intel_lrc.c 77.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234 235
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine);
236 237
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
238

239 240 241 242 243 244
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249 250
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
251 252 253 254 255 256
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

257 258 259
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_device *dev = engine->dev;
274

275
	if (IS_GEN8(dev) || IS_GEN9(dev))
276
		engine->idle_lite_restore_wa = ~0;
277

278
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
279
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
280
					(engine->id == VCS || engine->id == VCS2);
281

282 283
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
284 285
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
286 287
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
288 289 290 291 292 293 294

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
295 296
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
297 298
}

299
/**
300 301
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
302
 *
303 304
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
305
 *
306 307 308 309 310 311
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
312
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
313
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
314
 *    bits 32-52:    ctx ID, a globally unique tag
315 316
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
317
 */
318 319
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
320
				   struct intel_engine_cs *engine)
321
{
322
	u64 desc;
323

324
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
325

326 327 328 329
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
330

331
	ctx->engine[engine->id].lrc_desc = desc;
332 333
}

334
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
335
				     struct intel_engine_cs *engine)
336
{
337
	return ctx->engine[engine->id].lrc_desc;
338
}
339

340 341
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
342
{
343

344
	struct intel_engine_cs *engine = rq0->engine;
345
	struct drm_device *dev = engine->dev;
346
	struct drm_i915_private *dev_priv = dev->dev_private;
347
	uint64_t desc[2];
348

349
	if (rq1) {
350
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
351 352 353 354
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
355

356
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
357
	rq0->elsp_submitted++;
358

359
	/* You must always write both descriptors in the order below. */
360 361
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
362

363
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
364
	/* The context is automatically loaded after the following */
365
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
366

367
	/* ELSP is a wo register, use another nearby reg for posting */
368
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
369 370
}

371 372 373 374 375 376 377 378 379 380
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
381
{
382
	struct intel_engine_cs *engine = rq->engine;
383
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
384
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
385

386
	reg_state[CTX_RING_TAIL+1] = rq->tail;
387

388 389 390 391 392 393 394
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
395 396
}

397 398
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
399
{
400
	struct drm_i915_private *dev_priv = rq0->i915;
401
	unsigned int fw_domains = rq0->engine->fw_domains;
402

403
	execlists_update_context(rq0);
404

405
	if (rq1)
406
		execlists_update_context(rq1);
407

408
	spin_lock_irq(&dev_priv->uncore.lock);
409
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
410

411
	execlists_elsp_write(rq0, rq1);
412

413
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
414
	spin_unlock_irq(&dev_priv->uncore.lock);
415 416
}

417
static void execlists_context_unqueue(struct intel_engine_cs *engine)
418
{
419
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
420
	struct drm_i915_gem_request *cursor, *tmp;
421

422
	assert_spin_locked(&engine->execlist_lock);
423

424 425 426 427
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
428
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
429

430
	/* Try to read in pairs */
431
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
432 433 434
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
435
		} else if (req0->ctx == cursor->ctx) {
436 437
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
438
			cursor->elsp_submitted = req0->elsp_submitted;
439 440
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
441 442 443
			req0 = cursor;
		} else {
			req1 = cursor;
444
			WARN_ON(req1->elsp_submitted);
445 446 447 448
			break;
		}
	}

449 450 451
	if (unlikely(!req0))
		return;

452
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
453
		/*
454 455 456 457 458 459
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
460
		 */
461
		struct intel_ringbuffer *ringbuf;
462

463
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
464 465
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
466 467
	}

468
	execlists_submit_requests(req0, req1);
469 470
}

471
static unsigned int
472
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
473
{
474
	struct drm_i915_gem_request *head_req;
475

476
	assert_spin_locked(&engine->execlist_lock);
477

478
	head_req = list_first_entry_or_null(&engine->execlist_queue,
479
					    struct drm_i915_gem_request,
480 481
					    execlist_link);

482 483
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
484 485 486 487 488 489

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

490 491
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
492

493
	return 1;
494 495
}

496
static u32
497
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
498
		   u32 *context_id)
B
Ben Widawsky 已提交
499
{
500
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
501
	u32 status;
B
Ben Widawsky 已提交
502

503 504
	read_pointer %= GEN8_CSB_ENTRIES;

505
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
506 507 508

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
509

510
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
511 512 513
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
514 515
}

