intel_lrc.c 70.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290 291
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
292
 * @engine: Engine the descriptor will be used with
293
 *
294 295 296 297 298
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
299 300 301 302 303 304 305
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443
			list_del(&req0->execlist_link);
444
			i915_gem_request_put(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		req0->tail += 8;
486
		req0->tail &= req0->ring->size - 1;
487 488
	}

489
	execlists_submit_requests(req0, req1);
490 491
}

492
static unsigned int
493
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
494
{
495
	struct drm_i915_gem_request *head_req;
496

497
	assert_spin_locked(&engine->execlist_lock);
498

499
	head_req = list_first_entry_or_null(&engine->execlist_queue,
500
					    struct drm_i915_gem_request,
501 502
					    execlist_link);

503 504
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
505 506 507 508 509 510

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

511 512
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

513
	list_del(&head_req->execlist_link);
514
	i915_gem_request_put(head_req);
515

516
	return 1;
517 518
}

519
static u32
520
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521
		   u32 *context_id)
B
Ben Widawsky 已提交
522
{
523
	struct drm_i915_private *dev_priv = engine->i915;
524
	u32 status;
B
Ben Widawsky 已提交
525

526 527
	read_pointer %= GEN8_CSB_ENTRIES;

528
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529 530 531

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
532

533
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534 535 536
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
537 538
}

539
/*
540 541 542
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->i915;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599 600
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_context_queue(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct drm_i915_gem_request *cursor;
613
	int num_elements = 0;
614

615
	spin_lock_bh(&engine->execlist_lock);
616

617
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
618 619 620 621
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
622
		struct drm_i915_gem_request *tail_req;
623

624
		tail_req = list_last_entry(&engine->execlist_queue,
625
					   struct drm_i915_gem_request,
626 627
					   execlist_link);

628
		if (request->ctx == tail_req->ctx) {
629
			WARN(tail_req->elsp_submitted != 0,
630
				"More than 2 already-submitted reqs queued\n");
631
			list_del(&tail_req->execlist_link);
632
			i915_gem_request_put(tail_req);
633 634 635
		}
	}

636
	i915_gem_request_get(request);
637
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
638
	request->ctx_hw_id = request->ctx->hw_id;
639
	if (num_elements == 0)
640
		execlists_context_unqueue(engine);
641

642
	spin_unlock_bh(&engine->execlist_lock);
643 644
}

645
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
646 647
				 struct list_head *vmas)
{
648
	const unsigned other_rings = ~intel_engine_flag(req->engine);
649 650 651 652 653 654 655 656
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

657
		if (obj->active & other_rings) {
658
			ret = i915_gem_object_sync(obj, req);
659 660 661
			if (ret)
				return ret;
		}
662 663 664 665 666 667 668 669 670 671 672 673 674

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
675
	return req->engine->emit_flush(req, EMIT_INVALIDATE);
676 677
}

678
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
679
{
680
	struct intel_engine_cs *engine = request->engine;
681
	struct intel_context *ce = &request->ctx->engine[engine->id];
682
	int ret;
683

684 685 686 687
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
688
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
689

690
	if (!ce->state) {
691 692 693 694 695
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

696
	request->ring = ce->ring;
697

698 699 700 701 702 703
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
704
		ret = i915_guc_wq_check_space(request);
705 706 707 708
		if (ret)
			return ret;
	}

709 710 711
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
712

713 714 715 716
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

717
	if (!ce->initialised) {
718 719 720 721
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

722
		ce->initialised = true;
723 724 725 726 727 728 729 730 731
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

732
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
733 734 735
	return 0;

err_unpin:
736
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
737
	return ret;
738 739 740
}

/*
741
 * intel_logical_ring_advance() - advance the tail and prepare for submission
742
 * @request: Request to advance the logical ringbuffer of.
743 744 745 746 747 748
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
749
static int
750
intel_logical_ring_advance(struct drm_i915_gem_request *request)
751
{
752
	struct intel_ring *ring = request->ring;
753
	struct intel_engine_cs *engine = request->engine;
754

