intel_lrc.c 58.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138

139
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 141 142
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
enum {
	ADVANCED_CONTEXT = 0,
	LEGACY_CONTEXT,
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
#define GEN8_CTX_MODE_SHIFT 3
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32

206 207 208
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx);

209 210 211 212 213 214
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
215
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 217 218
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
219 220
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
221 222
	WARN_ON(i915.enable_ppgtt == -1);

223 224 225
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

226 227 228
	if (enable_execlists == 0)
		return 0;

229 230
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
231 232 233 234
		return 1;

	return 0;
}
235

236 237 238 239 240 241 242 243 244 245 246 247
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx_obj: Logical Ring Context backing object.
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * Return: 20-bits globally unique context ID.
 */
248 249 250 251 252 253 254 255 256
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
{
	u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);

	/* LRCA is required to be 4K aligned so the more significant 20 bits
	 * are globally unique */
	return lrca >> 12;
}

257 258
static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
					 struct drm_i915_gem_object *ctx_obj)
259
{
260
	struct drm_device *dev = ring->dev;
261 262
	uint64_t desc;
	uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263 264

	WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265 266 267 268 269 270 271 272 273 274 275 276

	desc = GEN8_CTX_VALID;
	desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
	desc |= GEN8_CTX_L3LLC_COHERENT;
	desc |= GEN8_CTX_PRIVILEGE;
	desc |= lrca;
	desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* desc |= GEN8_CTX_FORCE_RESTORE; */

277 278 279 280 281 282 283
	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	if (IS_GEN9(dev) &&
	    INTEL_REVID(dev) <= SKL_REVID_B0 &&
	    (ring->id == BCS || ring->id == VCS ||
	    ring->id == VECS || ring->id == VCS2))
		desc |= GEN8_CTX_FORCE_RESTORE;

284 285 286 287 288 289 290
	return desc;
}

static void execlists_elsp_write(struct intel_engine_cs *ring,
				 struct drm_i915_gem_object *ctx_obj0,
				 struct drm_i915_gem_object *ctx_obj1)
{
291 292
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
293 294 295 296 297
	uint64_t temp = 0;
	uint32_t desc[4];

	/* XXX: You must always write both descriptors in the order below. */
	if (ctx_obj1)
298
		temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 300 301 302 303
	else
		temp = 0;
	desc[1] = (u32)(temp >> 32);
	desc[0] = (u32)temp;

304
	temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 306 307
	desc[3] = (u32)(temp >> 32);
	desc[2] = (u32)temp;

308
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 310 311
	I915_WRITE(RING_ELSP(ring), desc[1]);
	I915_WRITE(RING_ELSP(ring), desc[0]);
	I915_WRITE(RING_ELSP(ring), desc[3]);
312

313 314 315 316 317
	/* The context is automatically loaded after the following */
	I915_WRITE(RING_ELSP(ring), desc[2]);

	/* ELSP is a wo register, so use another nearby reg for posting instead */
	POSTING_READ(RING_EXECLIST_STATUS(ring));
318
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 320
}

321 322 323
static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
				    struct drm_i915_gem_object *ring_obj,
				    u32 tail)
324 325 326 327 328 329 330 331
{
	struct page *page;
	uint32_t *reg_state;

	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	reg_state[CTX_RING_TAIL+1] = tail;
332
	reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333 334 335 336 337 338

	kunmap_atomic(reg_state);

	return 0;
}

339 340 341
static void execlists_submit_contexts(struct intel_engine_cs *ring,
				      struct intel_context *to0, u32 tail0,
				      struct intel_context *to1, u32 tail1)
342
{
343 344
	struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345
	struct drm_i915_gem_object *ctx_obj1 = NULL;
346
	struct intel_ringbuffer *ringbuf1 = NULL;
347 348

	BUG_ON(!ctx_obj0);
349
	WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350
	WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351

352
	execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353

354
	if (to1) {
355
		ringbuf1 = to1->engine[ring->id].ringbuf;
356 357
		ctx_obj1 = to1->engine[ring->id].state;
		BUG_ON(!ctx_obj1);
358
		WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359
		WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360