516
/**
517
 * intel_lrc_irq_handler() - handle Context Switch interrupts
518
 * @engine: Engine Command Streamer to handle.
519 520 521 522
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
523
static void intel_lrc_irq_handler(unsigned long data)
524
{
525
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
526
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
527
	u32 status_pointer;
528
	unsigned int read_pointer, write_pointer;
529 530
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
531 532
	unsigned int submit_contexts = 0;

533
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
534

535
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
536

537
	read_pointer = engine->next_context_status_buffer;
538
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
539
	if (read_pointer > write_pointer)
540
		write_pointer += GEN8_CSB_ENTRIES;
541 542

	while (read_pointer < write_pointer) {
543 544 545 546 547 548
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
549

550 551 552 553 554 555 556 557
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

558
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
559 560 561 562 563 564 565

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
566 567 568 569 570
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

571
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
572 573
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
574
				execlists_check_remove_request(engine, csb[i][1]);
575 576
	}

577
	if (submit_contexts) {
578
		if (!engine->disable_lite_restore_wa ||
579 580
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
581
	}
582

583
	spin_unlock(&engine->execlist_lock);
584 585 586

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
587 588
}

589
static void execlists_context_queue(struct drm_i915_gem_request *request)
590
{
591
	struct intel_engine_cs *engine = request->engine;
592
	struct drm_i915_gem_request *cursor;
593
	int num_elements = 0;
594

595
	spin_lock_bh(&engine->execlist_lock);
596

597
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
598 599 600 601
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
602
		struct drm_i915_gem_request *tail_req;
603

604
		tail_req = list_last_entry(&engine->execlist_queue,
605
					   struct drm_i915_gem_request,
606 607
					   execlist_link);

608
		if (request->ctx == tail_req->ctx) {
609
			WARN(tail_req->elsp_submitted != 0,
610
				"More than 2 already-submitted reqs queued\n");
611 612
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
613 614 615
		}
	}

616
	i915_gem_request_reference(request);
617
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
618
	request->ctx_hw_id = request->ctx->hw_id;
619
	if (num_elements == 0)
620
		execlists_context_unqueue(engine);
621

622
	spin_unlock_bh(&engine->execlist_lock);
623 624
}

625
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
626
{
627
	struct intel_engine_cs *engine = req->engine;
628 629 630 631
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
632
	if (engine->gpu_caches_dirty)
633 634
		flush_domains = I915_GEM_GPU_DOMAINS;

635
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
636 637 638
	if (ret)
		return ret;

639
	engine->gpu_caches_dirty = false;
640 641 642
	return 0;
}

643
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
644 645
				 struct list_head *vmas)
{
646
	const unsigned other_rings = ~intel_engine_flag(req->engine);
647 648 649 650 651 652 653 654
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

655
		if (obj->active & other_rings) {
656
			ret = i915_gem_object_sync(obj, req->engine, &req);
657 658 659
			if (ret)
				return ret;
		}
660 661 662 663 664 665 666 667 668 669 670 671 672

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
673
	return logical_ring_invalidate_all_caches(req);
674 675
}

676
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
677
{
678
	struct intel_engine_cs *engine = request->engine;
679
	int ret;
680

681 682 683 684
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
685
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
686

687 688 689 690 691 692
	if (request->ctx->engine[engine->id].state == NULL) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

693
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
694

695 696 697 698 699 700 701 702 703 704 705 706 707
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

708 709 710
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
711

712 713 714 715
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

731
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 733 734
	return 0;

err_unpin:
735
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
736
	return ret;
737 738 739 740
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741
 * @request: Request to advance the logical ringbuffer of.
742 743 744 745 746 747
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
748
static int
749
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750
{
751
	struct intel_ringbuffer *ringbuf = request->ringbuf;
752
	struct drm_i915_private *dev_priv = request->i915;
753
	struct intel_engine_cs *engine = request->engine;
754

755 756
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
757

758 759 760 761 762 763 764 765 766
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
767

768
	if (intel_engine_stopped(engine))
769
		return 0;
770

771 772 773 774 775 776 777 778
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
779

780 781 782 783
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
784 785

	return 0;
786 787
}

788 789 790 791 792 793 794 795 796 797
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
798
 * @dispatch_flags: translated execbuffer call flags.
799 800 801 802 803 804
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
805
int intel_execlists_submission(struct i915_execbuffer_params *params,
806
			       struct drm_i915_gem_execbuffer2 *args,
807
			       struct list_head *vmas)
808
{
809
	struct drm_device       *dev = params->dev;
810
	struct intel_engine_cs *engine = params->engine;
811
	struct drm_i915_private *dev_priv = dev->dev_private;
812
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
813
	u64 exec_start;
814 815 816 817 818 819 820 821 822 823
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
824
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

