intel_lrc.c 77.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
291
 *
292
 * @ctx: Context to work on
293
 * @engine: Engine the descriptor will be used with
294
 *
295 296 297 298 299 300
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
301
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303
 *    bits 32-52:    ctx ID, a globally unique tag
304 305
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443 444
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		struct intel_ringbuffer *ringbuf;
486

487
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 489
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
490 491
	}

492
	execlists_submit_requests(req0, req1);
493 494
}

495
static unsigned int
496
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497
{
498
	struct drm_i915_gem_request *head_req;
499

500
	assert_spin_locked(&engine->execlist_lock);
501

502
	head_req = list_first_entry_or_null(&engine->execlist_queue,
503
					    struct drm_i915_gem_request,
504 505
					    execlist_link);

506 507
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
508 509 510 511 512 513

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

514 515
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

516 517
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
518

519
	return 1;
520 521
}

522
static u32
523
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524
		   u32 *context_id)
B
Ben Widawsky 已提交
525
{
526
	struct drm_i915_private *dev_priv = engine->i915;
527
	u32 status;
B
Ben Widawsky 已提交
528

529 530
	read_pointer %= GEN8_CSB_ENTRIES;

531
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532 533 534

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
535

536
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 538 539
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
540 541
}

542
/**
543
 * intel_lrc_irq_handler() - handle Context Switch interrupts
544
 * @data: tasklet handler passed in unsigned long
545 546 547 548
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
549
static void intel_lrc_irq_handler(unsigned long data)
550
{
551
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552
	struct drm_i915_private *dev_priv = engine->i915;
553
	u32 status_pointer;
554
	unsigned int read_pointer, write_pointer;
555 556
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
557 558
	unsigned int submit_contexts = 0;

559
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560

561
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562

563
	read_pointer = engine->next_context_status_buffer;
564
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565
	if (read_pointer > write_pointer)
566
		write_pointer += GEN8_CSB_ENTRIES;
567 568

	while (read_pointer < write_pointer) {
569 570 571 572 573 574
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
575

576 577 578 579 580 581 582 583
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

584
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585 586 587 588 589 590 591

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
592 593 594 595 596
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

597
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598 599
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
600
				execlists_check_remove_request(engine, csb[i][1]);
601 602
	}

603
	if (submit_contexts) {
604
		if (!engine->disable_lite_restore_wa ||
605 606
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
607
	}
608

609
	spin_unlock(&engine->execlist_lock);
610 611 612

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
613 614
}

615
static void execlists_context_queue(struct drm_i915_gem_request *request)
616
{
617
	struct intel_engine_cs *engine = request->engine;
618
	struct drm_i915_gem_request *cursor;
619
	int num_elements = 0;
620

621
	spin_lock_bh(&engine->execlist_lock);
622

623
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624 625 626 627
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
628
		struct drm_i915_gem_request *tail_req;
629

630
		tail_req = list_last_entry(&engine->execlist_queue,
631
					   struct drm_i915_gem_request,
632 633
					   execlist_link);

634
		if (request->ctx == tail_req->ctx) {
635
			WARN(tail_req->elsp_submitted != 0,
636
				"More than 2 already-submitted reqs queued\n");
637 638
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
639 640 641
		}
	}

642
	i915_gem_request_reference(request);
643
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
644
	request->ctx_hw_id = request->ctx->hw_id;
645
	if (num_elements == 0)
646
		execlists_context_unqueue(engine);
647

648
	spin_unlock_bh(&engine->execlist_lock);
649 650
}

651
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652
{
653
	struct intel_engine_cs *engine = req->engine;
654 655 656 657
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
658
	if (engine->gpu_caches_dirty)
659 660
		flush_domains = I915_GEM_GPU_DOMAINS;

661
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 663 664
	if (ret)
		return ret;

665
	engine->gpu_caches_dirty = false;
666 667 668
	return 0;
}

669
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 671
				 struct list_head *vmas)
{
672
	const unsigned other_rings = ~intel_engine_flag(req->engine);
673 674 675 676 677 678 679 680
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

681
		if (obj->active & other_rings) {
682
			ret = i915_gem_object_sync(obj, req->engine, &req);
683 684 685
			if (ret)
				return ret;
		}
686 687 688 689 690 691 692 693 694 695 696 697 698

