intel_lrc.c 72.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_mocs.h"
141

142 143 144 145 146 147 148 149 150 151 152 153 154
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
155

156
#define GEN8_CTX_STATUS_COMPLETED_MASK \
157
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188
#define CTX_REG(reg_state, pos, reg, val) do { \
189 190 191 192
	u32 *reg_state__ = (reg_state); \
	const u32 pos__ = (pos); \
	(reg_state__)[(pos__) + 0] = i915_mmio_reg_offset(reg); \
	(reg_state__)[(pos__) + 1] = (val); \
193 194
} while (0)

195 196 197 198 199
#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
	u32 *reg_state__ = (reg_state); \
	const u64 addr__ = i915_page_dir_dma_addr((ppgtt), (n)); \
	(reg_state__)[CTX_PDP ## n ## _UDW + 1] = upper_32_bits(addr__); \
	(reg_state__)[CTX_PDP ## n ## _LDW + 1] = lower_32_bits(addr__); \
200
} while (0)
201

202
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
203 204 205 206
	u32 *reg_state__ = (reg_state); \
	const u64 addr__ = px_dma(&ppgtt->pml4); \
	(reg_state__)[CTX_PDP0_UDW + 1] = upper_32_bits(addr__); \
	(reg_state__)[CTX_PDP0_LDW + 1] = lower_32_bits(addr__); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
212

213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
215
#define WA_TAIL_DWORDS 2
216
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
217
#define PREEMPT_ID 0x1
218

219
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
220
					    struct intel_engine_cs *engine);
221 222 223 224
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
225

226
/**
227 228 229
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
230
 * @engine: Engine the descriptor will be used with
231
 *
232 233 234 235 236
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
237 238
 * This is what a descriptor looks like, from LSB to MSB::
 *
239
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
240 241 242 243
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
244
 */
245
static void
246
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
247
				   struct intel_engine_cs *engine)
248
{
249
	struct intel_context *ce = &ctx->engine[engine->id];
250
	u64 desc;
251

252
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
253

254
	desc = ctx->desc_template;				/* bits  0-11 */
255
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
256
								/* bits 12-31 */
257
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
258

259
	ce->lrc_desc = desc;
260 261
}

262 263 264 265
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
266
{
267
	struct intel_engine_execlists * const execlists = &engine->execlists;
268 269 270 271
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

272
	if (unlikely(execlists->no_priolist))
273 274 275 276 277
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
278
	parent = &execlists->queue.rb_node;
279 280 281 282 283 284 285 286 287
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
288
			return p;
289 290 291 292
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
293
		p = &execlists->default_priolist;
294 295 296 297 298 299 300 301 302 303 304 305 306 307
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
308
			execlists->no_priolist = true;
309 310 311 312 313
			goto find_priolist;
		}
	}

	p->priority = prio;
314
	INIT_LIST_HEAD(&p->requests);
315
	rb_link_node(&p->node, rb, parent);
316
	rb_insert_color(&p->node, &execlists->queue);
317 318

	if (first)
319
		execlists->first = &p->node;
320

321
	return ptr_pack_bits(p, first, 1);
322 323
}

324 325 326 327 328 329
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

330
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
331 332
{
	struct drm_i915_gem_request *rq, *rn;
333 334
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
335 336 337 338 339 340 341 342 343 344 345 346

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

347 348 349 350 351 352 353 354 355 356 357
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
358 359 360
	}
}

361
void
362 363 364 365 366 367 368 369 370 371
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

372 373 374
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
375
{
376 377 378 379 380 381
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
382

383 384
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
385 386
}

387 388 389 390
static inline void
execlists_context_schedule_in(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
391
	intel_engine_context_in(rq->engine);
392 393 394 395 396
}

static inline void
execlists_context_schedule_out(struct drm_i915_gem_request *rq)
{
397
	intel_engine_context_out(rq->engine);
398 399 400
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

401 402 403 404 405 406 407 408 409
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

410
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
411
{
412
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
413 414
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
415
	u32 *reg_state = ce->lrc_reg_state;
416

417
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
418

419 420 421 422 423
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
424
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
425
		execlists_update_context_pdps(ppgtt, reg_state);
426 427

	return ce->lrc_desc;
428 429
}

C
Chris Wilson 已提交
430 431 432 433 434 435
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