849
	ret = execlists_move_to_gpu(params->request, vmas);
850 851 852
	if (ret)
		return ret;

853
	if (engine == &dev_priv->engine[RCS] &&
854
	    instp_mode != dev_priv->relative_constants_mode) {
855
		ret = intel_ring_begin(params->request, 4);
856 857 858 859 860
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
861
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
862 863 864 865 866 867
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

868 869 870
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

871
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
872 873 874
	if (ret)
		return ret;

875
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
876

877
	i915_gem_execbuffer_move_to_active(vmas, params->request);
878

879 880 881
	return 0;
}

882
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
883
{
884
	struct drm_i915_gem_request *req, *tmp;
885
	LIST_HEAD(cancel_list);
886

887
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
888

889
	spin_lock_bh(&engine->execlist_lock);
890
	list_replace_init(&engine->execlist_queue, &cancel_list);
891
	spin_unlock_bh(&engine->execlist_lock);
892

893
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
894
		list_del(&req->execlist_link);
895
		i915_gem_request_unreference(req);
896 897 898
	}
}

899
void intel_logical_ring_stop(struct intel_engine_cs *engine)
900
{
901
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
902 903
	int ret;

904
	if (!intel_engine_initialized(engine))
905 906
		return;

907
	ret = intel_engine_idle(engine);
908
	if (ret)
909
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
910
			  engine->name, ret);
911 912

	/* TODO: Is this correct with Execlists enabled? */
913 914 915
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
916 917
		return;
	}
918
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
919 920
}

921
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
922
{
923
	struct intel_engine_cs *engine = req->engine;
924 925
	int ret;

926
	if (!engine->gpu_caches_dirty)
927 928
		return 0;

929
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
930 931 932
	if (ret)
		return ret;

933
	engine->gpu_caches_dirty = false;
934 935 936
	return 0;
}

937 938
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
939
{
940 941 942
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
943 944
	void *vaddr;
	u32 *lrc_reg_state;
945
	int ret;
946

947
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
948

949 950 951 952
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
953 954 955
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
956
		goto err;
957

958 959 960
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
961 962 963
		goto unpin_ctx_obj;
	}

964 965
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

966
	ringbuf = ctx->engine[engine->id].ringbuf;
967
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
968
	if (ret)
969
		goto unpin_map;
970

971
	i915_gem_context_reference(ctx);
972 973
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
974
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
975
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
976
	ctx_obj->dirty = true;
977

978 979 980
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
981

982
	return 0;
983

984 985
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
986 987
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
988 989
err:
	ctx->engine[engine->id].pin_count = 0;
990 991 992
	return ret;
}

993 994
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
995
{
996
	struct drm_i915_gem_object *ctx_obj;
997

998 999
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1000

1001 1002
	if (--ctx->engine[engine->id].pin_count)
		return;
1003

1004
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1005

1006 1007 1008
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1009

1010 1011 1012
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1013

1014
	i915_gem_context_unreference(ctx);
1015 1016
}

1017
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1018 1019
{
	int ret, i;
1020
	struct intel_engine_cs *engine = req->engine;
1021
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1022
	struct drm_device *dev = engine->dev;
1023 1024 1025
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1026
	if (w->count == 0)
1027 1028
		return 0;

1029
	engine->gpu_caches_dirty = true;
1030
	ret = logical_ring_flush_all_caches(req);
1031 1032 1033
	if (ret)
		return ret;

1034
	ret = intel_ring_begin(req, w->count * 2 + 2);
1035 1036 1037 1038 1039
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1040
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1041 1042 1043 1044 1045 1046
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1047
	engine->gpu_caches_dirty = true;
1048
	ret = logical_ring_flush_all_caches(req);
1049 1050 1051 1052 1053 1054
	if (ret)
		return ret;

	return 0;
}

1055
#define wa_ctx_emit(batch, index, cmd)					\
1056
	do {								\
1057 1058
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1059 1060
			return -ENOSPC;					\
		}							\
1061
		batch[__index] = (cmd);					\
1062 1063
	} while (0)