755 756
	intel_ring_advance(ring);
	request->tail = ring->tail;
757

758 759 760 761 762 763
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
764 765 766
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
767

768 769 770 771 772 773 774 775
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
776
	return 0;
777 778
}

779
/**
780
 * intel_execlists_submission() - submit a batchbuffer for execution, Execlists style
781
 * @params: execbuffer call parameters.
782 783 784 785 786 787 788 789
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
790
int intel_execlists_submission(struct i915_execbuffer_params *params,
791
			       struct drm_i915_gem_execbuffer2 *args,
792
			       struct list_head *vmas)
793
{
794
	struct drm_device       *dev = params->dev;
795
	struct intel_engine_cs *engine = params->engine;
796
	struct drm_i915_private *dev_priv = to_i915(dev);
797
	struct intel_ring *ring = params->request->ring;
798
	u64 exec_start;
799 800 801 802 803 804 805 806 807 808
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
809
		if (instp_mode != 0 && engine->id != RCS) {
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

834
	ret = execlists_move_to_gpu(params->request, vmas);
835 836 837
	if (ret)
		return ret;

838
	if (engine->id == RCS &&
839
	    instp_mode != dev_priv->relative_constants_mode) {
840
		ret = intel_ring_begin(params->request, 4);
841 842 843
		if (ret)
			return ret;

844 845 846 847 848
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(ring, INSTPM);
		intel_ring_emit(ring, instp_mask << 16 | instp_mode);
		intel_ring_advance(ring);
849 850 851 852

		dev_priv->relative_constants_mode = instp_mode;
	}

853 854 855
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

856 857 858
	ret = engine->emit_bb_start(params->request,
				    exec_start, args->batch_len,
				    params->dispatch_flags);
859 860 861
	if (ret)
		return ret;

862
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
863

864
	i915_gem_execbuffer_move_to_active(vmas, params->request);
865

866 867 868
	return 0;
}

869
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
870
{
871
	struct drm_i915_gem_request *req, *tmp;
872
	LIST_HEAD(cancel_list);
873

874
	WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
875

876
	spin_lock_bh(&engine->execlist_lock);
877
	list_replace_init(&engine->execlist_queue, &cancel_list);
878
	spin_unlock_bh(&engine->execlist_lock);
879

880
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
881
		list_del(&req->execlist_link);
882
		i915_gem_request_put(req);
883 884 885
	}
}

886
void intel_logical_ring_stop(struct intel_engine_cs *engine)
887
{
888
	struct drm_i915_private *dev_priv = engine->i915;
889 890
	int ret;

891
	if (!intel_engine_initialized(engine))
892 893
		return;

894
	ret = intel_engine_idle(engine);
895
	if (ret)
896
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
897
			  engine->name, ret);
898 899

	/* TODO: Is this correct with Execlists enabled? */
900
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
901 902 903 904
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
905
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
906 907
		return;
	}
908
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
909 910
}

911
static int intel_lr_context_pin(struct i915_gem_context *ctx,
912
				struct intel_engine_cs *engine)
913
{
914
	struct drm_i915_private *dev_priv = ctx->i915;
915
	struct intel_context *ce = &ctx->engine[engine->id];
916 917
	void *vaddr;
	u32 *lrc_reg_state;
918
	int ret;
919

920
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
921

922
	if (ce->pin_count++)
923 924
		return 0;

925 926
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
927
	if (ret)
928
		goto err;
929

930
	vaddr = i915_gem_object_pin_map(ce->state);
931 932
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
933 934 935
		goto unpin_ctx_obj;
	}

936 937
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

938
	ret = intel_ring_pin(ce->ring);
939
	if (ret)
940
		goto unpin_map;
941

942
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
943
	intel_lr_context_descriptor_update(ctx, engine);
944

945
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ring->vma->node.start;
946 947
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
948

