intel_lrc.c 66.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212
#define WA_TAIL_DWORDS 2
213
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
214

215
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216
					    struct intel_engine_cs *engine);
217 218 219 220
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
221

222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224
 * @dev_priv: i915 device private
225 226 227
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
228
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 230 231
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
232
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233
{
234 235 236
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
237
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 239
		return 1;

240
	if (INTEL_GEN(dev_priv) >= 9)
241 242
		return 1;

243 244 245
	if (enable_execlists == 0)
		return 0;

246 247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
248
	    i915_modparams.use_mmio_flip >= 0)
249 250 251 252
		return 1;

	return 0;
}
253

254
/**
255 256 257
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
258
 * @engine: Engine the descriptor will be used with
259
 *
260 261 262 263 264
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
265 266
 * This is what a descriptor looks like, from LSB to MSB::
 *
267
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
268 269 270 271
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
272
 */
273
static void
274
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
275
				   struct intel_engine_cs *engine)
276
{
277
	struct intel_context *ce = &ctx->engine[engine->id];
278
	u64 desc;
279

280
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
281

282
	desc = ctx->desc_template;				/* bits  0-11 */
283
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
284
								/* bits 12-31 */
285
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
286

287
	ce->lrc_desc = desc;
288 289
}

290 291 292 293
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
294
{
295
	struct intel_engine_execlists * const execlists = &engine->execlists;
296 297 298 299
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

300
	if (unlikely(execlists->no_priolist))
301 302 303 304 305
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
306
	parent = &execlists->queue.rb_node;
307 308 309 310 311 312 313 314 315
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
316
			return p;
317 318 319 320
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
321
		p = &execlists->default_priolist;
322 323 324 325 326 327 328 329 330 331 332 333 334 335
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
336
			execlists->no_priolist = true;
337 338 339 340 341
			goto find_priolist;
		}
	}

	p->priority = prio;
342
	INIT_LIST_HEAD(&p->requests);
343
	rb_link_node(&p->node, rb, parent);
344
	rb_insert_color(&p->node, &execlists->queue);
345 346

	if (first)
347
		execlists->first = &p->node;
348

349
	return ptr_pack_bits(p, first, 1);
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

static void unwind_incomplete_requests(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *rq, *rn;

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		struct i915_priolist *p;

		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

		p = lookup_priolist(engine,
				    &rq->priotree,
				    rq->priotree.priority);
		list_add(&rq->priotree.link,
			 &ptr_mask_bits(p, 1)->requests);
	}
}

383 384 385
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
386
{
387 388 389 390 391 392
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
393

394 395
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
396 397
}

398 399 400 401 402 403 404 405 406
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

407
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
408
{
409
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
410 411
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
412
	u32 *reg_state = ce->lrc_reg_state;
413

414
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
415

416 417 418 419 420
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
421
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
422
		execlists_update_context_pdps(ppgtt, reg_state);
423 424

	return ce->lrc_desc;
425 426
}

427
static void execlists_submit_ports(struct intel_engine_cs *engine)
428
{
429
	struct execlist_port *port = engine->execlists.port;
430
	u32 __iomem *elsp =
431 432
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
433

434
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
451

452 453 454
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
455 456
}

457
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
458
{
459
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
460
		i915_gem_context_force_single_submission(ctx));
461
}
462

463 464 465 466 467
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
468

469 470
	if (ctx_single_port_submission(prev))
		return false;
471

472
	return true;
473 474
}

475 476 477 478 479 480 481 482 483 484 485
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

486
static void execlists_dequeue(struct intel_engine_cs *engine)
487
{
488
	struct drm_i915_gem_request *last;
489 490
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
491 492
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
493
	struct rb_node *rb;
494 495
	bool submit = false;

496
	last = port_request(port);
497 498 499
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
500
		 * as we resubmit the request. See gen8_emit_breadcrumb()
501 502 503 504
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
525
	 */
526

527
	spin_lock_irq(&engine->timeline->lock);
528 529
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
530
	while (rb) {
531 532 533 534 535 536 537 538 539 540 541 542 543 544
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
545
			 */
546 547 548 549 550 551
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
552
				if (port == last_port) {
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
577 578

