup_subsys_state *css = of_css(of);
3903
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904
	struct mem_cgroup_event *event;
3905 3906 3907 3908
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3909
	const char *name;
3910 3911 3912
	char *endp;
	int ret;

3913 3914 3915
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3916 3917
	if (*endp != ' ')
		return -EINVAL;
3918
	buf = endp + 1;
3919

3920
	cfd = simple_strtoul(buf, &endp, 10);
3921 3922
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3923
	buf = endp + 1;
3924 3925 3926 3927 3928

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3929
	event->memcg = memcg;
3930
	INIT_LIST_HEAD(&event->list);
3931 3932 3933
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3959 3960 3961 3962 3963
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3964 3965
	 *
	 * DO NOT ADD NEW FILES.
3966
	 */
A
Al Viro 已提交
3967
	name = cfile.file->f_path.dentry->d_name.name;
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3979 3980
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3981 3982 3983 3984 3985
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3986
	/*
3987 3988 3989
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3990
	 */
A
Al Viro 已提交
3991
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3992
					       &memory_cgrp_subsys);
3993
	ret = -EINVAL;
3994
	if (IS_ERR(cfile_css))
3995
		goto out_put_cfile;
3996 3997
	if (cfile_css != css) {
		css_put(cfile_css);
3998
		goto out_put_cfile;
3999
	}
4000

4001
	ret = event->register_event(memcg, event->eventfd, buf);
4002 4003 4004 4005 4006
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4007 4008 4009
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4010 4011 4012 4013

	fdput(cfile);
	fdput(efile);

4014
	return nbytes;
4015 4016

out_put_css:
4017
	css_put(css);
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4030
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4031
	{
4032
		.name = "usage_in_bytes",
4033
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4034
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4035
	},
4036 4037
	{
		.name = "max_usage_in_bytes",
4038
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4039
		.write = mem_cgroup_reset,
4040
		.read_u64 = mem_cgroup_read_u64,
4041
	},
B
Balbir Singh 已提交
4042
	{
4043
		.name = "limit_in_bytes",
4044
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4045
		.write = mem_cgroup_write,
4046
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4047
	},
4048 4049 4050
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4051
		.write = mem_cgroup_write,
4052
		.read_u64 = mem_cgroup_read_u64,
4053
	},
B
Balbir Singh 已提交
4054 4055
	{
		.name = "failcnt",
4056
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4057
		.write = mem_cgroup_reset,
4058
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4059
	},
4060 4061
	{
		.name = "stat",
4062
		.seq_show = memcg_stat_show,
4063
	},
4064 4065
	{
		.name = "force_empty",
4066
		.write = mem_cgroup_force_empty_write,
4067
	},
4068 4069 4070 4071 4072
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4073
	{
4074
		.name = "cgroup.event_control",		/* XXX: for compat */
4075
		.write = memcg_write_event_control,
4076
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4077
	},
K
KOSAKI Motohiro 已提交
4078 4079 4080 4081 4082
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4083 4084 4085 4086 4087
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4088 4089
	{
		.name = "oom_control",
4090
		.seq_show = mem_cgroup_oom_control_read,
4091
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4092 4093
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4094 4095 4096
	{
		.name = "pressure_level",
	},
4097 4098 4099
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4100
		.seq_show = memcg_numa_stat_show,
4101 4102
	},
#endif
4103 4104 4105 4106
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4107
		.write = mem_cgroup_write,
4108
		.read_u64 = mem_cgroup_read_u64,
4109 4110 4111 4112
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4113
		.read_u64 = mem_cgroup_read_u64,
4114 4115 4116 4117
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4118
		.write = mem_cgroup_reset,
4119
		.read_u64 = mem_cgroup_read_u64,
4120 4121 4122 4123
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4124
		.write = mem_cgroup_reset,
4125
		.read_u64 = mem_cgroup_read_u64,
4126
	},
4127 4128 4129
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4130 4131 4132 4133
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4134 4135
	},
#endif
4136
#endif
4137
	{ },	/* terminate */
4138
};
4139

4140
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4141 4142
{
	struct mem_cgroup_per_node *pn;
4143
	struct mem_cgroup_per_zone *mz;
4144
	int zone, tmp = node;
4145 4146 4147 4148 4149 4150 4151 4152
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4153 4154
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4155
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4156 4157
	if (!pn)
		return 1;
4158 4159 4160

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4161
		lruvec_init(&mz->lruvec);
4162 4163
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4164
		mz->memcg = memcg;
4165
	}
4166
	memcg->nodeinfo[node] = pn;
4167 4168 4169
	return 0;
}