949 950 951
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
952

953
	i915_gem_context_get(ctx);
954
	return 0;
955

956
unpin_map:
957
	i915_gem_object_unpin_map(ce->state);
958
unpin_ctx_obj:
959
	i915_gem_object_ggtt_unpin(ce->state);
960
err:
961
	ce->pin_count = 0;
962 963 964
	return ret;
}

965
void intel_lr_context_unpin(struct i915_gem_context *ctx,
966
			    struct intel_engine_cs *engine)
967
{
968
	struct intel_context *ce = &ctx->engine[engine->id];
969

970
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
971
	GEM_BUG_ON(ce->pin_count == 0);
972

973
	if (--ce->pin_count)
974
		return;
975

976
	intel_ring_unpin(ce->ring);
977

978 979
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
980

981 982 983
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
984

985
	i915_gem_context_put(ctx);
986 987
}

988
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
989 990
{
	int ret, i;
991
	struct intel_ring *ring = req->ring;
992
	struct i915_workarounds *w = &req->i915->workarounds;
993

994
	if (w->count == 0)
995 996
		return 0;

997
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
998 999 1000
	if (ret)
		return ret;

1001
	ret = intel_ring_begin(req, w->count * 2 + 2);
1002 1003 1004
	if (ret)
		return ret;

1005
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
1006
	for (i = 0; i < w->count; i++) {
1007 1008
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
1009
	}
1010
	intel_ring_emit(ring, MI_NOOP);
1011

1012
	intel_ring_advance(ring);
1013

1014
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
1015 1016 1017 1018 1019 1020
	if (ret)
		return ret;

	return 0;
}

1021
#define wa_ctx_emit(batch, index, cmd)					\
1022
	do {								\
1023 1024
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1025 1026
			return -ENOSPC;					\
		}							\
1027
		batch[__index] = (cmd);					\
1028 1029
	} while (0)

V
Ville Syrjälä 已提交
1030
#define wa_ctx_emit_reg(batch, index, reg) \
1031
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1049
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1050
						uint32_t *batch,
1051 1052 1053 1054
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1055
	/*
1056
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1057 1058 1059 1060
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1061 1062
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1063 1064
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1065
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1066
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1067
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1068
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1069 1070 1071
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1072
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1083
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1084
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1085
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1086
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1087
	wa_ctx_emit(batch, index, 0);
1088 1089 1090 1091

	return index;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1111 1112 1113 1114 1115 1116
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1117
 *
1118 1119
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1120
 *
1121 1122 1123 1124
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1125
 */
1126
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1127
				    struct i915_wa_ctx_bb *wa_ctx,
1128
				    uint32_t *batch,
1129 1130
				    uint32_t *offset)
{
1131
	uint32_t scratch_addr;
1132 1133
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1134
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1135
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1136

1137
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1138
	if (IS_BROADWELL(engine->i915)) {
1139
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1140 1141 1142
		if (rc < 0)
			return rc;
		index = rc;
1143 1144
	}

1145 1146
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1147
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1158

1159 1160
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1161
		wa_ctx_emit(batch, index, MI_NOOP);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1172 1173 1174
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1175
 *
1176
 *  The number of DWORDS written are returned using this field.
1177 1178 1179 1180
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1181
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1182
			       struct i915_wa_ctx_bb *wa_ctx,
1183
			       uint32_t *batch,
1184 1185 1186 1187
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1188
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1189
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1190

1191
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1192 1193 1194 1195

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1196
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1197
				    struct i915_wa_ctx_bb *wa_ctx,
1198
				    uint32_t *batch,
1199 1200
				    uint32_t *offset)
{
1201
	int ret;
1202 1203
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1204
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1205 1206
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1207
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1208

1209
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1210
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1211 1212 1213 1214
	if (ret < 0)
		return ret;
	index = ret;