361
		execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 363 364 365 366
	}

	execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
}

367 368
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
369 370
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371 372

	assert_spin_locked(&ring->execlist_lock);
373 374 375 376 377 378 379 380 381

	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
382
		} else if (req0->ctx == cursor->ctx) {
383 384
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
385
			cursor->elsp_submitted = req0->elsp_submitted;
386
			list_del(&req0->execlist_link);
387 388
			list_add_tail(&req0->execlist_link,
				&ring->execlist_retired_req_list);
389 390 391 392 393 394 395
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

396 397
	WARN_ON(req1 && req1->elsp_submitted);

398 399 400
	execlists_submit_contexts(ring, req0->ctx, req0->tail,
				  req1 ? req1->ctx : NULL,
				  req1 ? req1->tail : 0);
401 402 403 404

	req0->elsp_submitted++;
	if (req1)
		req1->elsp_submitted++;
405 406
}

407 408 409
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
410
	struct drm_i915_gem_request *head_req;
411 412 413 414

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
415
					    struct drm_i915_gem_request,
416 417 418 419
					    execlist_link);

	if (head_req != NULL) {
		struct drm_i915_gem_object *ctx_obj =
420
				head_req->ctx->engine[ring->id].state;
421
		if (intel_execlists_ctx_id(ctx_obj) == request_id) {
422 423 424 425 426
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
				list_del(&head_req->execlist_link);
427 428
				list_add_tail(&head_req->execlist_link,
					&ring->execlist_retired_req_list);
429 430
				return true;
			}
431 432 433 434 435 436
		}
	}

	return false;
}

437
/**
438
 * intel_lrc_irq_handler() - handle Context Switch interrupts
439 440 441 442 443
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
444
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
	u32 status;
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
	write_pointer = status_pointer & 0x07;
	if (read_pointer > write_pointer)
		write_pointer += 6;

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
		read_pointer++;
		status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8);
		status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
				(read_pointer % 6) * 8 + 4);

470 471 472 473 474 475 476 477 478 479
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

		 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

	if (submit_contexts != 0)
		execlists_context_unqueue(ring);

	spin_unlock(&ring->execlist_lock);

	WARN(submit_contexts > 2, "More than two context complete events?\n");
	ring->next_context_status_buffer = write_pointer % 6;

	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
		   ((u32)ring->next_context_status_buffer & 0x07) << 8);
}

497 498
static int execlists_context_queue(struct intel_engine_cs *ring,
				   struct intel_context *to,
499 500
				   u32 tail,
				   struct drm_i915_gem_request *request)
501
{
502
	struct drm_i915_gem_request *cursor;
503
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
504
	unsigned long flags;
505
	int num_elements = 0;
506

507 508 509
	if (to != ring->default_context)
		intel_lr_context_pin(ring, to);

510 511 512 513 514 515 516 517 518
	if (!request) {
		/*
		 * If there isn't a request associated with this submission,
		 * create one as a temporary holder.
		 */
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;
		request->ring = ring;
519
		request->ctx = to;
520 521 522
		kref_init(&request->ref);
		request->uniq = dev_priv->request_uniq++;
		i915_gem_context_reference(request->ctx);
523
	} else {
524
		i915_gem_request_reference(request);
525
		WARN_ON(to != request->ctx);
526
	}
527
	request->tail = tail;
528

529
	intel_runtime_pm_get(dev_priv);
530 531 532

	spin_lock_irqsave(&ring->execlist_lock, flags);

533 534 535 536 537
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
538
		struct drm_i915_gem_request *tail_req;
539 540

		tail_req = list_last_entry(&ring->execlist_queue,
541
					   struct drm_i915_gem_request,
542 543
					   execlist_link);

544
		if (to == tail_req->ctx) {
545
			WARN(tail_req->elsp_submitted != 0,
546
				"More than 2 already-submitted reqs queued\n");
547
			list_del(&tail_req->execlist_link);
548 549
			list_add_tail(&tail_req->execlist_link,
				&ring->execlist_retired_req_list);
550 551 552
		}
	}

553
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
554
	if (num_elements == 0)
555 556 557 558 559 560 561
		execlists_context_unqueue(ring);

	spin_unlock_irqrestore(&ring->execlist_lock, flags);

	return 0;
}

562 563
static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
					      struct intel_context *ctx)
564 565 566 567 568 569 570 571 572
{
	struct intel_engine_cs *ring = ringbuf->ring;
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