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
699
	return logical_ring_invalidate_all_caches(req);
700 701
}

702
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703
{
704
	struct intel_engine_cs *engine = request->engine;
705
	struct intel_context *ce = &request->ctx->engine[engine->id];
706
	int ret;
707

708 709 710 711
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
712
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
713

714
	if (!ce->state) {
715 716 717 718 719
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

720
	request->ringbuf = ce->ringbuf;
721

722 723 724 725 726 727
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
728
		ret = i915_guc_wq_check_space(request);
729 730 731 732
		if (ret)
			return ret;
	}

733 734 735
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
736

737 738 739 740
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

741
	if (!ce->initialised) {
742 743 744 745
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

746
		ce->initialised = true;
747 748 749 750 751 752 753 754 755
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

756
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757 758 759
	return 0;

err_unpin:
760
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
761
	return ret;
762 763 764 765
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766
 * @request: Request to advance the logical ringbuffer of.
767 768 769 770 771 772
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
773
static int
774
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775
{
776
	struct intel_ringbuffer *ringbuf = request->ringbuf;
777
	struct intel_engine_cs *engine = request->engine;
778

779 780
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
781

782 783 784 785 786 787 788 789 790
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
791

792 793 794 795 796 797 798 799
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
800

801 802
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
803 804
	else
		execlists_context_queue(request);
805 806

	return 0;
807 808
}

809 810
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
811
 * @params: execbuffer call parameters.
812 813 814 815 816 817 818 819
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
820
int intel_execlists_submission(struct i915_execbuffer_params *params,
821
			       struct drm_i915_gem_execbuffer2 *args,
822
			       struct list_head *vmas)
823
{
824
	struct drm_device       *dev = params->dev;
825
	struct intel_engine_cs *engine = params->engine;
826
	struct drm_i915_private *dev_priv = to_i915(dev);
827
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
828
	u64 exec_start;
829 830 831 832 833 834 835 836 837 838
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
839
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

864
	ret = execlists_move_to_gpu(params->request, vmas);
865 866 867
	if (ret)
		return ret;

868
	if (engine == &dev_priv->engine[RCS] &&
869
	    instp_mode != dev_priv->relative_constants_mode) {
870
		ret = intel_ring_begin(params->request, 4);
871 872 873 874 875
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
876
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
877 878 879 880 881 882
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

883 884 885
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

886
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
887 888 889
	if (ret)
		return ret;

890
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
891

892
	i915_gem_execbuffer_move_to_active(vmas, params->request);
893

894 895 896
	return 0;
}

897
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
898
{
899
	struct drm_i915_gem_request *req, *tmp;
900
	LIST_HEAD(cancel_list);
901

902
	WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
903

904
	spin_lock_bh(&engine->execlist_lock);
905
	list_replace_init(&engine->execlist_queue, &cancel_list);
906
	spin_unlock_bh(&engine->execlist_lock);
907

908
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
909
		list_del(&req->execlist_link);
910
		i915_gem_request_unreference(req);
911 912 913
	}
}

914
void intel_logical_ring_stop(struct intel_engine_cs *engine)
915
{
916
	struct drm_i915_private *dev_priv = engine->i915;
917 918
	int ret;

919
	if (!intel_engine_initialized(engine))
920 921
		return;

922
	ret = intel_engine_idle(engine);
923
	if (ret)
924
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
925
			  engine->name, ret);
926 927

	/* TODO: Is this correct with Execlists enabled? */
928
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
929 930 931 932
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
933
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
934 935
		return;
	}
936
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
937 938
}

939
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
940
{
941
	struct intel_engine_cs *engine = req->engine;
942 943
	int ret;

944
	if (!engine->gpu_caches_dirty)
945 946
		return 0;

947
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
948 949 950
	if (ret)
		return ret;

951
	engine->gpu_caches_dirty = false;
952 953 954
	return 0;
}

955
static int intel_lr_context_pin(struct i915_gem_context *ctx,
956
				struct intel_engine_cs *engine)
957
{
958
	struct drm_i915_private *dev_priv = ctx->i915;
959
	struct intel_context *ce = &ctx->engine[engine->id];
960 961
	void *vaddr;
	u32 *lrc_reg_state;
962
	int ret;
963

964
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
965

966
	if (ce->pin_count++)
967 968
		return 0;

969 970
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
971
	if (ret)
972
		goto err;
973