436
static void execlists_submit_ports(struct intel_engine_cs *engine)
437
{
438
	struct execlist_port *port = engine->execlists.port;
439
	unsigned int n;
440

441
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
442 443 444 445 446 447 448 449
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
450
				execlists_context_schedule_in(rq);
451 452 453
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
454 455 456

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
457
				  port[n].context_id, count,
458
				  rq->global_seqno);
459 460 461 462
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
463

464
		elsp_write(desc, engine->execlists.elsp);
465
	}
466
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
467 468
}

469
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
470
{
471
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
472
		i915_gem_context_force_single_submission(ctx));
473
}
474

475 476 477 478 479
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
480

481 482
	if (ctx_single_port_submission(prev))
		return false;
483

484
	return true;
485 486
}

487 488 489 490 491 492 493 494 495 496 497
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

512
	GEM_TRACE("%s\n", engine->name);
C
Chris Wilson 已提交
513
	for (n = execlists_num_ports(&engine->execlists); --n; )
514
		elsp_write(0, engine->execlists.elsp);
C
Chris Wilson 已提交
515

516
	elsp_write(ce->lrc_desc, engine->execlists.elsp);
517
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
C
Chris Wilson 已提交
518 519
}

520
static void execlists_dequeue(struct intel_engine_cs *engine)
521
{
522 523
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
524 525
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
526
	struct drm_i915_gem_request *last = port_request(port);
527
	struct rb_node *rb;
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
549
	 */
550

551
	spin_lock_irq(&engine->timeline->lock);
552 553
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
554 555 556 557 558 559 560 561 562 563
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
564
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
565 566 567
		if (port_count(&port[0]) > 1)
			goto unlock;

568 569 570 571 572 573 574 575 576 577
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

578
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
579 580 581 582 583 584 585
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
586 587
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
625 626 627 628 629 630 631 632 633 634 635 636 637 638
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
639
			 */
640 641 642 643 644 645
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
646
				if (port == last_port) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
671 672

				GEM_BUG_ON(port_isset(port));
673
			}
674

675 676
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
677
			trace_i915_gem_request_in(rq, port_index(port, execlists));
678 679
			last = rq;
			submit = true;
680
		}
681

682
		rb = rb_next(rb);
683
		rb_erase(&p->node, &execlists->queue);
684 685
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
686
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
687
	} while (rb);
688
done:
689
	execlists->first = rb;
690
	if (submit)
691
		port_assign(port, last);
C
Chris Wilson 已提交
692
unlock:
693
	spin_unlock_irq(&engine->timeline->lock);
694

695 696
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
697
		execlists_submit_ports(engine);
698
	}
699 700
}

701
void
702
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
703
{
704
	struct execlist_port *port = execlists->port;
705
	unsigned int num_ports = execlists_num_ports(execlists);
706

707
	while (num_ports-- && port_isset(port)) {
708 709
		struct drm_i915_gem_request *rq = port_request(port);

710
		GEM_BUG_ON(!execlists->active);
711
		intel_engine_context_out(rq->engine);
712
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
713 714
		i915_gem_request_put(rq);

715 716 717
		memset(port, 0, sizeof(*port));
		port++;
	}
718 719
}

720 721
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
722
	struct intel_engine_execlists * const execlists = &engine->execlists;
723 724 725 726 727 728 729
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
730
	execlists_cancel_port_requests(execlists);
731 732 733 734 735 736 737 738 739

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
740
	rb = execlists->first;
741 742 743 744 745 746 747 748 749 750 751
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
752
		rb_erase(&p->node, &execlists->queue);
753 754 755 756 757 758 759
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

760

761 762
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
763
	GEM_BUG_ON(port_isset(execlists->port));
764 765 766 767 768 769 770 771 772 773 774 775

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

776
/*
777 778 779
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
780
static void execlists_submission_tasklet(unsigned long data)
781
{
782 783
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
784
	struct execlist_port * const port = execlists->port;
785
	struct drm_i915_private *dev_priv = engine->i915;
786
	bool fw = false;
787

788 789 790 791 792 793 794 795 796
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