4170
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4171
{
4172
	kfree(memcg->nodeinfo[node]);
4173 4174
}

4175 4176
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4177
	struct mem_cgroup *memcg;
4178
	size_t size;
4179

4180 4181
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4182

4183
	memcg = kzalloc(size, GFP_KERNEL);
4184
	if (!memcg)
4185 4186
		return NULL;

4187 4188
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4189
		goto out_free;
T
Tejun Heo 已提交
4190 4191 4192 4193

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4194
	return memcg;
4195

T
Tejun Heo 已提交
4196 4197
out_free_stat:
	free_percpu(memcg->stat);
4198
out_free:
4199
	kfree(memcg);
4200
	return NULL;
4201 4202
}

4203
/*
4204 4205 4206 4207 4208 4209 4210 4211
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4212
 */
4213 4214

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4215
{
4216
	int node;
4217

4218
	mem_cgroup_remove_from_trees(memcg);
4219 4220 4221 4222 4223

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4224
	memcg_wb_domain_exit(memcg);
4225
	kfree(memcg);
4226
}
4227

4228 4229 4230
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4231
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4232
{
4233
	if (!memcg->memory.parent)
4234
		return NULL;
4235
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4236
}
G
Glauber Costa 已提交
4237
EXPORT_SYMBOL(parent_mem_cgroup);
4238

L
Li Zefan 已提交
4239
static struct cgroup_subsys_state * __ref
4240
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4241
{
4242
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4243
	long error = -ENOMEM;
4244
	int node;
B
Balbir Singh 已提交
4245

4246 4247
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4248
		return ERR_PTR(error);
4249

B
Bob Liu 已提交
4250
	for_each_node(node)
4251
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4252
			goto free_out;
4253

4254
	/* root ? */
4255
	if (parent_css == NULL) {
4256
		root_mem_cgroup = memcg;
4257
		page_counter_init(&memcg->memory, NULL);
4258
		memcg->high = PAGE_COUNTER_MAX;
4259
		memcg->soft_limit = PAGE_COUNTER_MAX;
4260 4261
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4262
	}
4263

4264 4265 4266 4267 4268
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4269
	vmpressure_init(&memcg->vmpressure);
4270 4271
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4272 4273 4274
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4275 4276 4277
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4278 4279 4280 4281 4282 4283 4284 4285
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4286
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4287
{
4288
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4289
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4290
	int ret;
4291

4292
	if (css->id > MEM_CGROUP_ID_MAX)
4293 4294
		return -ENOSPC;

T
Tejun Heo 已提交
4295
	if (!parent)
4296 4297
		return 0;

4298
	mutex_lock(&memcg_create_mutex);
4299 4300 4301 4302 4303 4304

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4305
		page_counter_init(&memcg->memory, &parent->memory);
4306
		memcg->high = PAGE_COUNTER_MAX;
4307
		memcg->soft_limit = PAGE_COUNTER_MAX;
4308 4309
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4310

4311
		/*
4312 4313
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4314
		 */
4315
	} else {
4316
		page_counter_init(&memcg->memory, NULL);
4317
		memcg->high = PAGE_COUNTER_MAX;
4318
		memcg->soft_limit = PAGE_COUNTER_MAX;
4319 4320
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4321 4322 4323 4324 4325
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4326
		if (parent != root_mem_cgroup)
4327
			memory_cgrp_subsys.broken_hierarchy = true;
4328
	}
4329
	mutex_unlock(&memcg_create_mutex);
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4343 4344
}

4345
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4346
{
4347
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4348
	struct mem_cgroup_event *event, *tmp;
4349 4350 4351 4352 4353 4354

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4355 4356
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4357 4358 4359
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4360
	spin_unlock(&memcg->event_list_lock);
4361

4362
	vmpressure_cleanup(&memcg->vmpressure);
4363 4364

	memcg_deactivate_kmem(memcg);
4365 4366

	wb_memcg_offline(memcg);
4367 4368
}

4369 4370 4371 4372 4373 4374 4375
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4376
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4377
{
4378
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4379

4380
	memcg_destroy_kmem(memcg);
4381
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4382 4383
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4401 4402 4403
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4404 4405
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4406
	memcg->soft_limit = PAGE_COUNTER_MAX;
4407
	memcg_wb_domain_size_changed(memcg);
4408 4409
}