V
Ville Syrjälä 已提交
1064
#define wa_ctx_emit_reg(batch, index, reg) \
1065
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1083
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1084 1085 1086 1087 1088
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1089 1090 1091 1092 1093 1094
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1095
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1096 1097
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1098
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1099
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1100
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1101
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1102 1103 1104
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1105
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1116
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1117
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1118
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1119
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1120
	wa_ctx_emit(batch, index, 0);
1121 1122 1123 1124

	return index;
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1163
 *
1164 1165 1166 1167 1168 1169 1170 1171
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1172
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1173 1174 1175 1176
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1177
	uint32_t scratch_addr;
1178 1179
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1180
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1181
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1182

1183
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1184 1185
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1186 1187 1188
		if (rc < 0)
			return rc;
		index = rc;
1189 1190
	}

1191 1192
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1193
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1204

1205 1206
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1207
		wa_ctx_emit(batch, index, MI_NOOP);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1225
 * @batch: page in which WA are loaded
1226 1227 1228 1229 1230 1231 1232 1233 1234
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1235
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1236 1237 1238 1239 1240 1241
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1242
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1243
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1244

1245
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1246 1247 1248 1249

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1250
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1251 1252 1253 1254
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1255
	int ret;
1256
	struct drm_device *dev = engine->dev;
1257 1258
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1259
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1260
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1261
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1262
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1263

1264
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1265
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1266 1267 1268 1269
	if (ret < 0)
		return ret;
	index = ret;

1270 1271 1272 1273 1274 1275 1276
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1277
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1278 1279 1280 1281
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1282
	struct drm_device *dev = engine->dev;
1283 1284
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1285
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1286
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1287
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1288
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1289
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1290 1291 1292 1293 1294
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1314
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1315
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1316
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1317 1318
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1319 1320 1321 1322 1323
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1324
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1325 1326 1327
{
	int ret;

1328
	engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1329
						   PAGE_ALIGN(size));
1330
	if (IS_ERR(engine->wa_ctx.obj)) {
1331
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1332 1333 1334
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1335 1336
	}

1337
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1338 1339 1340
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1341
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1342 1343 1344 1345 1346 1347
		return ret;
	}

	return 0;
}

1348
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1349
{
1350 1351 1352 1353
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1354 1355 1356
	}
}

1357
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1358 1359 1360 1361 1362
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1363
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1364

1365
	WARN_ON(engine->id != RCS);
1366

1367
	/* update this when WA for higher Gen are added */
1368
	if (INTEL_INFO(engine->dev)->gen > 9) {
1369
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1370
			  INTEL_INFO(engine->dev)->gen);
1371
		return 0;
1372
	}
1373

1374
	/* some WA perform writes to scratch page, ensure it is valid */
1375 1376
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1377 1378 1379
		return -EINVAL;
	}

1380
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1381 1382 1383 1384 1385
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1386
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1387 1388 1389
	batch = kmap_atomic(page);
	offset = 0;

1390 1391
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1392 1393 1394 1395 1396 1397
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1398
		ret = gen8_init_perctx_bb(engine,
1399 1400 1401 1402 1403
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1404 1405
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1406 1407 1408 1409 1410 1411
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1412
		ret = gen9_init_perctx_bb(engine,
1413 1414 1415 1416 1417
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1418 1419 1420 1421 1422
	}

out:
	kunmap_atomic(batch);
	if (ret)
1423
		lrc_destroy_wa_ctx_obj(engine);
1424 1425 1426 1427

	return ret;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1437
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1438
{
1439
	struct drm_device *dev = engine->dev;
1440
	struct drm_i915_private *dev_priv = dev->dev_private;
1441
	unsigned int next_context_status_buffer_hw;
1442

1443
	lrc_init_hws(engine);
1444

1445 1446 1447
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1448

1449
	I915_WRITE(RING_MODE_GEN7(engine),
1450 1451
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1452
	POSTING_READ(RING_MODE_GEN7(engine));
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1463 1464
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1465
	 */
1466
	next_context_status_buffer_hw =
1467
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1468 1469 1470 1471 1472 1473 1474 1475 1476

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1477 1478
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1479

1480
	intel_engine_init_hangcheck(engine);
1481

1482
	return intel_mocs_init_engine(engine);
1483 1484
}

1485
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1486
{
1487
	struct drm_device *dev = engine->dev;
1488 1489 1490
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1491
	ret = gen8_init_common_ring(engine);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1505
	return init_workarounds_ring(engine);
1506 1507
}