797 798 799 800 801
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
802 803 804
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
805
		unsigned int head, tail;
806

807
		if (unlikely(execlists->csb_use_mmio)) {
808 809
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
810
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
811 812
		}

813 814 815 816 817 818 819 820 821 822 823
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
824
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
825 826 827 828 829 830
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

831 832 833
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
834
			execlists->csb_head = head;
835 836 837 838 839
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

840
			head = execlists->csb_head;
841 842
			tail = READ_ONCE(buf[write_idx]);
		}
843
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
844
			  engine->name,
845 846
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
847

848
		while (head != tail) {
849
			struct drm_i915_gem_request *rq;
850
			unsigned int status;
851
			unsigned int count;
852 853 854

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
855

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

873
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
874
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
875
				  engine->name, head,
876 877
				  status, buf[2*head + 1],
				  execlists->active);
878 879 880 881 882 883 884 885 886

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

887 888 889
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

890 891 892
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

893
			if (status & GEN8_CTX_STATUS_COMPLETE &&
C
Chris Wilson 已提交
894
			    buf[2*head + 1] == PREEMPT_ID) {
895 896
				GEM_TRACE("%s preempt-idle\n", engine->name);

897 898
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
899

900 901 902 903
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
904 905 906 907
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
908 909
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
910 911
				continue;

912 913 914
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

915
			/* Check the context/desc id for this event matches */
916
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
917

918
			rq = port_unpack(port, &count);
919 920
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
921
				  port->context_id, count,
922
				  rq ? rq->global_seqno : 0);
923 924
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
925
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
926 927
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
928
				GEM_BUG_ON(!i915_gem_request_completed(rq));
929
				execlists_context_schedule_out(rq);
930 931
				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
932

933
				execlists_port_complete(execlists, port);
934 935
			} else {
				port_set(port, port_pack(rq, count));
936
			}
937

938 939
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
940
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
941 942 943
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
944
		}
945

946 947
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
948 949 950
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
951 952
	}

953
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
954
		execlists_dequeue(engine);
955

956 957
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
958 959
}

960 961 962 963 964 965 966
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
967
	if (ptr_unmask_bits(p, 1))
968
		tasklet_hi_schedule(&engine->execlists.tasklet);
969 970
}

971
static void execlists_submit_request(struct drm_i915_gem_request *request)
972
{
973
	struct intel_engine_cs *engine = request->engine;
974
	unsigned long flags;
975

976 977
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
978

979
	insert_request(engine, &request->priotree, request->priotree.priority);
980

981
	GEM_BUG_ON(!engine->execlists.first);
982 983
	GEM_BUG_ON(list_empty(&request->priotree.link));

984
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
985 986
}

987 988 989 990 991
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

992 993 994
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
995
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
996 997

	GEM_BUG_ON(!locked);
998 999

	if (engine != locked) {
1000 1001
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
1002 1003 1004 1005 1006 1007 1008
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
1009
	struct intel_engine_cs *engine;
1010 1011 1012 1013
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1014 1015
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1016 1017 1018
	if (i915_gem_request_completed(request))
		return;

1019 1020 1021
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1022 1023
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1024 1025 1026 1027

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1028 1029
	/*
	 * Recursively bump all dependent priorities to match the new request.
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1046
	list_for_each_entry(dep, &dfs, dfs_link) {
1047 1048
		struct i915_priotree *pt = dep->signaler;

1049 1050
		/*
		 * Within an engine, there can be no cycle, but we may
1051 1052 1053 1054 1055
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1056 1057
			GEM_BUG_ON(p == dep); /* no cycles! */

1058
			if (i915_priotree_signaled(p->signaler))
1059 1060
				continue;

1061
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1062 1063
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1064
		}
1065 1066
	}

1067 1068
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1069 1070 1071 1072
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1073
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1074 1075 1076 1077 1078 1079 1080
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1081 1082 1083
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1096 1097 1098
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1099
		}
1100 1101
	}

1102
	spin_unlock_irq(&engine->timeline->lock);
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1128 1129 1130
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1131
{
1132
	struct intel_context *ce = &ctx->engine[engine->id];
1133
	void *vaddr;
1134
	int ret;
1135