573 574
	ret = ring->emit_flush(ringbuf, ctx,
			       I915_GEM_GPU_DOMAINS, flush_domains);
575 576 577 578 579 580 581 582
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
583
				 struct intel_context *ctx,
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
				 struct list_head *vmas)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

		ret = i915_gem_object_sync(obj, ring);
		if (ret)
			return ret;

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
611
	return logical_ring_invalidate_all_caches(ringbuf, ctx);
612 613
}

614 615 616 617 618 619 620 621 622 623
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
624
 * @dispatch_flags: translated execbuffer call flags.
625 626 627 628 629 630
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
631 632 633 634 635 636
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
			       struct intel_engine_cs *ring,
			       struct intel_context *ctx,
			       struct drm_i915_gem_execbuffer2 *args,
			       struct list_head *vmas,
			       struct drm_i915_gem_object *batch_obj,
637
			       u64 exec_start, u32 dispatch_flags)
638
{
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
		DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
		return -EINVAL;
	} else {
		if (args->DR4 == 0xffffffff) {
			DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
			args->DR4 = 0;
		}

		if (args->DR1 || args->DR4 || args->cliprects_ptr) {
			DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
			return -EINVAL;
		}
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

691
	ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
692 693 694 695 696
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
697
		ret = intel_logical_ring_begin(ringbuf, ctx, 4);
698 699 700 701 702 703 704 705 706 707 708 709
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
		intel_logical_ring_emit(ringbuf, INSTPM);
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

710
	ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
711 712 713
	if (ret)
		return ret;

714 715
	trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);

716 717 718
	i915_gem_execbuffer_move_to_active(vmas, ring);
	i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);

719 720 721
	return 0;
}

722 723
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
724
	struct drm_i915_gem_request *req, *tmp;
725 726 727 728 729 730 731 732 733 734 735 736 737 738
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	unsigned long flags;
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
	spin_lock_irqsave(&ring->execlist_lock, flags);
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
	spin_unlock_irqrestore(&ring->execlist_lock, flags);

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
739
		struct intel_context *ctx = req->ctx;
740 741 742 743 744
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

		if (ctx_obj && (ctx != ring->default_context))
			intel_lr_context_unpin(ring, ctx);
745 746
		intel_runtime_pm_put(dev_priv);
		list_del(&req->execlist_link);
747
		i915_gem_request_unreference(req);
748 749 750
	}
}

751 752
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
771 772
}

773 774
int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
				  struct intel_context *ctx)
775 776 777 778 779 780 781
{
	struct intel_engine_cs *ring = ringbuf->ring;
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

782
	ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
783 784 785 786 787 788 789
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

790
/*
791 792 793 794 795 796 797 798
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
 * @ringbuf: Logical Ringbuffer to advance.
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
799 800 801 802
static void
intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
				      struct intel_context *ctx,
				      struct drm_i915_gem_request *request)
803
{
804 805
	struct intel_engine_cs *ring = ringbuf->ring;

806 807
	intel_logical_ring_advance(ringbuf);

808
	if (intel_ring_stopped(ring))
809 810
		return;

811
	execlists_context_queue(ring, ctx, ringbuf->tail, request);
812 813
}

814 815 816 817
static int intel_lr_context_pin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
818
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
819 820 821
	int ret = 0;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
822
	if (ctx->engine[ring->id].pin_count++ == 0) {
823 824 825
		ret = i915_gem_obj_ggtt_pin(ctx_obj,
				GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret)
826
			goto reset_pin_count;
827 828 829 830

		ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
		if (ret)
			goto unpin_ctx_obj;
831 832
	}

833 834 835 836
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
837 838
reset_pin_count:
	ctx->engine[ring->id].pin_count = 0;
839

840 841 842 843 844 845 846
	return ret;
}

void intel_lr_context_unpin(struct intel_engine_cs *ring,
		struct intel_context *ctx)
{
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
847
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
848 849 850

	if (ctx_obj) {
		WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
851
		if (--ctx->engine[ring->id].pin_count == 0) {
852
			intel_unpin_ringbuffer_obj(ringbuf);
853
			i915_gem_object_ggtt_unpin(ctx_obj);
854
		}
855 856 857
	}
}

858 859
static int logical_ring_alloc_request(struct intel_engine_cs *ring,
				      struct intel_context *ctx)
860
{
861
	struct drm_i915_gem_request *request;
862
	struct drm_i915_private *dev_private = ring->dev->dev_private;
863 864
	int ret;

