intel_lrc.c 76.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235
					    struct intel_engine_cs *engine);
236
static int intel_lr_context_pin(struct i915_gem_context *ctx,
237
				struct intel_engine_cs *engine);
238

239 240
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
241
 * @dev_priv: i915 device private
242 243 244
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263 264 265
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
266 267 268 269
		return 1;

	return 0;
}
270

271
static void
272
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273
{
274
	struct drm_i915_private *dev_priv = engine->i915;
275

276
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277
		engine->idle_lite_restore_wa = ~0;
278

279 280
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281
					(engine->id == VCS || engine->id == VCS2);
282

283
	engine->ctx_desc_template = GEN8_CTX_VALID;
284
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
286
	if (IS_GEN8(dev_priv))
287 288
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289 290 291 292 293 294 295

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296 297
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 299
}

300
/**
301 302
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
303
 *
304
 * @ctx: Context to work on
305
 * @engine: Engine the descriptor will be used with
306
 *
307 308 309 310 311 312
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
313
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
314
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
315
 *    bits 32-52:    ctx ID, a globally unique tag
316 317
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
318
 */
319
static void
320
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
321
				   struct intel_engine_cs *engine)
322
{
323
	struct intel_context *ce = &ctx->engine[engine->id];
324
	u64 desc;
325

326
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327

328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
329 330
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
331
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
332

333
	ce->lrc_desc = desc;
334 335
}

336
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
337
				     struct intel_engine_cs *engine)
338
{
339
	return ctx->engine[engine->id].lrc_desc;
340
}
341

342 343
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
344
{
345

346
	struct intel_engine_cs *engine = rq0->engine;
347
	struct drm_i915_private *dev_priv = rq0->i915;
348
	uint64_t desc[2];
349

350
	if (rq1) {
351
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
352 353 354 355
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
356

357
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
358
	rq0->elsp_submitted++;
359

360
	/* You must always write both descriptors in the order below. */
361 362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
363

364
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
365
	/* The context is automatically loaded after the following */
366
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
367

368
	/* ELSP is a wo register, use another nearby reg for posting */
369
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
370 371
}

372 373 374 375 376 377 378 379 380 381
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
382
{
383
	struct intel_engine_cs *engine = rq->engine;
384
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
385
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
386

387
	reg_state[CTX_RING_TAIL+1] = rq->tail;
388

389 390 391 392 393 394 395
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
396 397
}

398 399
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
400
{
401
	struct drm_i915_private *dev_priv = rq0->i915;
402
	unsigned int fw_domains = rq0->engine->fw_domains;
403

404
	execlists_update_context(rq0);
405

406
	if (rq1)
407
		execlists_update_context(rq1);
408

409
	spin_lock_irq(&dev_priv->uncore.lock);
410
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
411

412
	execlists_elsp_write(rq0, rq1);
413

414
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
415
	spin_unlock_irq(&dev_priv->uncore.lock);
416 417
}

418
static void execlists_context_unqueue(struct intel_engine_cs *engine)
419
{
420
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
421
	struct drm_i915_gem_request *cursor, *tmp;
422

423
	assert_spin_locked(&engine->execlist_lock);
424

425 426 427 428
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
429
	WARN_ON(!intel_irqs_enabled(engine->i915));
430

431
	/* Try to read in pairs */
432
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
433 434 435
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
436
		} else if (req0->ctx == cursor->ctx) {
437 438
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
439
			cursor->elsp_submitted = req0->elsp_submitted;
440 441
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
442 443 444
			req0 = cursor;
		} else {
			req1 = cursor;
445
			WARN_ON(req1->elsp_submitted);
446 447 448 449
			break;
		}
	}

450 451 452
	if (unlikely(!req0))
		return;

453
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
454
		/*
455 456 457 458 459 460
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
461
		 */
462
		struct intel_ringbuffer *ringbuf;
463

464
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
465 466
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
467 468
	}

469
	execlists_submit_requests(req0, req1);
470 471
}

472
static unsigned int
473
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
474
{
475
	struct drm_i915_gem_request *head_req;
476

477
	assert_spin_locked(&engine->execlist_lock);
478

479
	head_req = list_first_entry_or_null(&engine->execlist_queue,
480
					    struct drm_i915_gem_request,
481 482
					    execlist_link);

483 484
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
485 486 487 488 489 490

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

491 492
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
493

494
	return 1;
495 496
}

497
static u32
498
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
499
		   u32 *context_id)
B
Ben Widawsky 已提交
500
{
501
	struct drm_i915_private *dev_priv = engine->i915;
502
	u32 status;
B
Ben Widawsky 已提交
503