1136
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1137

1138 1139
	if (likely(ce->pin_count++))
		goto out;
1140
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1141

1142 1143 1144 1145 1146
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1147
	GEM_BUG_ON(!ce->state);
1148

1149
	ret = __context_pin(ctx, ce->state);
1150
	if (ret)
1151
		goto err;
1152

1153
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1154 1155
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1156
		goto unpin_vma;
1157 1158
	}

1159
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1160
	if (ret)
1161
		goto unpin_map;
1162

1163
	intel_lr_context_descriptor_update(ctx, engine);
1164

1165 1166
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1167
		i915_ggtt_offset(ce->ring->vma);
1168

1169
	ce->state->obj->pin_global++;
1170
	i915_gem_context_get(ctx);
1171 1172
out:
	return ce->ring;
1173

1174
unpin_map:
1175 1176 1177
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1178
err:
1179
	ce->pin_count = 0;
1180
	return ERR_PTR(ret);
1181 1182
}

1183 1184
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1185
{
1186
	struct intel_context *ce = &ctx->engine[engine->id];
1187

1188
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1189
	GEM_BUG_ON(ce->pin_count == 0);
1190

1191
	if (--ce->pin_count)
1192
		return;
1193

1194
	intel_ring_unpin(ce->ring);
1195

1196
	ce->state->obj->pin_global--;
1197 1198
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1199

1200
	i915_gem_context_put(ctx);
1201 1202
}

1203
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1204 1205 1206
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1207
	int ret;
1208

1209 1210
	GEM_BUG_ON(!ce->pin_count);

1211 1212 1213 1214 1215 1216
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1217 1218 1219
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1248 1249
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1250
{
1251 1252 1253 1254 1255 1256 1257 1258 1259
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1260 1261 1262 1263
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1264 1265 1266 1267 1268 1269 1270

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1271 1272
}

1273 1274 1275 1276 1277 1278
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1279
 *
1280 1281
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1282
 *
1283 1284 1285 1286
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1287
 */
1288
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1289
{
1290
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1291
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1292

1293
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1294 1295
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1296

1297 1298
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1299 1300 1301 1302 1303 1304 1305
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1306

C
Chris Wilson 已提交
1307 1308
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1309
	/* Pad to end of cacheline */
1310 1311
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1312 1313 1314 1315 1316 1317 1318

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1319
	return batch;
1320 1321
}

1322
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1323
{
C
Chris Wilson 已提交
1324 1325
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1326
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1327
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1328

1329
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1330 1331 1332 1333 1334
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1335

1336 1337
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1338
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1339 1340 1341 1342 1343 1344 1345
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1346
	}
1347

1348
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1363 1364 1365 1366 1367 1368
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1369 1370
	}

C
Chris Wilson 已提交
1371 1372
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1373
	/* Pad to end of cacheline */
1374 1375
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1376

1377
	return batch;
1378 1379
}

1380 1381 1382
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1383
{
1384 1385 1386
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1387

1388
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1389 1390
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1391

1392
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1393 1394 1395
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1396 1397
	}

1398 1399 1400 1401 1402
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1403
	return 0;
1404 1405 1406 1407

err:
	i915_gem_object_put(obj);
	return err;
1408 1409
}

1410
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1411
{
1412
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1413 1414
}

1415 1416
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1417
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1418
{
1419
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1420 1421 1422
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1423
	struct page *page;
1424 1425
	void *batch, *batch_ptr;
	unsigned int i;
1426
	int ret;
1427

1428
	if (GEM_WARN_ON(engine->id != RCS))
1429
		return -EINVAL;
1430

1431
	switch (INTEL_GEN(engine->i915)) {
1432 1433
	case 10:
		return 0;
1434 1435
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1436
		wa_bb_fn[1] = NULL;
1437 1438 1439
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1440
		wa_bb_fn[1] = NULL;
1441 1442 1443
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1444
		return 0;
1445
	}
1446

1447
	ret = lrc_setup_wa_ctx(engine);
1448 1449 1450 1451 1452
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1453
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1454
	batch = batch_ptr = kmap_atomic(page);
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1467 1468
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1469
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1470 1471
	}