865
	if (ring->outstanding_lazy_request)
866
		return 0;
867

868
	request = kzalloc(sizeof(*request), GFP_KERNEL);
869 870
	if (request == NULL)
		return -ENOMEM;
871

872 873 874 875 876
	if (ctx != ring->default_context) {
		ret = intel_lr_context_pin(ring, ctx);
		if (ret) {
			kfree(request);
			return ret;
877
		}
878
	}
879

880
	kref_init(&request->ref);
881
	request->ring = ring;
882
	request->uniq = dev_private->request_uniq++;
883

884
	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
885 886 887 888
	if (ret) {
		intel_lr_context_unpin(ring, ctx);
		kfree(request);
		return ret;
889 890
	}

891 892
	request->ctx = ctx;
	i915_gem_context_reference(request->ctx);
893
	request->ringbuf = ctx->engine[ring->id].ringbuf;
894

895
	ring->outstanding_lazy_request = request;
896
	return 0;
897 898 899 900 901 902 903 904 905
}

static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
				     int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_i915_gem_request *request;
	int ret;

906 907
	if (intel_ring_space(ringbuf) >= bytes)
		return 0;
908 909

	list_for_each_entry(request, &ring->request_list, list) {
910 911 912 913 914 915 916 917 918 919
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
		struct intel_context *ctx = request->ctx;
		if (ctx->engine[ring->id].ringbuf != ringbuf)
			continue;

		/* Would completion of this request free enough space? */
920 921 922 923 924 925
		if (__intel_ring_space(request->tail, ringbuf->tail,
				       ringbuf->size) >= bytes) {
			break;
		}
	}

926
	if (&request->list == &ring->request_list)
927 928
		return -ENOSPC;

929
	ret = i915_wait_request(request);
930 931 932 933 934
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

935
	return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
936 937 938
}

static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
939
				       struct intel_context *ctx,
940 941 942 943 944 945 946 947 948 949 950 951 952
				       int bytes)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long end;
	int ret;

	ret = logical_ring_wait_request(ringbuf, bytes);
	if (ret != -ENOSPC)
		return ret;

	/* Force the context submission in case we have been skipping it */
953
	intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
954 955 956 957 958 959 960 961

	/* With GEM the hangcheck timer should kick us out of the loop,
	 * leaving it early runs the risk of corrupting GEM state (due
	 * to running on almost untested codepaths). But on resume
	 * timers don't work yet, so prevent a complete hang in that
	 * case by choosing an insanely large timeout. */
	end = jiffies + 60 * HZ;

962
	ret = 0;
963
	do {
964
		if (intel_ring_space(ringbuf) >= bytes)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
			break;

		msleep(1);

		if (dev_priv->mm.interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
					   dev_priv->mm.interruptible);
		if (ret)
			break;

		if (time_after(jiffies, end)) {
			ret = -EBUSY;
			break;
		}
	} while (1);

	return ret;
}

988 989
static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
				    struct intel_context *ctx)
990 991 992 993 994
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	if (ringbuf->space < rem) {
995
		int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006

		if (ret)
			return ret;
	}

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
1007
	intel_ring_update_space(ringbuf);
1008 1009 1010 1011

	return 0;
}

1012 1013
static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
				struct intel_context *ctx, int bytes)
1014 1015 1016 1017
{
	int ret;

	if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1018
		ret = logical_ring_wrap_buffer(ringbuf, ctx);
1019 1020 1021 1022 1023
		if (unlikely(ret))
			return ret;
	}

	if (unlikely(ringbuf->space < bytes)) {
1024
		ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
1025 1026 1027 1028 1029 1030 1031
		if (unlikely(ret))
			return ret;
	}

	return 0;
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
 * @ringbuf: Logical ringbuffer.
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
1045 1046
int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
			     struct intel_context *ctx, int num_dwords)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

1058
	ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
1059 1060 1061 1062
	if (ret)
		return ret;

	/* Preallocate the olr before touching the ring */
1063
	ret = logical_ring_alloc_request(ring, ctx);
1064 1065 1066 1067 1068 1069 1070
	if (ret)
		return ret;

	ringbuf->space -= num_dwords * sizeof(uint32_t);
	return 0;
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
					       struct intel_context *ctx)
{
	int ret, i;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1080
	if (WARN_ON_ONCE(w->count == 0))
1081 1082 1083
		return 0;

	ring->gpu_caches_dirty = true;
1084
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1085 1086 1087
	if (ret)
		return ret;