1215 1216 1217 1218 1219 1220 1221
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1263 1264 1265 1266 1267 1268 1269
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1270
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1271
			       struct i915_wa_ctx_bb *wa_ctx,
1272
			       uint32_t *batch,
1273 1274 1275 1276
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1277
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1278 1279
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1280
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1281
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1282 1283 1284 1285 1286
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1287
	/* WaClearTdlStateAckDirtyBits:bxt */
1288
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1306
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1307 1308
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1309 1310
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1311 1312 1313 1314 1315
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1316
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1317 1318 1319
{
	int ret;

1320 1321
	engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
						    PAGE_ALIGN(size));
1322
	if (IS_ERR(engine->wa_ctx.obj)) {
1323
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1324 1325 1326
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1327 1328
	}

1329
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1330 1331 1332
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1333
		i915_gem_object_put(engine->wa_ctx.obj);
1334 1335 1336 1337 1338 1339
		return ret;
	}

	return 0;
}

1340
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1341
{
1342 1343
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1344
		i915_gem_object_put(engine->wa_ctx.obj);
1345
		engine->wa_ctx.obj = NULL;
1346 1347 1348
	}
}

1349
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1350 1351 1352 1353 1354
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1355
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1356

1357
	WARN_ON(engine->id != RCS);
1358

1359
	/* update this when WA for higher Gen are added */
1360
	if (INTEL_GEN(engine->i915) > 9) {
1361
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1362
			  INTEL_GEN(engine->i915));
1363
		return 0;
1364
	}
1365

1366
	/* some WA perform writes to scratch page, ensure it is valid */
1367 1368
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1369 1370 1371
		return -EINVAL;
	}

1372
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1373 1374 1375 1376 1377
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1378
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1379 1380 1381
	batch = kmap_atomic(page);
	offset = 0;

1382
	if (IS_GEN8(engine->i915)) {
1383
		ret = gen8_init_indirectctx_bb(engine,
1384 1385 1386 1387 1388 1389
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1390
		ret = gen8_init_perctx_bb(engine,
1391 1392 1393 1394 1395
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1396
	} else if (IS_GEN9(engine->i915)) {
1397
		ret = gen9_init_indirectctx_bb(engine,
1398 1399 1400 1401 1402 1403
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1404
		ret = gen9_init_perctx_bb(engine,
1405 1406 1407 1408 1409
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1410 1411 1412 1413 1414
	}

out:
	kunmap_atomic(batch);
	if (ret)
1415
		lrc_destroy_wa_ctx_obj(engine);
1416 1417 1418 1419

	return ret;
}

1420 1421
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1422
	struct drm_i915_private *dev_priv = engine->i915;
1423 1424 1425 1426 1427 1428

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1429
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1430
{
1431
	struct drm_i915_private *dev_priv = engine->i915;
1432
	unsigned int next_context_status_buffer_hw;
1433

1434
	lrc_init_hws(engine);
1435

1436 1437 1438
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1439

1440
	I915_WRITE(RING_MODE_GEN7(engine),
1441 1442
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1443
	POSTING_READ(RING_MODE_GEN7(engine));
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1454 1455
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1456
	 */
1457
	next_context_status_buffer_hw =
1458
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1459 1460 1461 1462 1463 1464 1465 1466 1467

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1468 1469
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1470

1471
	intel_engine_init_hangcheck(engine);
1472

1473
	return intel_mocs_init_engine(engine);
1474 1475
}

1476
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1477
{
1478
	struct drm_i915_private *dev_priv = engine->i915;
1479 1480
	int ret;

1481
	ret = gen8_init_common_ring(engine);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1495
	return init_workarounds_ring(engine);
1496 1497
}

1498
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1499 1500 1501
{
	int ret;

1502
	ret = gen8_init_common_ring(engine);
1503 1504 1505
	if (ret)
		return ret;

1506
	return init_workarounds_ring(engine);
1507 1508
}

1509 1510 1511
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1512
	struct intel_ring *ring = req->ring;
1513
	struct intel_engine_cs *engine = req->engine;
1514 1515 1516
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1517
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1518 1519 1520
	if (ret)
		return ret;

1521
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1522 1523 1524
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1525 1526 1527 1528
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1529 1530
	}