4410
#ifdef CONFIG_MMU
4411
/* Handlers for move charge at task migration. */
4412
static int mem_cgroup_do_precharge(unsigned long count)
4413
{
4414
	int ret;
4415

4416 4417
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4418
	if (!ret) {
4419 4420 4421
		mc.precharge += count;
		return ret;
	}
4422 4423

	/* Try charges one by one with reclaim */
4424
	while (count--) {
4425
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4426 4427
		if (ret)
			return ret;
4428
		mc.precharge++;
4429
		cond_resched();
4430
	}
4431
	return 0;
4432 4433 4434
}

/**
4435
 * get_mctgt_type - get target type of moving charge
4436 4437 4438
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4439
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4440 4441 4442 4443 4444 4445
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4446 4447 4448
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4449 4450 4451 4452 4453
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4454
	swp_entry_t	ent;
4455 4456 4457
};

enum mc_target_type {
4458
	MC_TARGET_NONE = 0,
4459
	MC_TARGET_PAGE,
4460
	MC_TARGET_SWAP,
4461 4462
};

D
Daisuke Nishimura 已提交
4463 4464
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4465
{
D
Daisuke Nishimura 已提交
4466
	struct page *page = vm_normal_page(vma, addr, ptent);
4467

D
Daisuke Nishimura 已提交
4468 4469 4470
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4471
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4472
			return NULL;
4473 4474 4475 4476
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4477 4478 4479 4480 4481 4482
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4483
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4484 4485 4486 4487 4488 4489
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4490
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4491
		return NULL;
4492 4493 4494 4495
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4496
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4497 4498 4499 4500 4501
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4502 4503 4504 4505 4506 4507 4508
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4509

4510 4511 4512 4513 4514 4515 4516 4517 4518
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4519
	if (!(mc.flags & MOVE_FILE))
4520 4521 4522
		return NULL;

	mapping = vma->vm_file->f_mapping;
4523
	pgoff = linear_page_index(vma, addr);
4524 4525

	/* page is moved even if it's not RSS of this task(page-faulted). */
4526 4527
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4540
#endif
4541 4542 4543
	return page;
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4565
	bool anon;
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
4580 4581
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4582 4583 4584 4585 4586 4587 4588 4589
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4590 4591
	anon = PageAnon(page);

4592 4593
	spin_lock_irqsave(&from->move_lock, flags);

4594
	if (!anon && page_mapped(page)) {
4595 4596 4597 4598 4599 4600
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4648
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4649 4650 4651
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4652
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4653 4654 4655 4656 4657 4658
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4659
	else if (pte_none(ptent))
4660
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4661 4662

	if (!page && !ent.val)
4663
		return ret;
4664 4665
	if (page) {
		/*
4666
		 * Do only loose check w/o serialization.
4667
		 * mem_cgroup_move_account() checks the page is valid or
4668
		 * not under LRU exclusion.
4669
		 */
4670
		if (page->mem_cgroup == mc.from) {
4671 4672 4673 4674 4675 4676 4677
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4678 4679
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4680
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4681 4682 4683
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4684 4685 4686 4687
	}
	return ret;
}

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4701
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4702
	if (!(mc.flags & MOVE_ANON))
4703
		return ret;
4704
	if (page->mem_cgroup == mc.from) {
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4721 4722 4723 4724
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4725
	struct vm_area_struct *vma = walk->vma;
4726 4727 4728
	pte_t *pte;
	spinlock_t *ptl;

4729
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4730 4731
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4732
		spin_unlock(ptl);
4733
		return 0;
4734
	}
4735

4736 4737
	if (pmd_trans_unstable(pmd))
		return 0;
4738 4739
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4740
		if (get_mctgt_type(vma, addr, *pte, NULL))
4741 4742 4743 4744
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4745 4746 4747
	return 0;
}

4748 4749 4750 4751
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4752 4753 4754 4755
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4756
	down_read(&mm->mmap_sem);
4757
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4758
	up_read(&mm->mmap_sem);
4759 4760 4761 4762 4763 4764 4765 4766 4767

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4768 4769 4770 4771 4772
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4773 4774
}

4775 4776
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4777
{
4778 4779 4780
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4781
	/* we must uncharge all the leftover precharges from mc.to */
4782
	if (mc.precharge) {
4783
		cancel_charge(mc.to, mc.precharge);
4784 4785 4786 4787 4788 4789 4790
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4791
		cancel_charge(mc.from, mc.moved_charge);
4792
		mc.moved_charge = 0;
4793
	}
4794 4795 4796
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4797
		if (!mem_cgroup_is_root(mc.from))
4798
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4799