504 505
	read_pointer %= GEN8_CSB_ENTRIES;

506
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
507 508 509

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
510

511
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
512 513 514
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
515 516
}

517
/**
518
 * intel_lrc_irq_handler() - handle Context Switch interrupts
519
 * @data: tasklet handler passed in unsigned long
520 521 522 523
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
524
static void intel_lrc_irq_handler(unsigned long data)
525
{
526
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527
	struct drm_i915_private *dev_priv = engine->i915;
528
	u32 status_pointer;
529
	unsigned int read_pointer, write_pointer;
530 531
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
532 533
	unsigned int submit_contexts = 0;

534
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
535

536
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
537

538
	read_pointer = engine->next_context_status_buffer;
539
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
540
	if (read_pointer > write_pointer)
541
		write_pointer += GEN8_CSB_ENTRIES;
542 543

	while (read_pointer < write_pointer) {
544 545 546 547 548 549
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
550

551 552 553 554 555 556 557 558
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

559
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
560 561 562 563 564 565 566

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
567 568 569 570 571
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

572
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
573 574
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
575
				execlists_check_remove_request(engine, csb[i][1]);
576 577
	}

578
	if (submit_contexts) {
579
		if (!engine->disable_lite_restore_wa ||
580 581
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
582
	}
583

584
	spin_unlock(&engine->execlist_lock);
585 586 587

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
588 589
}

590
static void execlists_context_queue(struct drm_i915_gem_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593
	struct drm_i915_gem_request *cursor;
594
	int num_elements = 0;
595

596
	spin_lock_bh(&engine->execlist_lock);
597

598
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
599 600 601 602
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
603
		struct drm_i915_gem_request *tail_req;
604

605
		tail_req = list_last_entry(&engine->execlist_queue,
606
					   struct drm_i915_gem_request,
607 608
					   execlist_link);

609
		if (request->ctx == tail_req->ctx) {
610
			WARN(tail_req->elsp_submitted != 0,
611
				"More than 2 already-submitted reqs queued\n");
612 613
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
614 615 616
		}
	}

617
	i915_gem_request_reference(request);
618
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
619
	request->ctx_hw_id = request->ctx->hw_id;
620
	if (num_elements == 0)
621
		execlists_context_unqueue(engine);
622

623
	spin_unlock_bh(&engine->execlist_lock);
624 625
}

626
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627
{
628
	struct intel_engine_cs *engine = req->engine;
629 630 631 632
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
633
	if (engine->gpu_caches_dirty)
634 635
		flush_domains = I915_GEM_GPU_DOMAINS;

636
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637 638 639
	if (ret)
		return ret;

640
	engine->gpu_caches_dirty = false;
641 642 643
	return 0;
}

644
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645 646
				 struct list_head *vmas)
{
647
	const unsigned other_rings = ~intel_engine_flag(req->engine);
648 649 650 651 652 653 654 655
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

656
		if (obj->active & other_rings) {
657
			ret = i915_gem_object_sync(obj, req->engine, &req);
658 659 660
			if (ret)
				return ret;
		}
661 662 663 664 665 666 667 668 669 670 671 672 673

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
674
	return logical_ring_invalidate_all_caches(req);
675 676
}

677
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678
{
679
	struct intel_engine_cs *engine = request->engine;
680
	struct intel_context *ce = &request->ctx->engine[engine->id];
681
	int ret;
682

683 684 685 686
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
687
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
688

689
	if (!ce->state) {
690 691 692 693 694
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

695
	request->ringbuf = ce->ringbuf;
696

697 698 699 700 701 702
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
703
		ret = i915_guc_wq_check_space(request);
704 705 706 707
		if (ret)
			return ret;
	}

708 709 710
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
711

712 713 714 715
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

716
	if (!ce->initialised) {
717 718 719 720
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

721
		ce->initialised = true;
722 723 724 725 726 727 728 729 730
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

731
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 733 734
	return 0;

err_unpin:
735
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
736
	return ret;
737 738 739 740
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741
 * @request: Request to advance the logical ringbuffer of.
742 743 744 745 746 747
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
748
static int
749
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750
{
751
	struct intel_ringbuffer *ringbuf = request->ringbuf;
752
	struct intel_engine_cs *engine = request->engine;
753

754 755
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
756

757 758 759 760 761 762 763 764 765
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
766