1088
	ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
		intel_logical_ring_emit(ringbuf, w->reg[i].addr);
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1102
	ret = logical_ring_flush_all_caches(ringbuf, ctx);
1103 1104 1105 1106 1107 1108
	if (ret)
		return ret;

	return 0;
}

1109 1110 1111 1112 1113
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1114 1115 1116
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1117 1118 1119 1120
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1121
	ring->next_context_status_buffer = 0;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1149
	return init_workarounds_ring(ring);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1163
static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1164
			      struct intel_context *ctx,
1165
			      u64 offset, unsigned dispatch_flags)
1166
{
1167
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1168 1169
	int ret;

1170
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1184 1185 1186 1187 1188 1189
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1190
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1217
static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1218
			   struct intel_context *ctx,
1219 1220 1221 1222 1223 1224 1225 1226 1227
			   u32 invalidate_domains,
			   u32 unused)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1228
	ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1229 1230 1231 1232 1233
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1259
				  struct intel_context *ctx,
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
				  u32 invalidate_domains,
				  u32 flush_domains)
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
	}

1286
	ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1311 1312
static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
			     struct drm_i915_gem_request *request)
1313 1314 1315 1316 1317
{
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 cmd;
	int ret;

1318
	ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1319 1320 1321
	if (ret)
		return ret;

1322
	cmd = MI_STORE_DWORD_IMM_GEN4;
1323 1324 1325 1326 1327 1328 1329
	cmd |= MI_GLOBAL_GTT;

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				(ring->status_page.gfx_addr +
				(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
	intel_logical_ring_emit(ringbuf, 0);
1330 1331
	intel_logical_ring_emit(ringbuf,
		i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1332 1333
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1334
	intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1335 1336 1337 1338

	return 0;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
					      struct intel_context *ctx)
{
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
	struct render_state so;
	struct drm_i915_file_private *file_priv = ctx->file_priv;
	struct drm_file *file = file_priv ? file_priv->file : NULL;
	int ret;

	ret = i915_gem_render_state_prepare(ring, &so);
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

	ret = ring->emit_bb_start(ringbuf,
			ctx,
			so.ggtt_offset,
			I915_DISPATCH_SECURE);
	if (ret)
		goto out;

	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);

	ret = __i915_add_request(ring, file, so.obj);
	/* intel_logical_ring_add_request moves object to inactive if it
	 * fails */
out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static int gen8_init_rcs_context(struct intel_engine_cs *ring,
		       struct intel_context *ctx)
{
	int ret;

	ret = intel_logical_ring_workarounds_emit(ring, ctx);
	if (ret)
		return ret;

	return intel_lr_context_render_state_init(ring, ctx);
}

1384 1385 1386 1387 1388 1389
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1390 1391
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1392
	struct drm_i915_private *dev_priv;
1393

1394 1395 1396
	if (!intel_ring_initialized(ring))
		return;

1397 1398
	dev_priv = ring->dev->dev_private;

1399 1400
	intel_logical_ring_stop(ring);
	WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1401
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
1412 1413 1414 1415
}

static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	init_waitqueue_head(&ring->irq_queue);

1426
	INIT_LIST_HEAD(&ring->execlist_queue);
1427
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1428 1429
	spin_lock_init(&ring->execlist_lock);

1430 1431 1432 1433
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
		return ret;

1434 1435 1436
	ret = intel_lr_context_deferred_create(ring->default_context, ring);

	return ret;
1437 1438 1439 1440 1441 1442
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1443
	int ret;
1444 1445 1446 1447 1448 1449

	ring->name = "render ring";
	ring->id = RCS;
	ring->mmio_base = RENDER_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1450 1451 1452 1453
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1454

1455 1456 1457 1458
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
1459
	ring->init_context = gen8_init_rcs_context;
1460
	ring->cleanup = intel_fini_pipe_control;
1461 1462
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1463
	ring->emit_request = gen8_emit_request;
1464
	ring->emit_flush = gen8_emit_flush_render;
1465 1466
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1467
	ring->emit_bb_start = gen8_emit_bb_start;
1468