				GEM_BUG_ON(port_isset(port));
579
			}
580

581 582
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
583

584
			__i915_gem_request_submit(rq);
585
			trace_i915_gem_request_in(rq, port_index(port, execlists));
586 587
			last = rq;
			submit = true;
588
		}
589

590
		rb = rb_next(rb);
591
		rb_erase(&p->node, &execlists->queue);
592 593
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
594
			kmem_cache_free(engine->i915->priorities, p);
595
	}
596
done:
597
	execlists->first = rb;
598
	if (submit)
599
		port_assign(port, last);
600
	spin_unlock_irq(&engine->timeline->lock);
601

602 603
	if (submit)
		execlists_submit_ports(engine);
604 605
}

606 607
static void
execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
608
{
609 610
	struct execlist_port *port = execlists->port;
	unsigned int num_ports = ARRAY_SIZE(execlists->port);
611

612
	while (num_ports-- && port_isset(port)) {
613 614 615 616 617
		struct drm_i915_gem_request *rq = port_request(port);

		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
		i915_gem_request_put(rq);

618 619 620
		memset(port, 0, sizeof(*port));
		port++;
	}
621 622
}

623 624
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
625
	struct intel_engine_execlists * const execlists = &engine->execlists;
626 627 628 629 630 631 632
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
633
	execlist_cancel_port_requests(execlists);
634 635 636 637 638 639 640 641 642

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
643
	rb = execlists->first;
644 645 646 647 648 649 650 651 652 653 654 655
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
656
		rb_erase(&p->node, &execlists->queue);
657 658 659 660 661 662 663
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

664

665 666
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
667
	GEM_BUG_ON(port_isset(execlists->port));
668 669 670 671 672 673 674 675 676 677 678 679

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

680
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
681
{
682
	const struct execlist_port *port = engine->execlists.port;
B
Ben Widawsky 已提交
683

684
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
685 686
}

687
/*
688 689 690
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
691
static void intel_lrc_irq_handler(unsigned long data)
692
{
693 694 695
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
696
	struct drm_i915_private *dev_priv = engine->i915;
697

698 699 700 701 702 703 704 705 706
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

707
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
708

709 710 711 712 713
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
714 715 716
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
717
		unsigned int head, tail;
718

719
		/* However GVT emulation depends upon intercepting CSB mmio */
720
		if (unlikely(execlists->csb_use_mmio)) {
721 722
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
723
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
724 725
		}

726 727 728 729 730 731 732 733 734 735 736
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
737
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
738 739 740
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
741
			execlists->csb_head = head;
742 743 744 745 746
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

747
			head = execlists->csb_head;
748 749
			tail = READ_ONCE(buf[write_idx]);
		}
750

751
		while (head != tail) {
752
			struct drm_i915_gem_request *rq;
753
			unsigned int status;
754
			unsigned int count;
755 756 757

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

776
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
777 778 779
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

780
			/* Check the context/desc id for this event matches */
781
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
782

783 784 785
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
786
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
787 788 789 790 791
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
792

793
				execlists_port_complete(execlists, port);
794 795
			} else {
				port_set(port, port_pack(rq, count));
796
			}
797

798 799
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
800
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
801
		}
802

803 804
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
805 806 807
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
808 809
	}

810 811
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
812

813
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
814 815
}

816 817 818 819 820 821 822 823
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
	if (ptr_unmask_bits(p, 1) && execlists_elsp_ready(engine))
824
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
825 826
}

827
static void execlists_submit_request(struct drm_i915_gem_request *request)
828
{
829
	struct intel_engine_cs *engine = request->engine;
830
	unsigned long flags;
831

832 833
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
834

835
	insert_request(engine, &request->priotree, request->priotree.priority);
836

837
	GEM_BUG_ON(!engine->execlists.first);
838 839
	GEM_BUG_ON(list_empty(&request->priotree.link));

840
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
841 842
}

843 844 845
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
846 847 848 849
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
850 851

	if (engine != locked) {
852 853
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
854 855 856 857 858 859 860
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
861
	struct intel_engine_cs *engine;
862 863 864 865 866 867 868
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

869 870
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

895 896 897 898 899 900 901
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
902 903
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
904
		}
905

906
		list_safe_reset_next(dep, p, dfs_link);
907 908
	}

909 910 911 912 913 914 915 916 917 918 919 920 921
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