767
	if (intel_engine_stopped(engine))
768
		return 0;
769

770 771 772 773 774 775 776 777
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
778

779 780
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
781 782
	else
		execlists_context_queue(request);
783 784

	return 0;
785 786
}

787 788
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
789
 * @params: execbuffer call parameters.
790 791 792 793 794 795 796 797
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
798
int intel_execlists_submission(struct i915_execbuffer_params *params,
799
			       struct drm_i915_gem_execbuffer2 *args,
800
			       struct list_head *vmas)
801
{
802
	struct drm_device       *dev = params->dev;
803
	struct intel_engine_cs *engine = params->engine;
804
	struct drm_i915_private *dev_priv = dev->dev_private;
805
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
806
	u64 exec_start;
807 808 809 810 811 812 813 814 815 816
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
817
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

842
	ret = execlists_move_to_gpu(params->request, vmas);
843 844 845
	if (ret)
		return ret;

846
	if (engine == &dev_priv->engine[RCS] &&
847
	    instp_mode != dev_priv->relative_constants_mode) {
848
		ret = intel_ring_begin(params->request, 4);
849 850 851 852 853
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
854
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
855 856 857 858 859 860
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

861 862 863
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

864
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
865 866 867
	if (ret)
		return ret;

868
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869

870
	i915_gem_execbuffer_move_to_active(vmas, params->request);
871

872 873 874
	return 0;
}

875
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
876
{
877
	struct drm_i915_gem_request *req, *tmp;
878
	LIST_HEAD(cancel_list);
879

880
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
881

882
	spin_lock_bh(&engine->execlist_lock);
883
	list_replace_init(&engine->execlist_queue, &cancel_list);
884
	spin_unlock_bh(&engine->execlist_lock);
885

886
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
887
		list_del(&req->execlist_link);
888
		i915_gem_request_unreference(req);
889 890 891
	}
}

892
void intel_logical_ring_stop(struct intel_engine_cs *engine)
893
{
894
	struct drm_i915_private *dev_priv = engine->i915;
895 896
	int ret;

897
	if (!intel_engine_initialized(engine))
898 899
		return;

900
	ret = intel_engine_idle(engine);
901
	if (ret)
902
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
903
			  engine->name, ret);
904 905

	/* TODO: Is this correct with Execlists enabled? */
906 907 908
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
909 910
		return;
	}
911
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
912 913
}

914
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
915
{
916
	struct intel_engine_cs *engine = req->engine;
917 918
	int ret;

919
	if (!engine->gpu_caches_dirty)
920 921
		return 0;

922
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
923 924 925
	if (ret)
		return ret;

926
	engine->gpu_caches_dirty = false;
927 928 929
	return 0;
}

930
static int intel_lr_context_pin(struct i915_gem_context *ctx,
931
				struct intel_engine_cs *engine)
932
{
933
	struct drm_i915_private *dev_priv = ctx->i915;
934
	struct intel_context *ce = &ctx->engine[engine->id];
935 936
	void *vaddr;
	u32 *lrc_reg_state;
937
	int ret;
938

939
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
940

941
	if (ce->pin_count++)
942 943
		return 0;

944 945
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
946
	if (ret)
947
		goto err;
948

949
	vaddr = i915_gem_object_pin_map(ce->state);
950 951
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
952 953 954
		goto unpin_ctx_obj;
	}

955 956
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

957
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
958
	if (ret)
959
		goto unpin_map;
960

961
	i915_gem_context_reference(ctx);
962
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
963
	intel_lr_context_descriptor_update(ctx, engine);
964 965 966 967

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
968

969 970 971
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
972

973
	return 0;
974

975
unpin_map:
976
	i915_gem_object_unpin_map(ce->state);
977
unpin_ctx_obj:
978
	i915_gem_object_ggtt_unpin(ce->state);
979
err:
980
	ce->pin_count = 0;
981 982 983
	return ret;
}

984
void intel_lr_context_unpin(struct i915_gem_context *ctx,
985
			    struct intel_engine_cs *engine)
986
{
987
	struct intel_context *ce = &ctx->engine[engine->id];
988

989
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
990
	GEM_BUG_ON(ce->pin_count == 0);
991

992
	if (--ce->pin_count)
993
		return;
994

995
	intel_unpin_ringbuffer_obj(ce->ringbuf);
996

997 998
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
999

1000 1001 1002
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1003

1004
	i915_gem_context_unreference(ctx);
1005 1006
}

1007
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1008 1009
{
	int ret, i;
1010
	struct intel_engine_cs *engine = req->engine;
1011
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1012
	struct i915_workarounds *w = &req->i915->workarounds;
1013