974
	vaddr = i915_gem_object_pin_map(ce->state);
975 976
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
977 978 979
		goto unpin_ctx_obj;
	}

980 981
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

982
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
983
	if (ret)
984
		goto unpin_map;
985

986
	i915_gem_context_reference(ctx);
987
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
988
	intel_lr_context_descriptor_update(ctx, engine);
989 990 991 992

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
993

994 995 996
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
997

998
	return 0;
999

1000
unpin_map:
1001
	i915_gem_object_unpin_map(ce->state);
1002
unpin_ctx_obj:
1003
	i915_gem_object_ggtt_unpin(ce->state);
1004
err:
1005
	ce->pin_count = 0;
1006 1007 1008
	return ret;
}

1009
void intel_lr_context_unpin(struct i915_gem_context *ctx,
1010
			    struct intel_engine_cs *engine)
1011
{
1012
	struct intel_context *ce = &ctx->engine[engine->id];
1013

1014
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1015
	GEM_BUG_ON(ce->pin_count == 0);
1016

1017
	if (--ce->pin_count)
1018
		return;
1019

1020
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1021

1022 1023
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1024

1025 1026 1027
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1028

1029
	i915_gem_context_unreference(ctx);
1030 1031
}

1032
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1033 1034
{
	int ret, i;
1035
	struct intel_engine_cs *engine = req->engine;
1036
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1037
	struct i915_workarounds *w = &req->i915->workarounds;
1038

1039
	if (w->count == 0)
1040 1041
		return 0;

1042
	engine->gpu_caches_dirty = true;
1043
	ret = logical_ring_flush_all_caches(req);
1044 1045 1046
	if (ret)
		return ret;

1047
	ret = intel_ring_begin(req, w->count * 2 + 2);
1048 1049 1050 1051 1052
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1053
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1054 1055 1056 1057 1058 1059
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1060
	engine->gpu_caches_dirty = true;
1061
	ret = logical_ring_flush_all_caches(req);
1062 1063 1064 1065 1066 1067
	if (ret)
		return ret;

	return 0;
}

1068
#define wa_ctx_emit(batch, index, cmd)					\
1069
	do {								\
1070 1071
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072 1073
			return -ENOSPC;					\
		}							\
1074
		batch[__index] = (cmd);					\
1075 1076
	} while (0)

V
Ville Syrjälä 已提交
1077
#define wa_ctx_emit_reg(batch, index, reg) \
1078
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1096
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1097 1098 1099 1100 1101
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1102
	/*
1103
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1104 1105 1106 1107
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1108 1109
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1110 1111
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1112
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1113
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1114
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1116 1117 1118
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1119
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1130
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1131
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1132
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1133
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1134
	wa_ctx_emit(batch, index, 0);
1135 1136 1137 1138

	return index;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1161
 * @engine: only applicable for RCS
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1177
 *
1178 1179 1180 1181 1182 1183 1184 1185
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1186
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1187 1188 1189 1190
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1191
	uint32_t scratch_addr;
1192 1193
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1194
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1195
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1196

1197
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1198
	if (IS_BROADWELL(engine->i915)) {
1199
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1200 1201 1202
		if (rc < 0)
			return rc;
		index = rc;
1203 1204
	}

1205 1206
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1207
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1218

1219 1220
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1221
		wa_ctx_emit(batch, index, MI_NOOP);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1235
 * @engine: only applicable for RCS
1236 1237 1238
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1239
 * @batch: page in which WA are loaded
1240 1241 1242 1243 1244 1245 1246 1247 1248
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1249
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1250 1251 1252 1253 1254 1255
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1256
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1257
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1258

1259
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1260 1261 1262 1263

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1264
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1265 1266 1267 1268
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1269
	int ret;
1270 1271
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1272
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1273 1274
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1275
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1276

1277
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1278
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1279 1280 1281 1282
	if (ret < 0)
		return ret;
	index = ret;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1324 1325 1326 1327 1328 1329 1330
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1331
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1332 1333 1334 1335 1336 1337
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1338
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1339 1340
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1341
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1342
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1343 1344 1345 1346 1347
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1348
	/* WaClearTdlStateAckDirtyBits:bxt */
1349
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1367
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1368 1369
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1370 1371
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1372 1373 1374 1375 1376
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1377
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1378 1379 1380
{
	int ret;