922 923 924
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

925 926 927 928 929 930 931 932 933 934 935 936
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
937 938 939
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
940
		}
941 942
	}

943
	spin_unlock_irq(&engine->timeline->lock);
944 945 946 947

	/* XXX Do we need to preempt to make room for us and our deps? */
}

948 949 950
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
951
{
952
	struct intel_context *ce = &ctx->engine[engine->id];
953
	unsigned int flags;
954
	void *vaddr;
955
	int ret;
956

957
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
958

959 960
	if (likely(ce->pin_count++))
		goto out;
961
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
962

963 964 965 966 967
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
968
	GEM_BUG_ON(!ce->state);
969

970
	flags = PIN_GLOBAL | PIN_HIGH;
971 972
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
973 974

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
975
	if (ret)
976
		goto err;
977

978
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
979 980
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
981
		goto unpin_vma;
982 983
	}

984
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
985
	if (ret)
986
		goto unpin_map;
987

988
	intel_lr_context_descriptor_update(ctx, engine);
989

990 991
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
992
		i915_ggtt_offset(ce->ring->vma);
993

C
Chris Wilson 已提交
994
	ce->state->obj->mm.dirty = true;
995

996
	i915_gem_context_get(ctx);
997 998
out:
	return ce->ring;
999

1000
unpin_map:
1001 1002 1003
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1004
err:
1005
	ce->pin_count = 0;
1006
	return ERR_PTR(ret);
1007 1008
}

1009 1010
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1011
{
1012
	struct intel_context *ce = &ctx->engine[engine->id];
1013

1014
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1015
	GEM_BUG_ON(ce->pin_count == 0);
1016

1017
	if (--ce->pin_count)
1018
		return;
1019

1020
	intel_ring_unpin(ce->ring);
1021

1022 1023
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1024

1025
	i915_gem_context_put(ctx);
1026 1027
}

1028
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1029 1030 1031
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1032
	u32 *cs;
1033 1034
	int ret;

1035 1036
	GEM_BUG_ON(!ce->pin_count);

1037 1038 1039 1040 1041 1042
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1043
	cs = intel_ring_begin(request, 0);
1044 1045
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1046 1047 1048 1049

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1050
			return ret;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1082 1083
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1084
{
1085 1086 1087 1088 1089 1090 1091 1092 1093
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1094 1095 1096 1097
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1098 1099 1100 1101 1102 1103 1104

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1105 1106
}

1107 1108 1109 1110 1111 1112
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1113
 *
1114 1115
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1116
 *
1117 1118 1119 1120
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1121
 */
1122
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1123
{
1124
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1125
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1126

1127
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1128 1129
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1130

1131 1132
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1133 1134 1135 1136 1137 1138 1139
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1140

1141
	/* Pad to end of cacheline */
1142 1143
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1144 1145 1146 1147 1148 1149 1150

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1151
	return batch;
1152 1153
}

1154 1155 1156
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1157
 *
1158
 *  The number of DWORDS written are returned using this field.
1159 1160 1161 1162
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1163
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1164
{
1165
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1166 1167
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1168

1169
	return batch;
1170 1171
}

1172
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1173
{
1174
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1175
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1176

1177
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1178 1179 1180 1181 1182
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1183

1184 1185
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1186
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1187 1188 1189 1190 1191 1192 1193
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1194
	}
1195

1196
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1211 1212 1213 1214 1215 1216
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1217 1218
	}

1219
	/* Pad to end of cacheline */
1220 1221
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1222

1223
	return batch;
1224 1225
}

1226 1227 1228
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1229
{
1230 1231 1232
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1233

1234
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1235 1236
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1237

1238
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1239 1240 1241
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1242 1243
	}

1244 1245 1246 1247 1248
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1249
	return 0;
1250 1251 1252 1253

err:
	i915_gem_object_put(obj);
	return err;
1254 1255
}

1256
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1257
{
1258
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1259 1260
}

1261 1262
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1263
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1264
{
1265
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1266 1267 1268
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1269
	struct page *page;
1270 1271
	void *batch, *batch_ptr;
	unsigned int i;
1272
	int ret;
1273