1508
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1509 1510 1511
{
	int ret;

1512
	ret = gen8_init_common_ring(engine);
1513 1514 1515
	if (ret)
		return ret;

1516
	return init_workarounds_ring(engine);
1517 1518
}

1519 1520 1521
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1522
	struct intel_engine_cs *engine = req->engine;
1523 1524 1525 1526
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1527
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1528 1529 1530 1531 1532 1533 1534
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1535 1536
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1537
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1538 1539
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1540 1541 1542 1543 1544 1545 1546 1547 1548
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1549
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1550
			      u64 offset, unsigned dispatch_flags)
1551
{
1552
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1553
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1554 1555
	int ret;

1556 1557 1558 1559
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1560 1561
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1562
	if (req->ctx->ppgtt &&
1563
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1564 1565
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1566 1567 1568 1569
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1570

1571
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1572 1573
	}

1574
	ret = intel_ring_begin(req, 4);
1575 1576 1577 1578
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1579 1580 1581 1582
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1583 1584 1585 1586 1587 1588 1589 1590
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1591
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1592
{
1593
	struct drm_device *dev = engine->dev;
1594 1595 1596
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1597
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598 1599 1600
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601 1602 1603 1604
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1605 1606 1607 1608 1609 1610
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1611
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1612
{
1613
	struct drm_device *dev = engine->dev;
1614 1615 1616 1617
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1618 1619 1620
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1621 1622 1623 1624
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1625
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1626 1627 1628
			   u32 invalidate_domains,
			   u32 unused)
{
1629
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1630
	struct intel_engine_cs *engine = ringbuf->engine;
1631
	struct drm_device *dev = engine->dev;
1632 1633 1634 1635
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1636
	ret = intel_ring_begin(request, 4);
1637 1638 1639 1640 1641
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1642 1643 1644 1645 1646 1647 1648 1649 1650
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1651
		if (engine == &dev_priv->engine[VCS])
1652
			cmd |= MI_INVALIDATE_BSD;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1666
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1667 1668 1669
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1670
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1671
	struct intel_engine_cs *engine = ringbuf->engine;
1672
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1673
	bool vf_flush_wa = false;
1674 1675 1676 1677 1678 1679 1680 1681
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1682
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1683
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1696 1697 1698 1699
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1700
		if (IS_GEN9(engine->dev))
1701 1702
			vf_flush_wa = true;
	}
1703

1704
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1705 1706 1707
	if (ret)
		return ret;

1708 1709 1710 1711 1712 1713 1714 1715 1716
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1728
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1729
{
1730
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1731 1732
}

1733
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1734
{
1735
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1736 1737
}

1738
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1750
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1751 1752
}

1753
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1754
{
1755
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1756 1757

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1758
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1759 1760
}

1761 1762 1763 1764 1765 1766 1767
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1768
static int gen8_emit_request(struct drm_i915_gem_request *request)
1769
{
1770
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1771 1772
	int ret;

1773
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1774 1775 1776
	if (ret)
		return ret;

1777 1778
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1779 1780

	intel_logical_ring_emit(ringbuf,
1781 1782
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1783
				intel_hws_seqno_address(request->engine) |
1784
				MI_FLUSH_DW_USE_GTT);
1785
	intel_logical_ring_emit(ringbuf, 0);
1786
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1787 1788
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1789 1790
	return intel_logical_ring_advance_and_submit(request);
}
1791

1792 1793 1794 1795
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1796

1797
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1798 1799 1800
	if (ret)
		return ret;

1801 1802 1803
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1804 1805 1806 1807
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1808
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1809 1810 1811 1812
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1813 1814
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1815 1816
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1817 1818
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1819
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1820
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1821
	return intel_logical_ring_advance_and_submit(request);
1822 1823
}

1824
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1825 1826 1827 1828
{
	struct render_state so;
	int ret;

1829
	ret = i915_gem_render_state_prepare(req->engine, &so);
1830 1831 1832 1833 1834 1835
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1836
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1837
				       I915_DISPATCH_SECURE);
1838 1839 1840
	if (ret)
		goto out;

1841
	ret = req->engine->emit_bb_start(req,
1842 1843 1844 1845 1846
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1847
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1848 1849 1850 1851 1852 1853

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1854
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1855 1856 1857
{
	int ret;