1381 1382
	engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
						    PAGE_ALIGN(size));
1383
	if (IS_ERR(engine->wa_ctx.obj)) {
1384
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1385 1386 1387
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1388 1389
	}

1390
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1391 1392 1393
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1394
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1395 1396 1397 1398 1399 1400
		return ret;
	}

	return 0;
}

1401
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1402
{
1403 1404 1405 1406
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1407 1408 1409
	}
}

1410
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1411 1412 1413 1414 1415
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1416
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1417

1418
	WARN_ON(engine->id != RCS);
1419

1420
	/* update this when WA for higher Gen are added */
1421
	if (INTEL_GEN(engine->i915) > 9) {
1422
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1423
			  INTEL_GEN(engine->i915));
1424
		return 0;
1425
	}
1426

1427
	/* some WA perform writes to scratch page, ensure it is valid */
1428 1429
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1430 1431 1432
		return -EINVAL;
	}

1433
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1434 1435 1436 1437 1438
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1439
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1440 1441 1442
	batch = kmap_atomic(page);
	offset = 0;

1443
	if (IS_GEN8(engine->i915)) {
1444
		ret = gen8_init_indirectctx_bb(engine,
1445 1446 1447 1448 1449 1450
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1451
		ret = gen8_init_perctx_bb(engine,
1452 1453 1454 1455 1456
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1457
	} else if (IS_GEN9(engine->i915)) {
1458
		ret = gen9_init_indirectctx_bb(engine,
1459 1460 1461 1462 1463 1464
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1465
		ret = gen9_init_perctx_bb(engine,
1466 1467 1468 1469 1470
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1471 1472 1473 1474 1475
	}

out:
	kunmap_atomic(batch);
	if (ret)
1476
		lrc_destroy_wa_ctx_obj(engine);
1477 1478 1479 1480

	return ret;
}

1481 1482
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1483
	struct drm_i915_private *dev_priv = engine->i915;
1484 1485 1486 1487 1488 1489

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1490
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1491
{
1492
	struct drm_i915_private *dev_priv = engine->i915;
1493
	unsigned int next_context_status_buffer_hw;
1494

1495
	lrc_init_hws(engine);
1496

1497 1498 1499
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1500

1501
	I915_WRITE(RING_MODE_GEN7(engine),
1502 1503
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1504
	POSTING_READ(RING_MODE_GEN7(engine));
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1515 1516
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1517
	 */
1518
	next_context_status_buffer_hw =
1519
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1520 1521 1522 1523 1524 1525 1526 1527 1528

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1529 1530
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1531

1532
	intel_engine_init_hangcheck(engine);
1533

1534
	return intel_mocs_init_engine(engine);
1535 1536
}

1537
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1538
{
1539
	struct drm_i915_private *dev_priv = engine->i915;
1540 1541
	int ret;

1542
	ret = gen8_init_common_ring(engine);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1556
	return init_workarounds_ring(engine);
1557 1558
}

1559
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1560 1561 1562
{
	int ret;

1563
	ret = gen8_init_common_ring(engine);
1564 1565 1566
	if (ret)
		return ret;

1567
	return init_workarounds_ring(engine);
1568 1569
}

1570 1571 1572
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1573
	struct intel_engine_cs *engine = req->engine;
1574 1575 1576 1577
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1578
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1579 1580 1581 1582 1583 1584 1585
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1586 1587
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1588
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1589 1590
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1591 1592 1593 1594 1595 1596 1597 1598 1599
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1600
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1601
			      u64 offset, unsigned dispatch_flags)
1602
{
1603
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1604
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1605 1606
	int ret;

1607 1608 1609 1610
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1611 1612
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1613
	if (req->ctx->ppgtt &&
1614
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1615
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1616
		    !intel_vgpu_active(req->i915)) {
1617 1618 1619 1620
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1621

1622
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1623 1624
	}

1625
	ret = intel_ring_begin(req, 4);
1626 1627 1628 1629
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1630 1631 1632 1633
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1634 1635 1636 1637 1638 1639 1640 1641
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1642
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1643
{
1644
	struct drm_i915_private *dev_priv = engine->i915;
1645 1646 1647
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1648 1649
}

1650
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1651
{
1652
	struct drm_i915_private *dev_priv = engine->i915;
1653
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1654 1655
}