1531 1532
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1533 1534 1535 1536

	return 0;
}

1537
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1538 1539
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1540
{
1541
	struct intel_ring *ring = req->ring;
1542
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1543 1544
	int ret;

1545 1546 1547 1548
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1549 1550
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1551
	if (req->ctx->ppgtt &&
1552
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1553
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1554
		    !intel_vgpu_active(req->i915)) {
1555 1556 1557 1558
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1559

1560
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1561 1562
	}

1563
	ret = intel_ring_begin(req, 4);
1564 1565 1566 1567
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1568 1569 1570 1571 1572 1573 1574 1575
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1576 1577 1578 1579

	return 0;
}

1580
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1581
{
1582
	struct drm_i915_private *dev_priv = engine->i915;
1583 1584 1585
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1586 1587
}

1588
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1589
{
1590
	struct drm_i915_private *dev_priv = engine->i915;
1591
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1592 1593
}

1594
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1595
{
1596 1597
	struct intel_ring *ring = request->ring;
	u32 cmd;
1598 1599
	int ret;

1600
	ret = intel_ring_begin(request, 4);
1601 1602 1603 1604 1605
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1606 1607 1608 1609 1610 1611 1612
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1613
	if (mode & EMIT_INVALIDATE) {
1614
		cmd |= MI_INVALIDATE_TLB;
1615
		if (request->engine->id == VCS)
1616
			cmd |= MI_INVALIDATE_BSD;
1617 1618
	}

1619 1620 1621 1622 1623 1624 1625
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1626 1627 1628 1629

	return 0;
}

1630
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1631
				  u32 mode)
1632
{
1633
	struct intel_ring *ring = request->ring;
1634
	struct intel_engine_cs *engine = request->engine;
1635
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1636
	bool vf_flush_wa = false, dc_flush_wa = false;
1637 1638
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1639
	int len;
1640 1641 1642

	flags |= PIPE_CONTROL_CS_STALL;

1643
	if (mode & EMIT_FLUSH) {
1644 1645
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1646
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1647
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1648 1649
	}

1650
	if (mode & EMIT_INVALIDATE) {
1651 1652 1653 1654 1655 1656 1657 1658 1659
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1660 1661 1662 1663
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1664
		if (IS_GEN9(request->i915))
1665
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1666 1667 1668 1669

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1670
	}
1671

M
Mika Kuoppala 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1681 1682 1683
	if (ret)
		return ret;

1684
	if (vf_flush_wa) {
1685 1686 1687 1688 1689 1690
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1691 1692
	}

M
Mika Kuoppala 已提交
1693
	if (dc_flush_wa) {
1694 1695 1696 1697 1698 1699
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1700 1701
	}

1702 1703 1704 1705 1706 1707
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1708 1709

	if (dc_flush_wa) {
1710 1711 1712 1713 1714 1715
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1716 1717
	}

1718
	intel_ring_advance(ring);
1719 1720 1721 1722

	return 0;
}

1723
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1735
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1736 1737
}

1738 1739 1740 1741 1742 1743 1744
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1745
static int gen8_emit_request(struct drm_i915_gem_request *request)
1746
{
1747
	struct intel_ring *ring = request->ring;
1748 1749
	int ret;

1750
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1751 1752 1753
	if (ret)
		return ret;

1754 1755
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1756

1757 1758 1759 1760 1761 1762 1763 1764
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1765
	return intel_logical_ring_advance(request);
1766
}
1767

1768 1769
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1770
	struct intel_ring *ring = request->ring;
1771
	int ret;
1772

1773
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1774 1775 1776
	if (ret)
		return ret;

1777 1778 1779
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1780 1781 1782 1783
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1784 1785 1786 1787 1788 1789 1790 1791
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1792
	/* We're thrashing one dword of HWS. */
1793 1794 1795
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1796
	return intel_logical_ring_advance(request);
1797 1798
}

1799
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1800 1801 1802 1803
{
	struct render_state so;
	int ret;