1858
	ret = intel_logical_ring_workarounds_emit(req);
1859 1860 1861
	if (ret)
		return ret;

1862 1863 1864 1865 1866 1867 1868 1869
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1870
	return intel_lr_context_render_state_init(req);
1871 1872
}

1873 1874 1875 1876 1877 1878
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1879
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1880
{
1881
	struct drm_i915_private *dev_priv;
1882

1883
	if (!intel_engine_initialized(engine))
1884 1885
		return;

1886 1887 1888 1889 1890 1891 1892
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1893
	dev_priv = engine->dev->dev_private;
1894

1895 1896 1897
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1898
	}
1899

1900 1901
	if (engine->cleanup)
		engine->cleanup(engine);
1902

1903 1904
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1905

1906
	if (engine->status_page.obj) {
1907
		i915_gem_object_unpin_map(engine->status_page.obj);
1908
		engine->status_page.obj = NULL;
1909
	}
1910
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1911

1912 1913 1914
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1915

1916 1917
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1918 1919
}

1920 1921
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1922
			    struct intel_engine_cs *engine)
1923 1924
{
	/* Default vfuncs which can be overriden by each engine. */
1925 1926 1927 1928 1929 1930
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1931 1932
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1933
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1934
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1935
		engine->set_seqno = bxt_a_set_seqno;
1936 1937 1938
	}
}

1939
static inline void
1940
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1941
{
1942 1943
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1944 1945
}

1946
static int
1947 1948 1949
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1950
	void *hws;
1951 1952 1953 1954

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1955 1956 1957 1958
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1959
	engine->status_page.obj = dctx_obj;
1960 1961

	return 0;
1962 1963
}

1964
static int
1965
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1966
{
1967 1968 1969
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
1970 1971 1972
	int ret;

	/* Intentionally left blank. */
1973
	engine->buffer = NULL;
1974

1975 1976 1977 1978 1979
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
1980

1981 1982 1983
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);
1984

1985 1986 1987
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

1988
	logical_ring_init_platform_invariants(engine);
1989

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2004
	ret = i915_cmd_parser_init_ring(engine);
2005
	if (ret)
2006
		goto error;
2007

2008
	ret = execlists_context_deferred_alloc(dctx, engine);
2009
	if (ret)
2010
		goto error;
2011 2012

	/* As this is the default context, always pin it */
2013
	ret = intel_lr_context_pin(dctx, engine);
2014
	if (ret) {
2015 2016
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2017
		goto error;
2018
	}
2019

2020
	/* And setup the hardware status page. */
2021 2022 2023 2024 2025
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2026

2027 2028 2029
	return 0;

error:
2030
	intel_logical_ring_cleanup(engine);
2031
	return ret;
2032 2033 2034 2035 2036
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2037
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2038
	int ret;
2039

2040 2041 2042 2043 2044
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2045

2046
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2047
	if (HAS_L3_DPF(dev))
2048
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2049

2050
	logical_ring_default_vfuncs(dev, engine);
2051 2052

	/* Override some for render ring. */
2053
	if (INTEL_INFO(dev)->gen >= 9)
2054
		engine->init_hw = gen9_init_render_ring;
2055
	else
2056 2057 2058 2059 2060
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2061

2062
	engine->dev = dev;
2063

2064
	ret = intel_init_pipe_control(engine);
2065 2066 2067
	if (ret)
		return ret;

2068
	ret = intel_init_workaround_bb(engine);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2079
	ret = logical_ring_init(dev, engine);
2080
	if (ret) {
2081
		lrc_destroy_wa_ctx_obj(engine);
2082
	}
2083 2084

	return ret;
2085 2086 2087 2088 2089
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2090
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2091

2092 2093 2094 2095 2096
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2097

2098 2099
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2100

2101
	return logical_ring_init(dev, engine);
2102 2103 2104 2105 2106
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2107
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2108

2109 2110 2111 2112 2113
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2114

2115 2116
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2117

2118
	return logical_ring_init(dev, engine);
2119 2120 2121 2122 2123
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2124
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2125

2126 2127 2128 2129 2130
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2131

2132 2133
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2134

2135
	return logical_ring_init(dev, engine);
2136 2137 2138 2139 2140
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2141
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2142

2143 2144 2145 2146 2147
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2148