1656
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1657 1658 1659
			   u32 invalidate_domains,
			   u32 unused)
{
1660
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1661
	struct intel_engine_cs *engine = ringbuf->engine;
1662
	struct drm_i915_private *dev_priv = request->i915;
1663 1664 1665
	uint32_t cmd;
	int ret;

1666
	ret = intel_ring_begin(request, 4);
1667 1668 1669 1670 1671
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1672 1673 1674 1675 1676 1677 1678 1679 1680
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1681
		if (engine == &dev_priv->engine[VCS])
1682
			cmd |= MI_INVALIDATE_BSD;
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1696
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1697 1698 1699
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1700
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1701
	struct intel_engine_cs *engine = ringbuf->engine;
1702
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1703
	bool vf_flush_wa = false, dc_flush_wa = false;
1704 1705
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1706
	int len;
1707 1708 1709 1710 1711 1712

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1713
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1714
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1727 1728 1729 1730
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1731
		if (IS_GEN9(request->i915))
1732
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1733 1734 1735 1736

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1737
	}
1738

M
Mika Kuoppala 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1748 1749 1750
	if (ret)
		return ret;

1751 1752 1753 1754 1755 1756 1757 1758 1759
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1769 1770 1771 1772 1773 1774
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1785 1786 1787 1788 1789
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1790
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1802
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1803 1804
}

1805 1806 1807 1808 1809 1810 1811
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1812
static int gen8_emit_request(struct drm_i915_gem_request *request)
1813
{
1814
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1815 1816
	int ret;

1817
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1818 1819 1820
	if (ret)
		return ret;

1821 1822
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1823 1824

	intel_logical_ring_emit(ringbuf,
1825 1826
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1827
				intel_hws_seqno_address(request->engine) |
1828
				MI_FLUSH_DW_USE_GTT);
1829
	intel_logical_ring_emit(ringbuf, 0);
1830
	intel_logical_ring_emit(ringbuf, request->seqno);
1831 1832
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1833 1834
	return intel_logical_ring_advance_and_submit(request);
}
1835

1836 1837 1838 1839
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1840

1841
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1842 1843 1844
	if (ret)
		return ret;

1845 1846 1847
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1848 1849 1850 1851
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1852
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1853 1854 1855 1856
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1857 1858
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1859 1860
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1861 1862
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1863
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1864
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1865
	return intel_logical_ring_advance_and_submit(request);
1866 1867
}

1868
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1869 1870 1871 1872
{
	struct render_state so;
	int ret;

1873
	ret = i915_gem_render_state_prepare(req->engine, &so);
1874 1875 1876 1877 1878 1879
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1880
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1881
				       I915_DISPATCH_SECURE);
1882 1883 1884
	if (ret)
		goto out;

1885
	ret = req->engine->emit_bb_start(req,
1886 1887 1888 1889 1890
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1891
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1892 1893 1894 1895 1896 1897

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1898
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1899 1900 1901
{
	int ret;

1902
	ret = intel_logical_ring_workarounds_emit(req);
1903 1904 1905
	if (ret)
		return ret;

1906 1907 1908 1909 1910 1911 1912 1913
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1914
	return intel_lr_context_render_state_init(req);
1915 1916
}

1917 1918 1919
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1920
 * @engine: Engine Command Streamer.
1921 1922
 *
 */
1923
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1924
{
1925
	struct drm_i915_private *dev_priv;
1926

1927
	if (!intel_engine_initialized(engine))
1928 1929
		return;

1930 1931 1932 1933 1934 1935 1936
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1937
	dev_priv = engine->i915;
1938

1939 1940 1941
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1942
	}
1943

1944 1945
	if (engine->cleanup)
		engine->cleanup(engine);
1946

1947 1948
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1949

1950 1951
	intel_engine_fini_breadcrumbs(engine);

1952
	if (engine->status_page.obj) {
1953
		i915_gem_object_unpin_map(engine->status_page.obj);
1954
		engine->status_page.obj = NULL;
1955
	}
1956
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1957

1958 1959 1960
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1961

1962
	lrc_destroy_wa_ctx_obj(engine);
1963
	engine->i915 = NULL;
1964 1965
}

1966
static void
1967
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1968 1969
{
	/* Default vfuncs which can be overriden by each engine. */
1970 1971 1972
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
1973 1974
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1975
	engine->emit_bb_start = gen8_emit_bb_start;
1976
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1977
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1978 1979
}