1274 1275
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1276

1277
	switch (INTEL_GEN(engine->i915)) {
1278 1279
	case 10:
		return 0;
1280 1281
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1282
		wa_bb_fn[1] = NULL;
1283 1284 1285 1286 1287 1288 1289
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1290
		return 0;
1291
	}
1292

1293
	ret = lrc_setup_wa_ctx(engine);
1294 1295 1296 1297 1298
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1299
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1300
	batch = batch_ptr = kmap_atomic(page);
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1313 1314
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1315
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1316 1317
	}

1318 1319
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1320 1321
	kunmap_atomic(batch);
	if (ret)
1322
		lrc_destroy_wa_ctx(engine);
1323 1324 1325 1326

	return ret;
}

1327 1328 1329 1330 1331 1332 1333 1334
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1335
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1336
{
1337
	struct drm_i915_private *dev_priv = engine->i915;
1338
	struct intel_engine_execlists * const execlists = &engine->execlists;
1339 1340 1341 1342 1343
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1344

1345
	intel_engine_reset_breadcrumbs(engine);
1346
	intel_engine_init_hangcheck(engine);
1347

1348 1349
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1350
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1351 1352 1353
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1354

1355
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1370
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1371
	execlists->csb_head = -1;
1372

1373
	/* After a GPU reset, we may have requests to replay */
1374 1375
	if (!i915_modparams.enable_guc_submission && execlists->first)
		tasklet_schedule(&execlists->irq_tasklet);
1376

1377
	return 0;
1378 1379
}

1380
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1381
{
1382
	struct drm_i915_private *dev_priv = engine->i915;
1383 1384
	int ret;

1385
	ret = gen8_init_common_ring(engine);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1399
	return init_workarounds_ring(engine);
1400 1401
}

1402
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1403 1404 1405
{
	int ret;

1406
	ret = gen8_init_common_ring(engine);
1407 1408 1409
	if (ret)
		return ret;

1410
	return init_workarounds_ring(engine);
1411 1412
}

1413 1414 1415
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1416
	struct intel_engine_execlists * const execlists = &engine->execlists;
1417
	struct intel_context *ce;
1418
	unsigned long flags;
1419

1420 1421
	spin_lock_irqsave(&engine->timeline->lock, flags);

1422 1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1431
	execlist_cancel_port_requests(execlists);
1432

1433
	/* Push back any incomplete requests for replay after the reset. */
1434
	unwind_incomplete_requests(engine);
1435

1436
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1448
	if (!request || request->fence.error != -EIO)
1449
		return;
1450

1451 1452 1453 1454 1455 1456 1457
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1458
	ce = &request->ctx->engine[engine->id];
1459 1460 1461
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1462
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1463 1464
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1465
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1466

1467 1468 1469
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1470
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1471
	unwind_wa_tail(request);
1472 1473
}

1474 1475 1476
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1477
	struct intel_engine_cs *engine = req->engine;
1478
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1479 1480
	u32 *cs;
	int i;
1481

1482 1483 1484
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1485

1486
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1487
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1488 1489
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1490 1491 1492 1493
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1494 1495
	}

1496 1497
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1498 1499 1500 1501

	return 0;
}

1502
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1503
			      u64 offset, u32 len,
1504
			      const unsigned int flags)
1505
{
1506
	u32 *cs;
1507 1508
	int ret;

1509 1510 1511 1512
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1513 1514
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1515
	if (req->ctx->ppgtt &&
1516 1517 1518 1519 1520 1521
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1522

1523
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1524 1525
	}

1526 1527 1528
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1529 1530

	/* FIXME(BDW): Address space and security selectors. */
1531 1532 1533
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1534 1535 1536 1537
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1538 1539 1540 1541

	return 0;
}

1542
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1543
{
1544
	struct drm_i915_private *dev_priv = engine->i915;
1545 1546 1547
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1548 1549
}

1550
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1551
{
1552
	struct drm_i915_private *dev_priv = engine->i915;
1553
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1554 1555
}

1556
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1557
{
1558
	u32 cmd, *cs;
1559

1560 1561 1562
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1563 1564 1565

	cmd = MI_FLUSH_DW + 1;

1566 1567 1568 1569 1570 1571 1572
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1573
	if (mode & EMIT_INVALIDATE) {
1574
		cmd |= MI_INVALIDATE_TLB;
1575
		if (request->engine->id == VCS)
1576
			cmd |= MI_INVALIDATE_BSD;
1577 1578
	}