2149 2150
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2151

2152
	return logical_ring_init(dev, engine);
2153 2154
}

2155 2156 2157 2158 2159
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2160
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2161 2162 2163 2164
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2201
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2202
cleanup_blt_ring:
2203
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2204
cleanup_bsd_ring:
2205
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2206
cleanup_render_ring:
2207
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2208 2209 2210 2211

	return ret;
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2255
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2256 2257 2258
{
	u32 indirect_ctx_offset;

2259
	switch (INTEL_INFO(engine->dev)->gen) {
2260
	default:
2261
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2276
static int
2277 2278
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2279 2280
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2281
{
2282
	struct drm_device *dev = engine->dev;
2283
	struct drm_i915_private *dev_priv = dev->dev_private;
2284
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2285 2286
	void *vaddr;
	u32 *reg_state;
2287 2288
	int ret;

2289 2290 2291
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2292 2293 2294 2295 2296 2297
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2298 2299 2300 2301
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2302 2303
		return ret;
	}
2304
	ctx_obj->dirty = true;
2305 2306 2307

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2308
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2309 2310 2311 2312 2313 2314

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2315
	reg_state[CTX_LRI_HEADER_0] =
2316 2317 2318
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2319 2320
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2321 2322
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2323 2324 2325 2326
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2327 2328 2329
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2330 2331 2332 2333
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2334
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2335 2336 2337 2338 2339 2340
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2341
		       RING_BB_PPGTT);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2357 2358 2359 2360 2361 2362 2363
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2364
				intel_lr_indirect_ctx_offset(engine) << 6;
2365 2366 2367 2368 2369

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2370
	}
2371
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2372 2373
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2374
	/* PDP values well be assigned later if needed */
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2404
		execlists_update_context_pdps(ppgtt, reg_state);
2405 2406
	}

2407
	if (engine->id == RCS) {
2408
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2409 2410
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2411 2412
	}

2413
	i915_gem_object_unpin_map(ctx_obj);
2414 2415 2416 2417

	return 0;
}

2418 2419 2420 2421 2422 2423 2424 2425
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2426 2427
void intel_lr_context_free(struct intel_context *ctx)
{
2428 2429
	int i;

2430
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2431
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2432
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2433

D
Dave Gordon 已提交
2434 2435
		if (!ctx_obj)
			continue;
2436

D
Dave Gordon 已提交
2437 2438 2439
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2440 2441 2442
	}
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2457
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2458 2459 2460
{
	int ret = 0;

2461
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2462

2463
	switch (engine->id) {
2464
	case RCS:
2465
		if (INTEL_INFO(engine->dev)->gen >= 9)
2466 2467 2468
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2479 2480
}

2481
/**
2482
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2483
 * @ctx: LR context to create.
2484
 * @engine: engine to be used with the context.
2485 2486 2487 2488 2489 2490 2491
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2492
 * Return: non-zero on error.
2493
 */
2494 2495
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine)
2496
{
2497
	struct drm_device *dev = engine->dev;
2498 2499
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2500
	struct intel_ringbuffer *ringbuf;
2501 2502
	int ret;

2503
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2504
	WARN_ON(ctx->engine[engine->id].state);
2505

2506
	context_size = round_up(intel_lr_context_size(engine), 4096);
2507

2508 2509 2510
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2511
	ctx_obj = i915_gem_object_create(dev, context_size);
2512
	if (IS_ERR(ctx_obj)) {
2513
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2514
		return PTR_ERR(ctx_obj);
2515 2516
	}

2517
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2518 2519
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2520
		goto error_deref_obj;
2521 2522
	}

2523
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2524 2525
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2526
		goto error_ringbuf;
2527 2528
	}

2529 2530
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2531
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2532 2533

	return 0;
2534

2535 2536
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2537
error_deref_obj:
2538
	drm_gem_object_unreference(&ctx_obj->base);
2539 2540
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2541
	return ret;
2542
}
2543

2544 2545
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2546
{
2547
	struct intel_engine_cs *engine;
2548

2549
	for_each_engine(engine, dev_priv) {
2550
		struct drm_i915_gem_object *ctx_obj =
2551
				ctx->engine[engine->id].state;
2552
		struct intel_ringbuffer *ringbuf =
2553
				ctx->engine[engine->id].ringbuf;
2554
		void *vaddr;
2555 2556 2557 2558 2559
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2560 2561
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2562
			continue;
2563 2564 2565

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2566 2567 2568 2569

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2570
		i915_gem_object_unpin_map(ctx_obj);
2571 2572 2573 2574 2575

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}