4800
		/*
4801 4802
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4803
		 */
4804
		if (!mem_cgroup_is_root(mc.to))
4805 4806
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4807
		css_put_many(&mc.from->css, mc.moved_swap);
4808

L
Li Zefan 已提交
4809
		/* we've already done css_get(mc.to) */
4810 4811
		mc.moved_swap = 0;
	}
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4825
	spin_lock(&mc.lock);
4826 4827
	mc.from = NULL;
	mc.to = NULL;
4828
	spin_unlock(&mc.lock);
4829 4830
}

4831
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4832
{
4833
	struct cgroup_subsys_state *css;
4834
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4835
	struct mem_cgroup *from;
4836
	struct task_struct *leader, *p;
4837
	struct mm_struct *mm;
4838
	unsigned long move_flags;
4839
	int ret = 0;
4840

4841 4842
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4843 4844
		return 0;

4845 4846 4847 4848 4849 4850 4851
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4852
	cgroup_taskset_for_each_leader(leader, css, tset) {
4853 4854
		WARN_ON_ONCE(p);
		p = leader;
4855
		memcg = mem_cgroup_from_css(css);
4856 4857 4858 4859
	}
	if (!p)
		return 0;

4860 4861 4862 4863 4864 4865 4866 4867 4868
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4894
	}
4895
	mmput(mm);
4896 4897 4898
	return ret;
}

4899
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4900
{
4901 4902
	if (mc.to)
		mem_cgroup_clear_mc();
4903 4904
}

4905 4906 4907
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4908
{
4909
	int ret = 0;
4910
	struct vm_area_struct *vma = walk->vma;
4911 4912
	pte_t *pte;
	spinlock_t *ptl;
4913 4914 4915
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4916

4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4927
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4928
		if (mc.precharge < HPAGE_PMD_NR) {
4929
			spin_unlock(ptl);
4930 4931 4932 4933 4934 4935 4936
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4937
							     mc.from, mc.to)) {
4938 4939 4940 4941 4942 4943 4944
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4945
		spin_unlock(ptl);
4946
		return 0;
4947 4948
	}

4949 4950
	if (pmd_trans_unstable(pmd))
		return 0;
4951 4952 4953 4954
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4955
		swp_entry_t ent;
4956 4957 4958 4959

		if (!mc.precharge)
			break;

4960
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4961 4962 4963 4964
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4965
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4966
				mc.precharge--;
4967 4968
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4969 4970
			}
			putback_lru_page(page);
4971
put:			/* get_mctgt_type() gets the page */
4972 4973
			put_page(page);
			break;
4974 4975
		case MC_TARGET_SWAP:
			ent = target.ent;
4976
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4977
				mc.precharge--;
4978 4979 4980
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4981
			break;
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4996
		ret = mem_cgroup_do_precharge(1);
4997 4998 4999 5000 5001 5002 5003 5004 5005
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5006 5007 5008 5009
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5010 5011

	lru_add_drain_all();
5012 5013 5014 5015 5016 5017 5018
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5032 5033 5034 5035 5036
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5037
	up_read(&mm->mmap_sem);
5038
	atomic_dec(&mc.from->moving_account);
5039 5040
}

5041
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5042
{
5043 5044
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
5045
	struct mm_struct *mm = get_task_mm(p);
5046 5047

	if (mm) {
5048 5049
		if (mc.to)
			mem_cgroup_move_charge(mm);
5050 5051
		mmput(mm);
	}
5052 5053
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5054
}
5055
#else	/* !CONFIG_MMU */
5056
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5057 5058 5059
{
	return 0;
}
5060
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5061 5062
{
}
5063
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5064 5065 5066
{
}
#endif
B
Balbir Singh 已提交
5067

5068 5069
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5070 5071
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5072
 */
5073
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5074 5075
{
	/*
5076
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5077 5078 5079
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5080
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5081 5082 5083
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5084 5085
}

5086 5087 5088
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5089 5090 5091
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5092 5093 5094 5095 5096
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097
	unsigned long low = READ_ONCE(memcg->low);
5098 5099

	if (low == PAGE_COUNTER_MAX)
5100
		seq_puts(m, "max\n");
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5115
	err = page_counter_memparse(buf, "max", &low);
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5127
	unsigned long high = READ_ONCE(memcg->high);
5128 5129

	if (high == PAGE_COUNTER_MAX)
5130
		seq_puts(m, "max\n");
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5145
	err = page_counter_memparse(buf, "max", &high);
5146 5147 5148 5149 5150
	if (err)
		return err;

	memcg->high = high;