1469 1470 1471 1472 1473 1474
	ring->dev = dev;
	ret = logical_ring_init(dev, ring);
	if (ret)
		return ret;

	return intel_init_pipe_control(ring);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
	ring->mmio_base = GEN6_BSD_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1487 1488
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1489

1490
	ring->init_hw = gen8_init_common_ring;
1491 1492
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1493
	ring->emit_request = gen8_emit_request;
1494
	ring->emit_flush = gen8_emit_flush;
1495 1496
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1497
	ring->emit_bb_start = gen8_emit_bb_start;
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

	ring->name = "bds2 ring";
	ring->id = VCS2;
	ring->mmio_base = GEN8_BSD2_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1512 1513
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1514

1515
	ring->init_hw = gen8_init_common_ring;
1516 1517
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1518
	ring->emit_request = gen8_emit_request;
1519
	ring->emit_flush = gen8_emit_flush;
1520 1521
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1522
	ring->emit_bb_start = gen8_emit_bb_start;
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
	ring->mmio_base = BLT_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1537 1538
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1539

1540
	ring->init_hw = gen8_init_common_ring;
1541 1542
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1543
	ring->emit_request = gen8_emit_request;
1544
	ring->emit_flush = gen8_emit_flush;
1545 1546
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1547
	ring->emit_bb_start = gen8_emit_bb_start;
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
	ring->mmio_base = VEBOX_RING_BASE;
	ring->irq_enable_mask =
		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1562 1563
	ring->irq_keep_mask =
		GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1564

1565
	ring->init_hw = gen8_init_common_ring;
1566 1567
	ring->get_seqno = gen8_get_seqno;
	ring->set_seqno = gen8_set_seqno;
1568
	ring->emit_request = gen8_emit_request;
1569
	ring->emit_flush = gen8_emit_flush;
1570 1571
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
1572
	ring->emit_bb_start = gen8_emit_bb_start;
1573

1574 1575 1576
	return logical_ring_init(dev, ring);
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
	if (ret)
		goto cleanup_bsd2_ring;

	return 0;

cleanup_bsd2_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1683 1684 1685 1686
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
1687 1688
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1689
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1690 1691 1692 1693
	struct page *page;
	uint32_t *reg_state;
	int ret;

1694 1695 1696
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
	page = i915_gem_object_get_page(ctx_obj, 1);
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
	if (ring->id == RCS)
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
	else
		reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
	reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
	reg_state[CTX_CONTEXT_CONTROL+1] =
1728 1729
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1730 1731 1732 1733 1734
	reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
	reg_state[CTX_RING_HEAD+1] = 0;
	reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
	reg_state[CTX_RING_TAIL+1] = 0;
	reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1735 1736 1737
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
	reg_state[CTX_RING_BUFFER_CONTROL+1] =
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
	reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
	reg_state[CTX_BB_HEAD_U+1] = 0;
	reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
	reg_state[CTX_BB_HEAD_L+1] = 0;
	reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
	reg_state[CTX_BB_STATE+1] = (1<<5);
	reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
	reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
	reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
	reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
	reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
	reg_state[CTX_SECOND_BB_STATE+1] = 0;
	if (ring->id == RCS) {
		/* TODO: according to BSpec, the register state context
		 * for CHV does not have these. OTOH, these registers do
		 * exist in CHV. I'm waiting for a clarification */
		reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
		reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
		reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
		reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
	}
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
	reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
	reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
	reg_state[CTX_CTX_TIMESTAMP+1] = 0;
	reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
	reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
	reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
	reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
	reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
	reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
	reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
	reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1776 1777 1778 1779 1780 1781 1782 1783
	reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
	reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
	reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
	reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
	reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
	reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
	reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
	reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1784 1785
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1786 1787
		reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
		reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	}

	kunmap_atomic(reg_state);

	ctx_obj->dirty = 1;
	set_page_dirty(page);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

1799 1800 1801 1802 1803 1804 1805 1806
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
1807 1808
void intel_lr_context_free(struct intel_context *ctx)
{
1809 1810 1811 1812
	int i;

	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1813

1814
		if (ctx_obj) {
1815 1816 1817 1818
			struct intel_ringbuffer *ringbuf =
					ctx->engine[i].ringbuf;
			struct intel_engine_cs *ring = ringbuf->ring;