1472 1473
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1474 1475
	kunmap_atomic(batch);
	if (ret)
1476
		lrc_destroy_wa_ctx(engine);
1477 1478 1479 1480

	return ret;
}

1481 1482 1483 1484 1485 1486 1487 1488
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1489
static void enable_execlists(struct intel_engine_cs *engine)
1490
{
1491
	struct drm_i915_private *dev_priv = engine->i915;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1503
	struct intel_engine_execlists * const execlists = &engine->execlists;
1504 1505 1506 1507 1508
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1509

1510
	intel_engine_reset_breadcrumbs(engine);
1511
	intel_engine_init_hangcheck(engine);
1512

1513
	enable_execlists(engine);
1514
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1515

1516 1517
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1518
	execlists->csb_head = -1;
1519
	execlists->active = 0;
1520

1521
	/* After a GPU reset, we may have requests to replay */
1522
	if (execlists->first)
1523
		tasklet_schedule(&execlists->tasklet);
1524

1525
	return 0;
1526 1527
}

1528
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1529
{
1530
	struct drm_i915_private *dev_priv = engine->i915;
1531 1532
	int ret;

1533
	ret = gen8_init_common_ring(engine);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1547
	return init_workarounds_ring(engine);
1548 1549
}

1550
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1551 1552 1553
{
	int ret;

1554
	ret = gen8_init_common_ring(engine);
1555 1556 1557
	if (ret)
		return ret;

1558
	return init_workarounds_ring(engine);
1559 1560
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1579 1580 1581
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1582
	struct intel_engine_execlists * const execlists = &engine->execlists;
1583
	struct intel_context *ce;
1584
	unsigned long flags;
1585

1586 1587
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1588 1589 1590

	reset_irq(engine);

1591 1592
	spin_lock_irqsave(&engine->timeline->lock, flags);

1593 1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1602
	execlists_cancel_port_requests(execlists);
1603

1604
	/* Push back any incomplete requests for replay after the reset. */
1605
	__unwind_incomplete_requests(engine);
1606

1607
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1619
	if (!request || request->fence.error != -EIO)
1620
		return;
1621

1622 1623 1624 1625 1626 1627 1628
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1629
	ce = &request->ctx->engine[engine->id];
1630 1631 1632
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1633
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1634 1635
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1636
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1637

1638 1639 1640
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1641
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1642
	unwind_wa_tail(request);
1643 1644
}

1645 1646 1647
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1648
	struct intel_engine_cs *engine = req->engine;
1649
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1650 1651
	u32 *cs;
	int i;
1652

1653 1654 1655
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1656

1657
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1658
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1659 1660
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1661 1662 1663 1664
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1665 1666
	}

1667 1668
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1669 1670 1671 1672

	return 0;
}

1673
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1674
			      u64 offset, u32 len,
1675
			      const unsigned int flags)
1676
{
1677
	u32 *cs;
1678 1679
	int ret;

1680 1681 1682 1683
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1684 1685
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1686
	if (req->ctx->ppgtt &&
1687 1688 1689 1690 1691 1692
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1693

1694
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1695 1696
	}

1697 1698 1699
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1718 1719
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1720
	/* FIXME(BDW): Address space and security selectors. */
1721 1722 1723
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1724 1725 1726
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1727 1728 1729 1730

	return 0;
}

1731
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1732
{
1733
	struct drm_i915_private *dev_priv = engine->i915;
1734 1735 1736
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1737 1738
}

1739
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1740
{
1741
	struct drm_i915_private *dev_priv = engine->i915;
1742
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1743 1744
}

1745
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1746
{
1747
	u32 cmd, *cs;
1748

1749 1750 1751
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1752 1753 1754

	cmd = MI_FLUSH_DW + 1;

1755 1756 1757 1758 1759 1760 1761
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1762
	if (mode & EMIT_INVALIDATE) {
1763
		cmd |= MI_INVALIDATE_TLB;
1764
		if (request->engine->id == VCS)
1765
			cmd |= MI_INVALIDATE_BSD;
1766 1767
	}