1804
	ret = i915_gem_render_state_prepare(req->engine, &so);
1805 1806 1807 1808 1809 1810
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1811
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1812 1813
					 so.rodata->batch_items * 4,
					 I915_DISPATCH_SECURE);
1814 1815 1816
	if (ret)
		goto out;

1817
	ret = req->engine->emit_bb_start(req,
1818 1819 1820
					 (so.ggtt_offset + so.aux_batch_offset),
					 so.aux_batch_size,
					 I915_DISPATCH_SECURE);
1821 1822 1823
	if (ret)
		goto out;

1824
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1825 1826 1827 1828 1829 1830

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1831
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1832 1833 1834
{
	int ret;

1835
	ret = intel_logical_ring_workarounds_emit(req);
1836 1837 1838
	if (ret)
		return ret;

1839 1840 1841 1842 1843 1844 1845 1846
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1847
	return intel_lr_context_render_state_init(req);
1848 1849
}

1850 1851
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1852
 * @engine: Engine Command Streamer.
1853
 */
1854
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1855
{
1856
	struct drm_i915_private *dev_priv;
1857

1858
	if (!intel_engine_initialized(engine))
1859 1860
		return;

1861 1862 1863 1864 1865 1866 1867
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1868
	dev_priv = engine->i915;
1869

1870 1871 1872
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1873
	}
1874

1875 1876
	if (engine->cleanup)
		engine->cleanup(engine);
1877

1878
	intel_engine_cleanup_cmd_parser(engine);
1879
	i915_gem_batch_pool_fini(&engine->batch_pool);
1880

1881 1882
	intel_engine_fini_breadcrumbs(engine);

1883
	if (engine->status_page.obj) {
1884
		i915_gem_object_unpin_map(engine->status_page.obj);
1885
		engine->status_page.obj = NULL;
1886
	}
1887
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1888

1889 1890 1891
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1892

1893
	lrc_destroy_wa_ctx_obj(engine);
1894
	engine->i915 = NULL;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv)
		engine->submit_request = execlists_context_queue;
}

1905
static void
1906
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1907 1908
{
	/* Default vfuncs which can be overriden by each engine. */
1909 1910
	engine->init_hw = gen8_init_common_ring;
	engine->emit_flush = gen8_emit_flush;
1911 1912 1913
	engine->emit_request = gen8_emit_request;
	engine->submit_request = execlists_context_queue;

1914 1915
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1916
	engine->emit_bb_start = gen8_emit_bb_start;
1917
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1918
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1919 1920
}

1921
static inline void
1922
logical_ring_default_irqs(struct intel_engine_cs *engine)
1923
{
1924
	unsigned shift = engine->irq_shift;
1925 1926
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1927 1928
}

1929
static int
1930 1931 1932
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1933
	void *hws;
1934 1935 1936 1937

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1938 1939 1940 1941
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1942
	engine->status_page.obj = dctx_obj;
1943 1944

	return 0;
1945 1946
}

1947 1948 1949 1950 1951 1952
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1953 1954
	intel_engine_setup_common(engine);

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1980 1981 1982 1983 1984 1985
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1986
	ret = intel_engine_init_common(engine);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2016
int logical_render_ring_init(struct intel_engine_cs *engine)
2017 2018 2019 2020
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2021 2022
	logical_ring_setup(engine);

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2036
	ret = intel_init_pipe_control(engine, 4096);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2059
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2060 2061 2062 2063
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2064 2065
}

2066
static u32
2067
make_rpcs(struct drm_i915_private *dev_priv)
2068 2069 2070 2071 2072 2073 2074
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2075
	if (INTEL_GEN(dev_priv) < 9)
2076 2077 2078 2079 2080 2081 2082 2083
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2084
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2085
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2086
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2087 2088 2089 2090
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2091
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2092
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2093
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2094 2095 2096 2097
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2098 2099
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2100
			GEN8_RPCS_EU_MIN_SHIFT;
2101
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2102 2103 2104 2105 2106 2107 2108
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2109
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2110 2111 2112
{
	u32 indirect_ctx_offset;