1980
static inline void
1981
logical_ring_default_irqs(struct intel_engine_cs *engine)
1982
{
1983
	unsigned shift = engine->irq_shift;
1984 1985
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1986 1987
}

1988
static int
1989 1990 1991
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1992
	void *hws;
1993 1994 1995 1996

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1997 1998 1999 2000
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2001
	engine->status_page.obj = dctx_obj;
2002 2003

	return 0;
2004 2005
}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);

	intel_engine_init_hangcheck(engine);
	i915_gem_batch_pool_init(&dev_priv->drm, &engine->batch_pool);
}

2046 2047 2048 2049 2050 2051
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

2052 2053 2054 2055
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
		goto error;

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	ret = i915_cmd_parser_init_ring(engine);
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

static int logical_render_ring_init(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2091 2092
	logical_ring_setup(engine);

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2106
	ret = intel_init_pipe_control(engine, 4096);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2129 2130 2131 2132 2133 2134 2135
static int logical_xcs_ring_init(struct intel_engine_cs *engine)
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
}

2136
static const struct engine_info {
2137 2138 2139 2140 2141
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
2142 2143
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
2144
} intel_engines[] = {
2145 2146 2147 2148 2149 2150
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
2151 2152
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
2153 2154 2155 2156 2157 2158 2159
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
2160 2161
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
2162 2163 2164 2165 2166 2167 2168
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
2169 2170
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
2171 2172 2173 2174 2175 2176 2177
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
2178 2179
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd2_ring_buffer,
2180 2181 2182 2183 2184 2185 2186
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
2187 2188
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
2189 2190 2191
	},
};

2192 2193 2194
struct intel_engine_cs *
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
2195
{
2196
	const struct engine_info *info = &intel_engines[id];
2197
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2198

2199
	engine->id = id;
2200
	engine->i915 = dev_priv;
2201 2202
	engine->name = info->name;
	engine->exec_id = info->exec_id;
2203
	engine->hw_id = engine->guc_id = info->guc_id;
2204
	engine->mmio_base = info->mmio_base;
2205
	engine->irq_shift = info->irq_shift;
2206

2207 2208 2209
	return engine;
}

2210
/**
2211
 * intel_engines_init() - allocate, populate and init the Engine Command Streamers
2212 2213 2214 2215
 * @dev: DRM device.
 *
 * Return: non-zero if the initialization failed.
 */
2216
int intel_engines_init(struct drm_device *dev)
2217
{
2218
	struct drm_i915_private *dev_priv = to_i915(dev);
2219
	unsigned int mask = 0;
2220
	int (*init)(struct intel_engine_cs *engine);
2221
	unsigned int i;
2222 2223
	int ret;

2224 2225
	WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
		GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2226

2227
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
2228 2229
		if (!HAS_ENGINE(dev_priv, i))
			continue;
2230

2231 2232 2233 2234 2235 2236
		if (i915.enable_execlists)
			init = intel_engines[i].init_execlists;
		else
			init = intel_engines[i].init_legacy;

		if (!init)
2237
			continue;
2238

2239
		ret = init(intel_engine_setup(dev_priv, i));
2240
		if (ret)
2241 2242 2243
			goto cleanup;

		mask |= ENGINE_MASK(i);
2244 2245
	}

2246
	/*
2247
	 * Catch failures to update intel_engines table when the new engines
2248 2249 2250 2251 2252 2253 2254
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
		struct intel_device_info *info =
			(struct intel_device_info *)&dev_priv->info;
		info->ring_mask = mask;
2255 2256 2257 2258
	}

	return 0;

2259
cleanup:
2260 2261 2262 2263 2264 2265
	for (i = 0; i < I915_NUM_ENGINES; i++) {
		if (i915.enable_execlists)
			intel_logical_ring_cleanup(&dev_priv->engine[i]);
		else
			intel_cleanup_engine(&dev_priv->engine[i]);
	}
2266 2267 2268 2269

	return ret;
}

2270
static u32
2271
make_rpcs(struct drm_i915_private *dev_priv)
2272 2273 2274 2275 2276 2277 2278
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2279
	if (INTEL_GEN(dev_priv) < 9)
2280 2281 2282 2283 2284 2285 2286 2287
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2288
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2289
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2290
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2291 2292 2293 2294
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2295
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2296
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2297
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2298 2299 2300 2301
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2302 2303
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2304
			GEN8_RPCS_EU_MIN_SHIFT;
2305
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2306 2307 2308 2309 2310 2311 2312
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2313
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2314 2315 2316
{
	u32 indirect_ctx_offset;