1579 1580 1581 1582 1583
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1584 1585 1586 1587

	return 0;
}

1588
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1589
				  u32 mode)
1590
{
1591
	struct intel_engine_cs *engine = request->engine;
1592 1593
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1594
	bool vf_flush_wa = false, dc_flush_wa = false;
1595
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1596
	int len;
1597 1598 1599

	flags |= PIPE_CONTROL_CS_STALL;

1600
	if (mode & EMIT_FLUSH) {
1601 1602
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1603
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1604
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1605 1606
	}

1607
	if (mode & EMIT_INVALIDATE) {
1608 1609 1610 1611 1612 1613 1614 1615 1616
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1617 1618 1619 1620
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1621
		if (IS_GEN9(request->i915))
1622
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1623 1624 1625 1626

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1627
	}
1628

M
Mika Kuoppala 已提交
1629 1630 1631 1632 1633 1634 1635 1636
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1637 1638 1639
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1640

1641 1642
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1643

1644 1645 1646
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1647

1648
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1649

1650 1651
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1652

1653
	intel_ring_advance(request, cs);
1654 1655 1656 1657

	return 0;
}

1658 1659 1660 1661 1662
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1663
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1664
{
1665 1666 1667
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1668
}
1669

1670
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1671
{
1672 1673
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1674

1675 1676 1677 1678 1679 1680 1681
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1682
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1683

1684
	gen8_emit_wa_tail(request, cs);
1685
}
1686

1687 1688
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1689
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1690
					u32 *cs)
1691
{
1692 1693 1694
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1695 1696 1697 1698
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1699 1700 1701 1702 1703 1704
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1705
	/* We're thrashing one dword of HWS. */
1706 1707 1708 1709
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1710
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1711

1712
	gen8_emit_wa_tail(request, cs);
1713 1714
}

1715 1716
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1717
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1718 1719 1720
{
	int ret;

1721
	ret = intel_ring_workarounds_emit(req);
1722 1723 1724
	if (ret)
		return ret;

1725 1726 1727 1728 1729 1730 1731 1732
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1733
	return i915_gem_render_state_emit(req);
1734 1735
}

1736 1737
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1738
 * @engine: Engine Command Streamer.
1739
 */
1740
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1741
{
1742
	struct drm_i915_private *dev_priv;
1743

1744 1745 1746 1747
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1748 1749
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1750

1751
	dev_priv = engine->i915;
1752

1753 1754
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1755
	}
1756

1757 1758
	if (engine->cleanup)
		engine->cleanup(engine);
1759

1760
	intel_engine_cleanup_common(engine);
1761

1762
	lrc_destroy_wa_ctx(engine);
1763
	engine->i915 = NULL;
1764 1765
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1766 1767
}

1768
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1769
{
1770
	engine->submit_request = execlists_submit_request;
1771
	engine->cancel_requests = execlists_cancel_requests;
1772
	engine->schedule = execlists_schedule;
1773
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1774 1775
}

1776
static void
1777
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1778 1779
{
	/* Default vfuncs which can be overriden by each engine. */
1780
	engine->init_hw = gen8_init_common_ring;
1781
	engine->reset_hw = reset_common_ring;
1782 1783 1784 1785

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1786 1787
	engine->request_alloc = execlists_request_alloc;

1788
	engine->emit_flush = gen8_emit_flush;
1789
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1790
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1791 1792

	engine->set_default_submission = execlists_set_default_submission;
1793

1794 1795
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1796
	engine->emit_bb_start = gen8_emit_bb_start;
1797 1798
}

1799
static inline void
1800
logical_ring_default_irqs(struct intel_engine_cs *engine)
1801
{
1802
	unsigned shift = engine->irq_shift;
1803 1804
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1805 1806
}

1807 1808 1809 1810 1811 1812
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1813 1814
	intel_engine_setup_common(engine);

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1830
	engine->execlists.fw_domains = fw_domains;
1831

1832
	tasklet_init(&engine->execlists.irq_tasklet,
1833 1834 1835 1836 1837 1838
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1839
static int logical_ring_init(struct intel_engine_cs *engine)
1840 1841 1842
{
	int ret;