2113
	switch (INTEL_GEN(engine->i915)) {
2114
	default:
2115
		MISSING_CASE(INTEL_GEN(engine->i915));
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2130
static int
2131
populate_lr_context(struct i915_gem_context *ctx,
2132
		    struct drm_i915_gem_object *ctx_obj,
2133
		    struct intel_engine_cs *engine,
2134
		    struct intel_ring *ring)
2135
{
2136
	struct drm_i915_private *dev_priv = ctx->i915;
2137
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2138 2139
	void *vaddr;
	u32 *reg_state;
2140 2141
	int ret;

2142 2143 2144
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2145 2146 2147 2148 2149 2150
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2151 2152 2153 2154
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2155 2156
		return ret;
	}
2157
	ctx_obj->dirty = true;
2158 2159 2160

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2161
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2162 2163 2164 2165 2166 2167

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2168
	reg_state[CTX_LRI_HEADER_0] =
2169 2170 2171
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2172 2173
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2174
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2175
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2176 2177 2178 2179
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2180 2181 2182
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2183 2184 2185 2186
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2187
		       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2188 2189 2190 2191 2192 2193
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2194
		       RING_BB_PPGTT);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2210 2211 2212 2213 2214 2215 2216
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2217
				intel_lr_indirect_ctx_offset(engine) << 6;
2218 2219 2220 2221 2222

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2223
	}
2224
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2225 2226
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2227
	/* PDP values well be assigned later if needed */
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2244

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2257
		execlists_update_context_pdps(ppgtt, reg_state);
2258 2259
	}

2260
	if (engine->id == RCS) {
2261
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2262
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2263
			       make_rpcs(dev_priv));
2264 2265
	}

2266
	i915_gem_object_unpin_map(ctx_obj);
2267 2268 2269 2270

	return 0;
}

2271 2272
/**
 * intel_lr_context_size() - return the size of the context for an engine
2273
 * @engine: which engine to find the context size for
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2285
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2286 2287 2288
{
	int ret = 0;

2289
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2290

2291
	switch (engine->id) {
2292
	case RCS:
2293
		if (INTEL_GEN(engine->i915) >= 9)
2294 2295 2296
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2307 2308
}

2309
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2310
					    struct intel_engine_cs *engine)
2311
{
2312
	struct drm_i915_gem_object *ctx_obj;
2313
	struct intel_context *ce = &ctx->engine[engine->id];
2314
	uint32_t context_size;
2315
	struct intel_ring *ring;
2316 2317
	int ret;

2318
	WARN_ON(ce->state);
2319

2320
	context_size = round_up(intel_lr_context_size(engine), 4096);
2321

2322 2323 2324
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2325
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2326
	if (IS_ERR(ctx_obj)) {
2327
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2328
		return PTR_ERR(ctx_obj);
2329 2330
	}

2331
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2332 2333
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2334
		goto error_deref_obj;
2335 2336
	}

2337
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2338 2339
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2340
		goto error_ring_free;
2341 2342
	}

2343
	ce->ring = ring;
2344 2345
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2346 2347

	return 0;
2348

2349
error_ring_free:
2350
	intel_ring_free(ring);
2351
error_deref_obj:
2352
	i915_gem_object_put(ctx_obj);
2353
	ce->ring = NULL;
2354
	ce->state = NULL;
2355
	return ret;
2356
}
2357

2358
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2359
			    struct i915_gem_context *ctx)
2360
{
2361
	struct intel_engine_cs *engine;
2362

2363
	for_each_engine(engine, dev_priv) {
2364 2365
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2366
		void *vaddr;
2367 2368 2369 2370 2371
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2372 2373
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2374
			continue;
2375 2376 2377

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2378 2379 2380 2381

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2382
		i915_gem_object_unpin_map(ctx_obj);
2383

2384 2385
		ce->ring->head = 0;
		ce->ring->tail = 0;
2386 2387
	}
}