1819 1820 1821 1822
			if (ctx == ring->default_context) {
				intel_unpin_ringbuffer_obj(ringbuf);
				i915_gem_object_ggtt_unpin(ctx_obj);
			}
1823
			WARN_ON(ctx->engine[ring->id].pin_count);
1824 1825
			intel_destroy_ringbuffer_obj(ringbuf);
			kfree(ringbuf);
1826 1827 1828 1829 1830 1831 1832 1833 1834
			drm_gem_object_unreference(&ctx_obj->base);
		}
	}
}

static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
	int ret = 0;

1835
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1836 1837 1838

	switch (ring->id) {
	case RCS:
1839 1840 1841 1842
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1853 1854
}

1855
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	/* The status page is offset 0 from the default context object
	 * in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
	ring->status_page.page_addr =
			kmap(sg_page(default_ctx_obj->pages->sgl));
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/**
 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
1883
 * Return: non-zero on error.
1884
 */
1885 1886 1887
int intel_lr_context_deferred_create(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
{
1888
	const bool is_global_default_ctx = (ctx == ring->default_context);
1889 1890 1891
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
1892
	struct intel_ringbuffer *ringbuf;
1893 1894
	int ret;

1895
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1896
	WARN_ON(ctx->engine[ring->id].state);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906
	context_size = round_up(get_lr_context_size(ring), 4096);

	ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
	if (IS_ERR(ctx_obj)) {
		ret = PTR_ERR(ctx_obj);
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
		return ret;
	}

1907 1908 1909 1910 1911 1912 1913 1914
	if (is_global_default_ctx) {
		ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
		if (ret) {
			DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
					ret);
			drm_gem_object_unreference(&ctx_obj->base);
			return ret;
		}
1915 1916
	}

1917 1918 1919 1920 1921
	ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
	if (!ringbuf) {
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
				ring->name);
		ret = -ENOMEM;
1922
		goto error_unpin_ctx;
1923 1924
	}

1925
	ringbuf->ring = ring;
1926

1927 1928 1929 1930 1931
	ringbuf->size = 32 * PAGE_SIZE;
	ringbuf->effective_size = ringbuf->size;
	ringbuf->head = 0;
	ringbuf->tail = 0;
	ringbuf->last_retired_head = -1;
1932
	intel_ring_update_space(ringbuf);
1933

1934 1935 1936 1937 1938
	if (ringbuf->obj == NULL) {
		ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
		if (ret) {
			DRM_DEBUG_DRIVER(
				"Failed to allocate ringbuffer obj %s: %d\n",
1939
				ring->name, ret);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
			goto error_free_rbuf;
		}

		if (is_global_default_ctx) {
			ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
			if (ret) {
				DRM_ERROR(
					"Failed to pin and map ringbuffer %s: %d\n",
					ring->name, ret);
				goto error_destroy_rbuf;
			}
		}

1953 1954 1955 1956 1957 1958
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
		goto error;
1959 1960 1961
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
1962
	ctx->engine[ring->id].state = ctx_obj;
1963

1964 1965
	if (ctx == ring->default_context)
		lrc_setup_hardware_status_page(ring, ctx_obj);
1966
	else if (ring->id == RCS && !ctx->rcs_initialized) {
1967 1968
		if (ring->init_context) {
			ret = ring->init_context(ring, ctx);
1969
			if (ret) {
1970
				DRM_ERROR("ring init context: %d\n", ret);
1971 1972 1973 1974
				ctx->engine[ring->id].ringbuf = NULL;
				ctx->engine[ring->id].state = NULL;
				goto error;
			}
1975 1976
		}

1977 1978 1979
		ctx->rcs_initialized = true;
	}

1980
	return 0;
1981 1982

error:
1983 1984 1985 1986 1987
	if (is_global_default_ctx)
		intel_unpin_ringbuffer_obj(ringbuf);
error_destroy_rbuf:
	intel_destroy_ringbuffer_obj(ringbuf);
error_free_rbuf:
1988
	kfree(ringbuf);
1989
error_unpin_ctx:
1990 1991
	if (is_global_default_ctx)
		i915_gem_object_ggtt_unpin(ctx_obj);
1992 1993
	drm_gem_object_unreference(&ctx_obj->base);
	return ret;
1994
}
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
		page = i915_gem_object_get_page(ctx_obj, 1);
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}