1843
	ret = intel_engine_init_common(engine);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1854
int logical_render_ring_init(struct intel_engine_cs *engine)
1855 1856 1857 1858
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1859 1860
	logical_ring_setup(engine);

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1871
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1872
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1873

1874
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1889
	return logical_ring_init(engine);
1890 1891
}

1892
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1893 1894 1895 1896
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1897 1898
}

1899
static u32
1900
make_rpcs(struct drm_i915_private *dev_priv)
1901 1902 1903 1904 1905 1906 1907
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1908
	if (INTEL_GEN(dev_priv) < 9)
1909 1910 1911 1912 1913 1914 1915 1916
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1917
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1918
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1919
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1920 1921 1922 1923
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1924
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1925
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1926
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1927 1928 1929 1930
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1931 1932
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1933
			GEN8_RPCS_EU_MIN_SHIFT;
1934
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1935 1936 1937 1938 1939 1940 1941
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1942
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1943 1944 1945
{
	u32 indirect_ctx_offset;

1946
	switch (INTEL_GEN(engine->i915)) {
1947
	default:
1948
		MISSING_CASE(INTEL_GEN(engine->i915));
1949
		/* fall through */
1950 1951 1952 1953
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1967
static void execlists_init_reg_state(u32 *regs,
1968 1969 1970
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1971
{
1972 1973
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2004 2005
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2006 2007 2008
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2009
		if (wa_ctx->indirect_ctx.size) {
2010
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2011

2012
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2013 2014
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2015

2016
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2017
				intel_lr_indirect_ctx_offset(engine) << 6;
2018 2019 2020 2021 2022
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2023

2024
			regs[CTX_BB_PER_CTX_PTR + 1] =
2025
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2026
		}
2027
	}
2028 2029 2030 2031

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2032
	/* PDP values well be assigned later if needed */
2033 2034 2035 2036 2037 2038 2039 2040
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2041

2042
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2043 2044 2045 2046
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2047
		ASSIGN_CTX_PML4(ppgtt, regs);
2048 2049
	}

2050 2051 2052 2053
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2054 2055

		i915_oa_init_reg_state(engine, ctx, regs);
2056
	}
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2080
	ctx_obj->mm.dirty = true;
2081 2082 2083 2084 2085 2086

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2087

2088
	i915_gem_object_unpin_map(ctx_obj);
2089 2090 2091 2092

	return 0;
}

2093
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2094
					    struct intel_engine_cs *engine)
2095
{
2096
	struct drm_i915_gem_object *ctx_obj;
2097
	struct intel_context *ce = &ctx->engine[engine->id];
2098
	struct i915_vma *vma;
2099
	uint32_t context_size;
2100
	struct intel_ring *ring;
2101 2102
	int ret;

2103
	WARN_ON(ce->state);
2104

2105
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2106

2107 2108 2109 2110 2111
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2112

2113
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2114
	if (IS_ERR(ctx_obj)) {
2115
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2116
		return PTR_ERR(ctx_obj);
2117 2118
	}

2119
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2120 2121 2122 2123 2124
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2125
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2126 2127
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2128
		goto error_deref_obj;
2129 2130
	}

2131
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2132 2133
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2134
		goto error_ring_free;
2135 2136
	}

2137
	ce->ring = ring;
2138
	ce->state = vma;
2139
	ce->initialised |= engine->init_context == NULL;
2140 2141

	return 0;
2142

2143
error_ring_free:
2144
	intel_ring_free(ring);
2145
error_deref_obj:
2146
	i915_gem_object_put(ctx_obj);
2147
	return ret;
2148
}
2149

2150
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2151
{
2152
	struct intel_engine_cs *engine;
2153
	struct i915_gem_context *ctx;
2154
	enum intel_engine_id id;
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2166
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2167
		for_each_engine(engine, dev_priv, id) {
2168 2169
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2170

2171 2172
			if (!ce->state)
				continue;
2173

2174 2175 2176 2177
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2178

2179 2180 2181
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2182

C
Chris Wilson 已提交
2183
			ce->state->obj->mm.dirty = true;
2184
			i915_gem_object_unpin_map(ce->state->obj);
2185

2186
			intel_ring_reset(ce->ring, 0);
2187
		}
2188 2189
	}
}