2317
	switch (INTEL_GEN(engine->i915)) {
2318
	default:
2319
		MISSING_CASE(INTEL_GEN(engine->i915));
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2334
static int
2335
populate_lr_context(struct i915_gem_context *ctx,
2336
		    struct drm_i915_gem_object *ctx_obj,
2337 2338
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2339
{
2340
	struct drm_i915_private *dev_priv = ctx->i915;
2341
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2342 2343
	void *vaddr;
	u32 *reg_state;
2344 2345
	int ret;

2346 2347 2348
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2349 2350 2351 2352 2353 2354
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2355 2356 2357 2358
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2359 2360
		return ret;
	}
2361
	ctx_obj->dirty = true;
2362 2363 2364

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2365
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2366 2367 2368 2369 2370 2371

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2372
	reg_state[CTX_LRI_HEADER_0] =
2373 2374 2375
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2376 2377
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2378
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2379
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2380 2381 2382 2383
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2384 2385 2386
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2387 2388 2389 2390
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2391
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2392 2393 2394 2395 2396 2397
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2398
		       RING_BB_PPGTT);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2414 2415 2416 2417 2418 2419 2420
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2421
				intel_lr_indirect_ctx_offset(engine) << 6;
2422 2423 2424 2425 2426

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2427
	}
2428
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2429 2430
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2431
	/* PDP values well be assigned later if needed */
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2461
		execlists_update_context_pdps(ppgtt, reg_state);
2462 2463
	}

2464
	if (engine->id == RCS) {
2465
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2466
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2467
			       make_rpcs(dev_priv));
2468 2469
	}

2470
	i915_gem_object_unpin_map(ctx_obj);
2471 2472 2473 2474

	return 0;
}

2475 2476
/**
 * intel_lr_context_size() - return the size of the context for an engine
2477
 * @engine: which engine to find the context size for
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2489
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2490 2491 2492
{
	int ret = 0;

2493
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2494

2495
	switch (engine->id) {
2496
	case RCS:
2497
		if (INTEL_GEN(engine->i915) >= 9)
2498 2499 2500
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2511 2512
}

2513
/**
2514
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2515
 * @ctx: LR context to create.
2516
 * @engine: engine to be used with the context.
2517 2518 2519 2520 2521 2522 2523
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2524
 * Return: non-zero on error.
2525
 */
2526
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2527
					    struct intel_engine_cs *engine)
2528
{
2529
	struct drm_i915_gem_object *ctx_obj;
2530
	struct intel_context *ce = &ctx->engine[engine->id];
2531
	uint32_t context_size;
2532
	struct intel_ringbuffer *ringbuf;
2533 2534
	int ret;

2535
	WARN_ON(ce->state);
2536

2537
	context_size = round_up(intel_lr_context_size(engine), 4096);
2538

2539 2540 2541
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2542
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2543
	if (IS_ERR(ctx_obj)) {
2544
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2545
		return PTR_ERR(ctx_obj);
2546 2547
	}

2548
	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2549 2550
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2551
		goto error_deref_obj;
2552 2553
	}

2554
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2555 2556
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2557
		goto error_ringbuf;
2558 2559
	}

2560 2561 2562
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2563 2564

	return 0;
2565

2566 2567
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2568
error_deref_obj:
2569
	drm_gem_object_unreference(&ctx_obj->base);
2570 2571
	ce->ringbuf = NULL;
	ce->state = NULL;
2572
	return ret;
2573
}
2574

2575
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2576
			    struct i915_gem_context *ctx)
2577
{
2578
	struct intel_engine_cs *engine;
2579

2580
	for_each_engine(engine, dev_priv) {
2581 2582
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2583
		void *vaddr;
2584 2585 2586 2587 2588
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2589 2590
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2591
			continue;
2592 2593 2594

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2595 2596 2597 2598

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2599
		i915_gem_object_unpin_map(ctx_obj);
2600

2601 2602
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2603 2604
	}
}