1768 1769 1770 1771 1772
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1773 1774 1775 1776

	return 0;
}

1777
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1778
				  u32 mode)
1779
{
1780
	struct intel_engine_cs *engine = request->engine;
1781 1782
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1783
	bool vf_flush_wa = false, dc_flush_wa = false;
1784
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1785
	int len;
1786 1787 1788

	flags |= PIPE_CONTROL_CS_STALL;

1789
	if (mode & EMIT_FLUSH) {
1790 1791
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1792
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1793
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1794 1795
	}

1796
	if (mode & EMIT_INVALIDATE) {
1797 1798 1799 1800 1801 1802 1803 1804 1805
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1806 1807 1808 1809
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1810
		if (IS_GEN9(request->i915))
1811
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1812 1813 1814 1815

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1816
	}
1817

M
Mika Kuoppala 已提交
1818 1819 1820 1821 1822 1823 1824 1825
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1826 1827 1828
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1829

1830 1831
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1832

1833 1834 1835
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1836

1837
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1838

1839 1840
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1841

1842
	intel_ring_advance(request, cs);
1843 1844 1845 1846

	return 0;
}

1847 1848 1849 1850 1851
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1852
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1853
{
C
Chris Wilson 已提交
1854 1855
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1856 1857
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1858
}
1859

1860
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1861
{
1862 1863
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1864

1865 1866
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1867 1868 1869
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1870
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1871

1872
	gen8_emit_wa_tail(request, cs);
1873
}
1874 1875
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1876
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1877
					u32 *cs)
1878
{
1879 1880 1881
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1882 1883
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1884 1885 1886
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1887
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1888

1889
	gen8_emit_wa_tail(request, cs);
1890
}
1891
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1892

1893
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1894 1895 1896
{
	int ret;

1897
	ret = intel_ring_workarounds_emit(req);
1898 1899 1900
	if (ret)
		return ret;

1901 1902 1903 1904 1905 1906 1907 1908
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1909
	return i915_gem_render_state_emit(req);
1910 1911
}

1912 1913
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1914
 * @engine: Engine Command Streamer.
1915
 */
1916
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1917
{
1918
	struct drm_i915_private *dev_priv;
1919

1920 1921 1922 1923
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1924 1925 1926
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1927

1928
	dev_priv = engine->i915;
1929

1930 1931
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1932
	}
1933

1934 1935
	if (engine->cleanup)
		engine->cleanup(engine);
1936

1937
	intel_engine_cleanup_common(engine);
1938

1939
	lrc_destroy_wa_ctx(engine);
1940

1941
	engine->i915 = NULL;
1942 1943
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1944 1945
}

1946
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1947
{
1948
	engine->submit_request = execlists_submit_request;
1949
	engine->cancel_requests = execlists_cancel_requests;
1950
	engine->schedule = execlists_schedule;
1951
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1952 1953 1954

	engine->park = NULL;
	engine->unpark = NULL;
1955 1956

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1957 1958
}

1959
static void
1960
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1961 1962
{
	/* Default vfuncs which can be overriden by each engine. */
1963
	engine->init_hw = gen8_init_common_ring;
1964
	engine->reset_hw = reset_common_ring;
1965 1966 1967 1968

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1969 1970
	engine->request_alloc = execlists_request_alloc;

1971
	engine->emit_flush = gen8_emit_flush;
1972
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1973
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1974 1975

	engine->set_default_submission = execlists_set_default_submission;
1976

1977 1978
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1979
	engine->emit_bb_start = gen8_emit_bb_start;
1980 1981
}

1982
static inline void
1983
logical_ring_default_irqs(struct intel_engine_cs *engine)
1984
{
1985
	unsigned shift = engine->irq_shift;
1986 1987
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1988 1989
}

1990 1991 1992 1993 1994 1995
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1996 1997
	intel_engine_setup_common(engine);

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2013
	engine->execlists.fw_domains = fw_domains;
2014

2015 2016
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2017 2018 2019 2020 2021

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2022
static int logical_ring_init(struct intel_engine_cs *engine)
2023 2024 2025
{
	int ret;

2026
	ret = intel_engine_init_common(engine);
2027 2028 2029
	if (ret)
		goto error;

2030 2031 2032
	engine->execlists.elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));

2033 2034 2035 2036 2037 2038 2039
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2040
int logical_render_ring_init(struct intel_engine_cs *engine)
2041 2042 2043 2044
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2045 2046
	logical_ring_setup(engine);

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2057 2058
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2059

2060
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2075
	return logical_ring_init(engine);
2076 2077
}

2078
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2079 2080 2081 2082
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2083 2084
}

2085
static u32
2086
make_rpcs(struct drm_i915_private *dev_priv)
2087 2088 2089 2090 2091 2092 2093
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2094
	if (INTEL_GEN(dev_priv) < 9)
2095 2096 2097 2098 2099 2100 2101 2102
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2103
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2104
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2105
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2106 2107 2108 2109
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2110
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2111
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2112
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2113 2114 2115 2116
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2117 2118
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2119
			GEN8_RPCS_EU_MIN_SHIFT;
2120
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2121 2122 2123 2124 2125 2126 2127
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2128
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2129 2130 2131
{
	u32 indirect_ctx_offset;

2132
	switch (INTEL_GEN(engine->i915)) {
2133
	default:
2134
		MISSING_CASE(INTEL_GEN(engine->i915));
2135
		/* fall through */
2136 2137 2138 2139
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2153
static void execlists_init_reg_state(u32 *regs,
2154 2155 2156
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2157
{
2158 2159
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2189 2190
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2191 2192 2193
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2194
		if (wa_ctx->indirect_ctx.size) {
2195
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2196

2197
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2198 2199
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2200

2201
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2202
				intel_lr_indirect_ctx_offset(engine) << 6;
2203 2204 2205 2206 2207
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2208

2209
			regs[CTX_BB_PER_CTX_PTR + 1] =
2210
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2211
		}
2212
	}
2213 2214 2215 2216

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2217
	/* PDP values well be assigned later if needed */
2218 2219 2220 2221 2222 2223 2224 2225
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2226

2227
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2228 2229 2230 2231
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2232
		ASSIGN_CTX_PML4(ppgtt, regs);
2233 2234
	}

2235 2236 2237 2238
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2239 2240

		i915_oa_init_reg_state(engine, ctx, regs);
2241
	}
2242 2243 2244 2245 2246 2247 2248 2249 2250
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2251
	u32 *regs;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2266
	ctx_obj->mm.dirty = true;
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2286 2287
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2288 2289 2290 2291 2292
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2293

2294
	i915_gem_object_unpin_map(ctx_obj);
2295 2296 2297 2298

	return 0;
}

2299
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2300
					    struct intel_engine_cs *engine)
2301
{
2302
	struct drm_i915_gem_object *ctx_obj;
2303
	struct intel_context *ce = &ctx->engine[engine->id];
2304
	struct i915_vma *vma;
2305
	uint32_t context_size;
2306
	struct intel_ring *ring;
2307 2308
	int ret;

2309
	WARN_ON(ce->state);
2310

2311
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2312

2313 2314 2315 2316 2317
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2318

2319
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2320
	if (IS_ERR(ctx_obj)) {
2321
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2322
		return PTR_ERR(ctx_obj);
2323 2324
	}

2325
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2326 2327 2328 2329 2330
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2331
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2332 2333
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2334
		goto error_deref_obj;
2335 2336
	}

2337
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2338 2339
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2340
		goto error_ring_free;
2341 2342
	}

2343
	ce->ring = ring;
2344
	ce->state = vma;
2345 2346

	return 0;
2347

2348
error_ring_free:
2349
	intel_ring_free(ring);
2350
error_deref_obj:
2351
	i915_gem_object_put(ctx_obj);
2352
	return ret;
2353
}
2354

2355
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2356
{
2357
	struct intel_engine_cs *engine;
2358
	struct i915_gem_context *ctx;
2359
	enum intel_engine_id id;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2371
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2372
		for_each_engine(engine, dev_priv, id) {
2373 2374
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2375

2376 2377
			if (!ce->state)
				continue;
2378

2379 2380 2381 2382
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2383

2384 2385 2386
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2387

C
Chris Wilson 已提交
2388
			ce->state->obj->mm.dirty = true;
2389
			i915_gem_object_unpin_map(ce->state->obj);
2390

2391
			intel_ring_reset(ce->ring, 0);
2392
		}
2393 2394
	}
}