5151
	memcg_wb_domain_size_changed(memcg);
5152 5153 5154 5155 5156 5157
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5158
	unsigned long max = READ_ONCE(memcg->memory.limit);
5159 5160

	if (max == PAGE_COUNTER_MAX)
5161
		seq_puts(m, "max\n");
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5176
	err = page_counter_memparse(buf, "max", &max);
5177 5178 5179 5180 5181 5182 5183
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5184
	memcg_wb_domain_size_changed(memcg);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5203
		.flags = CFTYPE_NOT_ON_ROOT,
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5227
		.file_offset = offsetof(struct mem_cgroup, events_file),
5228 5229 5230 5231 5232
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5233
struct cgroup_subsys memory_cgrp_subsys = {
5234
	.css_alloc = mem_cgroup_css_alloc,
5235
	.css_online = mem_cgroup_css_online,
5236
	.css_offline = mem_cgroup_css_offline,
5237
	.css_released = mem_cgroup_css_released,
5238
	.css_free = mem_cgroup_css_free,
5239
	.css_reset = mem_cgroup_css_reset,
5240 5241
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5242
	.attach = mem_cgroup_move_task,
5243
	.bind = mem_cgroup_bind,
5244 5245
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5246
	.early_init = 0,
B
Balbir Singh 已提交
5247
};
5248

5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5271
	if (page_counter_read(&memcg->memory) >= memcg->low)
5272 5273 5274 5275 5276 5277 5278 5279
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5280
		if (page_counter_read(&memcg->memory) >= memcg->low)
5281 5282 5283 5284 5285
			return false;
	}
	return true;
}

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5321
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5322
		if (page->mem_cgroup)
5323
			goto out;
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334

		if (do_swap_account) {
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5387 5388
	commit_charge(page, memcg, lrucare);

5389 5390 5391 5392 5393
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5394 5395 5396 5397
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5439 5440 5441 5442
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5443
	unsigned long nr_pages = nr_anon + nr_file;
5444 5445
	unsigned long flags;

5446
	if (!mem_cgroup_is_root(memcg)) {
5447 5448 5449
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5450 5451
		memcg_oom_recover(memcg);
	}
5452 5453 5454 5455 5456 5457

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5458
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5459 5460
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5461 5462

	if (!mem_cgroup_is_root(memcg))
5463
		css_put_many(&memcg->css, nr_pages);
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5486
		if (!page->mem_cgroup)
5487 5488 5489 5490
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5491
		 * page->mem_cgroup at this point, we have fully
5492
		 * exclusive access to the page.
5493 5494
		 */

5495
		if (memcg != page->mem_cgroup) {
5496
			if (memcg) {
5497 5498 5499
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5500
			}
5501
			memcg = page->mem_cgroup;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5515
		page->mem_cgroup = NULL;
5516 5517 5518 5519 5520

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5521 5522
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5523 5524
}

5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5537
	/* Don't touch page->lru of any random page, pre-check: */
5538
	if (!page->mem_cgroup)
5539 5540
		return;

5541 5542 5543
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5544

5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5556

5557 5558
	if (!list_empty(page_list))
		uncharge_list(page_list);
5559 5560 5561
}

/**
5562
 * mem_cgroup_replace_page - migrate a charge to another page
5563 5564 5565 5566 5567 5568
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5569
 * Either or both pages might be on the LRU already.
5570
 */
5571
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5572
{
5573
	struct mem_cgroup *memcg;
5574 5575 5576 5577 5578
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5579 5580
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5581 5582 5583 5584 5585

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5586
	if (newpage->mem_cgroup)
5587 5588
		return;

5589
	/* Swapcache readahead pages can get replaced before being charged */
5590
	memcg = oldpage->mem_cgroup;
5591
	if (!memcg)
5592 5593
		return;

5594
	lock_page_lru(oldpage, &isolated);
5595
	oldpage->mem_cgroup = NULL;
5596
	unlock_page_lru(oldpage, isolated);
5597

5598
	commit_charge(newpage, memcg, true);
5599 5600
}

5601
/*
5602 5603 5604 5605 5606 5607
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5608 5609 5610
 */
static int __init mem_cgroup_init(void)
{
5611 5612
	int cpu, node;

5613
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5636 5637 5638
	return 0;
}
subsys_initcall(mem_cgroup_init);
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5674 5675 5676 5677 5678 5679 5680
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5701
	memcg = mem_cgroup_from_id(id);
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */