intel_lrc.c 69.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233 234 235 236
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
237

238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240
 * @dev_priv: i915 device private
241 242 243
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
244
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
245 246 247
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
248
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249
{
250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
253
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 255
		return 1;

256
	if (INTEL_GEN(dev_priv) >= 9)
257 258
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_i915_private *dev_priv = engine->i915;
274

275
	engine->disable_lite_restore_wa =
276
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277
		(engine->id == VCS || engine->id == VCS2);
278

279
	engine->ctx_desc_template = GEN8_CTX_VALID;
280
	if (IS_GEN8(dev_priv))
281 282
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283 284 285 286 287 288 289

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 291
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 293
}

294
/**
295 296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
298
 * @engine: Engine the descriptor will be used with
299
 *
300 301 302 303 304
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
305 306 307 308 309 310 311
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
312
 */
313
static void
314
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	struct intel_context *ce = &ctx->engine[engine->id];
318
	u64 desc;
319

320
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
321

322 323
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
324
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325
								/* bits 12-31 */
326
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
327

328
	ce->lrc_desc = desc;
329 330
}

331
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332
				     struct intel_engine_cs *engine)
333
{
334
	return ctx->engine[engine->id].lrc_desc;
335
}
336

337 338 339
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
340
{
341 342 343 344 345 346
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
347

348
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
349 350
}

351 352 353 354 355 356 357 358 359
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

360
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
361
{
362
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
363
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
364
	u32 *reg_state = ce->lrc_reg_state;
365

C
Chris Wilson 已提交
366
	reg_state[CTX_RING_TAIL+1] = rq->tail;
367

368 369 370 371 372 373 374
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
375 376

	return ce->lrc_desc;
377 378
}

379
static void execlists_submit_ports(struct intel_engine_cs *engine)
380
{
381 382
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
383 384 385 386
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

387 388 389 390 391 392 393 394 395 396 397 398
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
399 400 401
	} else {
		desc[1] = 0;
	}
402
	GEM_BUG_ON(desc[0] == desc[1]);
403 404 405 406 407 408 409 410 411 412

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

413
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
414
{
415 416 417
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
418

419 420 421 422 423
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
424

425 426
	if (ctx_single_port_submission(prev))
		return false;
427

428
	return true;
429 430
}

431
static void execlists_dequeue(struct intel_engine_cs *engine)
432
{
433
	struct drm_i915_gem_request *last;
434
	struct execlist_port *port = engine->execlist_port;
435
	unsigned long flags;
436
	struct rb_node *rb;
437 438 439 440 441 442
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443
		 * as we resubmit the request. See gen8_emit_breadcrumb()
444 445 446 447
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
448

449
	GEM_BUG_ON(port[1].request);
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
470
	 */
471

472
	spin_lock_irqsave(&engine->timeline->lock, flags);
473 474 475 476 477
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

478 479 480
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
481
		 *
482 483 484 485
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
486
		 */
487 488 489 490 491 492 493 494 495 496 497 498 499
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
500 501
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
502 503 504 505 506 507 508
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
509

510 511 512 513 514
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

515 516 517 518 519 520 521 522 523 524
		/* We keep the previous context alive until we retire the
		 * following request. This ensures that any the context object
		 * is still pinned for any residual writes the HW makes into it
		 * on the context switch into the next object following the
		 * breadcrumb. Otherwise, we may retire the context too early.
		 */
		cursor->previous_context = engine->last_context;
		engine->last_context = cursor->ctx;

		__i915_gem_request_submit(cursor);
525 526 527 528 529
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
530
		engine->execlist_first = rb;
531
	}
532
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
533

534 535
	if (submit)
		execlists_submit_ports(engine);
536 537
}

538
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
539
{
540
	return !engine->execlist_port[0].request;
541 542
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

565
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
566
{
567
	int port;
B
Ben Widawsky 已提交
568

569 570 571
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
572

573
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
574 575
}

576
/*
577 578 579
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
580
static void intel_lrc_irq_handler(unsigned long data)
581
{
582
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
583
	struct execlist_port *port = engine->execlist_port;
584
	struct drm_i915_private *dev_priv = engine->i915;
585

586
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
587

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
619

620 621
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
622 623
		}

624 625 626
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
627 628
	}

629 630
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
631

632
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

661
static void execlists_submit_request(struct drm_i915_gem_request *request)
662
{
663
	struct intel_engine_cs *engine = request->engine;
664
	unsigned long flags;
665

666 667
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
668

669 670
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
671 672
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
673

674
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
675 676
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

704 705
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

734
		list_safe_reset_next(dep, p, dfs_link);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

775
static int intel_lr_context_pin(struct i915_gem_context *ctx,
776
				struct intel_engine_cs *engine)
777
{
778
	struct intel_context *ce = &ctx->engine[engine->id];
779
	void *vaddr;
780
	int ret;
781

782
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
783

784
	if (ce->pin_count++)
785 786
		return 0;

787 788
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
789
	if (ret)
790
		goto err;
791

792
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
793 794
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
795
		goto unpin_vma;
796 797
	}

798
	ret = intel_ring_pin(ce->ring);
799
	if (ret)
800
		goto unpin_map;
801

802
	intel_lr_context_descriptor_update(ctx, engine);
803

804 805
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
806
		i915_ggtt_offset(ce->ring->vma);
807

C
Chris Wilson 已提交
808
	ce->state->obj->mm.dirty = true;
809

810
	/* Invalidate GuC TLB. */
811 812
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
813
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
814
	}
815

816
	i915_gem_context_get(ctx);
817
	return 0;
818

819
unpin_map:
820 821 822
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
823
err:
824
	ce->pin_count = 0;
825 826 827
	return ret;
}

828
void intel_lr_context_unpin(struct i915_gem_context *ctx,
829
			    struct intel_engine_cs *engine)
830
{
831
	struct intel_context *ce = &ctx->engine[engine->id];
832

833
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
834
	GEM_BUG_ON(ce->pin_count == 0);
835

836
	if (--ce->pin_count)
837
		return;
838

839
	intel_ring_unpin(ce->ring);
840

841 842
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
843

844
	i915_gem_context_put(ctx);
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

	if (!ce->state) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

	request->ring = ce->ring;

	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
			goto err_unpin;
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
err_unpin:
	intel_lr_context_unpin(request->ctx, engine);
	return ret;
}

912
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
913 914
{
	int ret, i;
915
	struct intel_ring *ring = req->ring;
916
	struct i915_workarounds *w = &req->i915->workarounds;
917

918
	if (w->count == 0)
919 920
		return 0;

921
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
922 923 924
	if (ret)
		return ret;

925
	ret = intel_ring_begin(req, w->count * 2 + 2);
926 927 928
	if (ret)
		return ret;

929
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
930
	for (i = 0; i < w->count; i++) {
931 932
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
933
	}
934
	intel_ring_emit(ring, MI_NOOP);
935

936
	intel_ring_advance(ring);
937

938
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
939 940 941 942 943 944
	if (ret)
		return ret;

	return 0;
}

945
#define wa_ctx_emit(batch, index, cmd)					\
946
	do {								\
947 948
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
949 950
			return -ENOSPC;					\
		}							\
951
		batch[__index] = (cmd);					\
952 953
	} while (0)

V
Ville Syrjälä 已提交
954
#define wa_ctx_emit_reg(batch, index, reg) \
955
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
973
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
974
						uint32_t *batch,
975 976
						uint32_t index)
{
D
Dave Airlie 已提交
977
	struct drm_i915_private *dev_priv = engine->i915;
978 979
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

980
	/*
981
	 * WaDisableLSQCROPERFforOCL:kbl
982 983 984 985
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
986
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
987 988
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

989
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
990
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
991
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
992
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
993 994 995
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
996
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
997 998 999 1000 1001 1002 1003 1004 1005 1006
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1007
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1008
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1009
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1010
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1011
	wa_ctx_emit(batch, index, 0);
1012 1013 1014 1015

	return index;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1035 1036 1037 1038 1039 1040
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1041
 *
1042 1043
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1044
 *
1045 1046 1047 1048
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1049
 */
1050
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1051
				    struct i915_wa_ctx_bb *wa_ctx,
1052
				    uint32_t *batch,
1053 1054
				    uint32_t *offset)
{
1055
	uint32_t scratch_addr;
1056 1057
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1058
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1059
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1060

1061
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1062
	if (IS_BROADWELL(engine->i915)) {
1063
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1064 1065 1066
		if (rc < 0)
			return rc;
		index = rc;
1067 1068
	}

1069 1070
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1071
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1082

1083 1084
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1085
		wa_ctx_emit(batch, index, MI_NOOP);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1096 1097 1098
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1099
 *
1100
 *  The number of DWORDS written are returned using this field.
1101 1102 1103 1104
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1105
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1106
			       struct i915_wa_ctx_bb *wa_ctx,
1107
			       uint32_t *batch,
1108 1109 1110 1111
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1112
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1113
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1114

1115
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1116 1117 1118 1119

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1120
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1121
				    struct i915_wa_ctx_bb *wa_ctx,
1122
				    uint32_t *batch,
1123 1124
				    uint32_t *offset)
{
1125
	int ret;
D
Dave Airlie 已提交
1126
	struct drm_i915_private *dev_priv = engine->i915;
1127 1128
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1129 1130
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1131
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1132

1133
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1134
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1135 1136 1137 1138
	if (ret < 0)
		return ret;
	index = ret;

1139 1140 1141 1142 1143 1144 1145
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1146 1147
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1148
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1149
		u32 scratch_addr =
1150
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1187 1188 1189 1190 1191 1192 1193
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1194
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1195
			       struct i915_wa_ctx_bb *wa_ctx,
1196
			       uint32_t *batch,
1197 1198 1199 1200
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1201 1202
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1203
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1204
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1205 1206 1207 1208 1209
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1210
	/* WaClearTdlStateAckDirtyBits:bxt */
1211
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1229 1230
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1231 1232
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1233 1234 1235 1236 1237
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1238
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1239
{
1240 1241 1242
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1243

1244
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1245 1246
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1247

1248 1249 1250 1251
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1252 1253
	}

1254 1255 1256 1257 1258
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1259
	return 0;
1260 1261 1262 1263

err:
	i915_gem_object_put(obj);
	return err;
1264 1265
}

1266
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1267
{
1268
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1269 1270
}

1271
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1272
{
1273
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1274 1275 1276
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1277
	int ret;
1278

1279
	WARN_ON(engine->id != RCS);
1280

1281
	/* update this when WA for higher Gen are added */
1282
	if (INTEL_GEN(engine->i915) > 9) {
1283
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1284
			  INTEL_GEN(engine->i915));
1285
		return 0;
1286
	}
1287

1288
	/* some WA perform writes to scratch page, ensure it is valid */
1289
	if (!engine->scratch) {
1290
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1291 1292 1293
		return -EINVAL;
	}

1294
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1295 1296 1297 1298 1299
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1300
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1301 1302 1303
	batch = kmap_atomic(page);
	offset = 0;

1304
	if (IS_GEN8(engine->i915)) {
1305
		ret = gen8_init_indirectctx_bb(engine,
1306 1307 1308 1309 1310 1311
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1312
		ret = gen8_init_perctx_bb(engine,
1313 1314 1315 1316 1317
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1318
	} else if (IS_GEN9(engine->i915)) {
1319
		ret = gen9_init_indirectctx_bb(engine,
1320 1321 1322 1323 1324 1325
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1326
		ret = gen9_init_perctx_bb(engine,
1327 1328 1329 1330 1331
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1332 1333 1334 1335 1336
	}

out:
	kunmap_atomic(batch);
	if (ret)
1337
		lrc_destroy_wa_ctx_obj(engine);
1338 1339 1340 1341

	return ret;
}

1342 1343
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1344
	struct drm_i915_private *dev_priv = engine->i915;
1345 1346

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1347
		   engine->status_page.ggtt_offset);
1348 1349 1350
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1351
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1352
{
1353
	struct drm_i915_private *dev_priv = engine->i915;
1354 1355 1356 1357 1358
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1359

1360
	lrc_init_hws(engine);
1361

1362
	intel_engine_reset_breadcrumbs(engine);
1363

1364
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1365

1366
	I915_WRITE(RING_MODE_GEN7(engine),
1367 1368
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1369

1370
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1371

1372
	intel_engine_init_hangcheck(engine);
1373

1374 1375 1376 1377
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1378
		execlists_submit_ports(engine);
1379
	}
1380 1381

	return 0;
1382 1383
}

1384
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1385
{
1386
	struct drm_i915_private *dev_priv = engine->i915;
1387 1388
	int ret;

1389
	ret = gen8_init_common_ring(engine);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1403
	return init_workarounds_ring(engine);
1404 1405
}

1406
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1407 1408 1409
{
	int ret;

1410
	ret = gen8_init_common_ring(engine);
1411 1412 1413
	if (ret)
		return ret;

1414
	return init_workarounds_ring(engine);
1415 1416
}

1417 1418 1419 1420 1421 1422 1423
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1434
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1435 1436
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1437
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1455 1456 1457

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1458 1459
}

1460 1461 1462
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1463
	struct intel_ring *ring = req->ring;
1464
	struct intel_engine_cs *engine = req->engine;
1465 1466 1467
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1468
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1469 1470 1471
	if (ret)
		return ret;

1472
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1473 1474 1475
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1476 1477 1478 1479
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1480 1481
	}

1482 1483
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1484 1485 1486 1487

	return 0;
}

1488
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1489 1490
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1491
{
1492
	struct intel_ring *ring = req->ring;
1493
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1494 1495
	int ret;

1496 1497 1498 1499
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1500 1501
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1502
	if (req->ctx->ppgtt &&
1503
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1504
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1505
		    !intel_vgpu_active(req->i915)) {
1506 1507 1508 1509
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1510

1511
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1512 1513
	}

1514
	ret = intel_ring_begin(req, 4);
1515 1516 1517 1518
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1519 1520 1521 1522 1523 1524 1525 1526
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1527 1528 1529 1530

	return 0;
}

1531
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1532
{
1533
	struct drm_i915_private *dev_priv = engine->i915;
1534 1535 1536
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1537 1538
}

1539
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1540
{
1541
	struct drm_i915_private *dev_priv = engine->i915;
1542
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1543 1544
}

1545
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1546
{
1547 1548
	struct intel_ring *ring = request->ring;
	u32 cmd;
1549 1550
	int ret;

1551
	ret = intel_ring_begin(request, 4);
1552 1553 1554 1555 1556
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1557 1558 1559 1560 1561 1562 1563
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1564
	if (mode & EMIT_INVALIDATE) {
1565
		cmd |= MI_INVALIDATE_TLB;
1566
		if (request->engine->id == VCS)
1567
			cmd |= MI_INVALIDATE_BSD;
1568 1569
	}

1570 1571 1572 1573 1574 1575 1576
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1577 1578 1579 1580

	return 0;
}

1581
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1582
				  u32 mode)
1583
{
1584
	struct intel_ring *ring = request->ring;
1585
	struct intel_engine_cs *engine = request->engine;
1586 1587
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1588
	bool vf_flush_wa = false, dc_flush_wa = false;
1589 1590
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1591
	int len;
1592 1593 1594

	flags |= PIPE_CONTROL_CS_STALL;

1595
	if (mode & EMIT_FLUSH) {
1596 1597
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1598
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1599
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1600 1601
	}

1602
	if (mode & EMIT_INVALIDATE) {
1603 1604 1605 1606 1607 1608 1609 1610 1611
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1612 1613 1614 1615
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1616
		if (IS_GEN9(request->i915))
1617
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1618 1619 1620 1621

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1622
	}
1623

M
Mika Kuoppala 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1633 1634 1635
	if (ret)
		return ret;

1636
	if (vf_flush_wa) {
1637 1638 1639 1640 1641 1642
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1643 1644
	}

M
Mika Kuoppala 已提交
1645
	if (dc_flush_wa) {
1646 1647 1648 1649 1650 1651
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1652 1653
	}

1654 1655 1656 1657 1658 1659
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1660 1661

	if (dc_flush_wa) {
1662 1663 1664 1665 1666 1667
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1668 1669
	}

1670
	intel_ring_advance(ring);
1671 1672 1673 1674

	return 0;
}

1675
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1687
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1688 1689
}

1690 1691 1692 1693 1694
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1695
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1696
{
C
Chris Wilson 已提交
1697 1698 1699 1700
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1701

C
Chris Wilson 已提交
1702 1703 1704
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1705 1706
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1707

C
Chris Wilson 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1717
}
1718

1719 1720
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1721 1722
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1723
{
1724 1725 1726
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1727 1728 1729 1730
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1731 1732 1733 1734 1735 1736 1737
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1738
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1739 1740 1741 1742 1743 1744
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1745 1746
}

1747 1748
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1749
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1750 1751 1752
{
	int ret;

1753
	ret = intel_logical_ring_workarounds_emit(req);
1754 1755 1756
	if (ret)
		return ret;

1757 1758 1759 1760 1761 1762 1763 1764
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1765
	return i915_gem_render_state_emit(req);
1766 1767
}

1768 1769
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1770
 * @engine: Engine Command Streamer.
1771
 */
1772
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1773
{
1774
	struct drm_i915_private *dev_priv;
1775

1776 1777 1778 1779 1780 1781 1782
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1783
	dev_priv = engine->i915;
1784

1785 1786
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1787
	}
1788

1789 1790
	if (engine->cleanup)
		engine->cleanup(engine);
1791

1792
	intel_engine_cleanup_common(engine);
1793

1794 1795 1796
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1797
	}
1798
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1799

1800
	lrc_destroy_wa_ctx_obj(engine);
1801
	engine->i915 = NULL;
1802 1803
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1804 1805
}

1806 1807 1808
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1809
	enum intel_engine_id id;
1810

1811
	for_each_engine(engine, dev_priv, id) {
1812
		engine->submit_request = execlists_submit_request;
1813 1814
		engine->schedule = execlists_schedule;
	}
1815 1816
}

1817
static void
1818
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1819 1820
{
	/* Default vfuncs which can be overriden by each engine. */
1821
	engine->init_hw = gen8_init_common_ring;
1822
	engine->reset_hw = reset_common_ring;
1823
	engine->emit_flush = gen8_emit_flush;
1824
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1825
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1826
	engine->submit_request = execlists_submit_request;
1827
	engine->schedule = execlists_schedule;
1828

1829 1830
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1831
	engine->emit_bb_start = gen8_emit_bb_start;
1832
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1833
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1834 1835
}

1836
static inline void
1837
logical_ring_default_irqs(struct intel_engine_cs *engine)
1838
{
1839
	unsigned shift = engine->irq_shift;
1840 1841
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1842 1843
}

1844
static int
1845
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1846
{
1847
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1848
	void *hws;
1849 1850

	/* The HWSP is part of the default context object in LRC mode. */
1851
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1852 1853
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1854 1855

	engine->status_page.page_addr = hws + hws_offset;
1856
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1857
	engine->status_page.vma = vma;
1858 1859

	return 0;
1860 1861
}

1862 1863 1864 1865 1866 1867
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1868 1869
	intel_engine_setup_common(engine);

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1895 1896 1897 1898 1899 1900
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1901
	ret = intel_engine_init_common(engine);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1931
int logical_render_ring_init(struct intel_engine_cs *engine)
1932 1933 1934 1935
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1936 1937
	logical_ring_setup(engine);

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1948
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1949
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1950

1951
	ret = intel_engine_create_scratch(engine, 4096);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1966
	return logical_ring_init(engine);
1967 1968
}

1969
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1970 1971 1972 1973
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1974 1975
}

1976
static u32
1977
make_rpcs(struct drm_i915_private *dev_priv)
1978 1979 1980 1981 1982 1983 1984
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1985
	if (INTEL_GEN(dev_priv) < 9)
1986 1987 1988 1989 1990 1991 1992 1993
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1994
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1995
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1996
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1997 1998 1999 2000
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2001
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2002
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2003
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2004 2005 2006 2007
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2008 2009
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2010
			GEN8_RPCS_EU_MIN_SHIFT;
2011
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2012 2013 2014 2015 2016 2017 2018
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2019
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2020 2021 2022
{
	u32 indirect_ctx_offset;

2023
	switch (INTEL_GEN(engine->i915)) {
2024
	default:
2025
		MISSING_CASE(INTEL_GEN(engine->i915));
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2040 2041 2042 2043
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2044
{
2045 2046
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2047 2048 2049 2050 2051 2052

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2053
	reg_state[CTX_LRI_HEADER_0] =
2054 2055 2056
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2057 2058
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2059
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2060
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2061 2062 2063 2064 2065 2066 2067 2068
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2069
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2070 2071 2072 2073 2074 2075
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2076
		       RING_BB_PPGTT);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2090
		if (engine->wa_ctx.vma) {
2091
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2092
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2093 2094 2095 2096 2097 2098

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2099
				intel_lr_indirect_ctx_offset(engine) << 6;
2100 2101 2102 2103 2104

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2105
	}
2106
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2107 2108
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2109
	/* PDP values well be assigned later if needed */
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2139
		execlists_update_context_pdps(ppgtt, reg_state);
2140 2141
	}

2142
	if (engine->id == RCS) {
2143
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2144
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2145
			       make_rpcs(dev_priv));
2146
	}
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2170
	ctx_obj->mm.dirty = true;
2171 2172 2173 2174 2175 2176

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2177

2178
	i915_gem_object_unpin_map(ctx_obj);
2179 2180 2181 2182

	return 0;
}

2183 2184
/**
 * intel_lr_context_size() - return the size of the context for an engine
2185
 * @engine: which engine to find the context size for
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2197
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2198 2199 2200
{
	int ret = 0;

2201
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2202

2203
	switch (engine->id) {
2204
	case RCS:
2205
		if (INTEL_GEN(engine->i915) >= 9)
2206 2207 2208
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2219 2220
}

2221
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2222
					    struct intel_engine_cs *engine)
2223
{
2224
	struct drm_i915_gem_object *ctx_obj;
2225
	struct intel_context *ce = &ctx->engine[engine->id];
2226
	struct i915_vma *vma;
2227
	uint32_t context_size;
2228
	struct intel_ring *ring;
2229 2230
	int ret;

2231
	WARN_ON(ce->state);
2232

2233
	context_size = round_up(intel_lr_context_size(engine), 4096);
2234

2235 2236 2237
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2238
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2239
	if (IS_ERR(ctx_obj)) {
2240
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2241
		return PTR_ERR(ctx_obj);
2242 2243
	}

2244 2245 2246 2247 2248 2249
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2250
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2251 2252
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2253
		goto error_deref_obj;
2254 2255
	}

2256
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2257 2258
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2259
		goto error_ring_free;
2260 2261
	}

2262
	ce->ring = ring;
2263
	ce->state = vma;
2264
	ce->initialised = engine->init_context == NULL;
2265 2266

	return 0;
2267

2268
error_ring_free:
2269
	intel_ring_free(ring);
2270
error_deref_obj:
2271
	i915_gem_object_put(ctx_obj);
2272
	return ret;
2273
}
2274

2275
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2276
{
2277
	struct intel_engine_cs *engine;
2278
	struct i915_gem_context *ctx;
2279
	enum intel_engine_id id;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2292
		for_each_engine(engine, dev_priv, id) {
2293 2294
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2295

2296 2297
			if (!ce->state)
				continue;
2298

2299 2300 2301 2302
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2303

2304 2305 2306
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2307

C
Chris Wilson 已提交
2308
			ce->state->obj->mm.dirty = true;
2309
			i915_gem_object_unpin_map(ce->state->obj);
2310

2311 2312 2313 2314
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2315 2316
	}
}