1014
	if (w->count == 0)
1015 1016
		return 0;

1017
	engine->gpu_caches_dirty = true;
1018
	ret = logical_ring_flush_all_caches(req);
1019 1020 1021
	if (ret)
		return ret;

1022
	ret = intel_ring_begin(req, w->count * 2 + 2);
1023 1024 1025 1026 1027
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1028
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1029 1030 1031 1032 1033 1034
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1035
	engine->gpu_caches_dirty = true;
1036
	ret = logical_ring_flush_all_caches(req);
1037 1038 1039 1040 1041 1042
	if (ret)
		return ret;

	return 0;
}

1043
#define wa_ctx_emit(batch, index, cmd)					\
1044
	do {								\
1045 1046
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1047 1048
			return -ENOSPC;					\
		}							\
1049
		batch[__index] = (cmd);					\
1050 1051
	} while (0)

V
Ville Syrjälä 已提交
1052
#define wa_ctx_emit_reg(batch, index, reg) \
1053
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1071
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1072 1073 1074 1075 1076
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1077
	/*
1078
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1079 1080 1081 1082
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1083 1084
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1085 1086
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1087
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1088
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1089
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1090
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1091 1092 1093
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1094
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1105
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1106
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1107
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1108
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1109
	wa_ctx_emit(batch, index, 0);
1110 1111 1112 1113

	return index;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
1136
 * @engine: only applicable for RCS
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1152
 *
1153 1154 1155 1156 1157 1158 1159 1160
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1161
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1162 1163 1164 1165
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1166
	uint32_t scratch_addr;
1167 1168
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1169
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1170
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1171

1172
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1173
	if (IS_BROADWELL(engine->i915)) {
1174
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1175 1176 1177
		if (rc < 0)
			return rc;
		index = rc;
1178 1179
	}

1180 1181
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1182
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1193

1194 1195
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1196
		wa_ctx_emit(batch, index, MI_NOOP);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
1210
 * @engine: only applicable for RCS
1211 1212 1213
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1214
 * @batch: page in which WA are loaded
1215 1216 1217 1218 1219 1220 1221 1222 1223
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1224
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1225 1226 1227 1228 1229 1230
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1231
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1232
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1233

1234
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1235 1236 1237 1238

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1239
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1240 1241 1242 1243
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1244
	int ret;
1245 1246
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1247
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1248 1249
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1250
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1251

1252
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1253
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1254 1255 1256 1257
	if (ret < 0)
		return ret;
	index = ret;

1258 1259 1260 1261 1262 1263 1264
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1265
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1266 1267 1268 1269 1270 1271
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1272
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1273 1274
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1275
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1276
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1277 1278 1279 1280 1281
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1282
	/* WaClearTdlStateAckDirtyBits:bxt */
1283
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1301
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1302 1303
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1304 1305
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1306 1307 1308 1309 1310
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1311
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1312 1313 1314
{
	int ret;

1315
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1316
						   PAGE_ALIGN(size));
1317
	if (IS_ERR(engine->wa_ctx.obj)) {
1318
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1319 1320 1321
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1322 1323
	}

1324
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1325 1326 1327
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1328
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1329 1330 1331 1332 1333 1334
		return ret;
	}

	return 0;
}

1335
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1336
{
1337 1338 1339 1340
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1341 1342 1343
	}
}

1344
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1345 1346 1347 1348 1349
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1350
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1351

1352
	WARN_ON(engine->id != RCS);
1353

1354
	/* update this when WA for higher Gen are added */
1355
	if (INTEL_GEN(engine->i915) > 9) {
1356
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1357
			  INTEL_GEN(engine->i915));
1358
		return 0;
1359
	}
1360

1361
	/* some WA perform writes to scratch page, ensure it is valid */
1362 1363
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1364 1365 1366
		return -EINVAL;
	}

1367
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1368 1369 1370 1371 1372
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1373
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1374 1375 1376
	batch = kmap_atomic(page);
	offset = 0;

1377
	if (IS_GEN8(engine->i915)) {
1378
		ret = gen8_init_indirectctx_bb(engine,
1379 1380 1381 1382 1383 1384
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1385
		ret = gen8_init_perctx_bb(engine,
1386 1387 1388 1389 1390
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1391
	} else if (IS_GEN9(engine->i915)) {
1392
		ret = gen9_init_indirectctx_bb(engine,
1393 1394 1395 1396 1397 1398
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1399
		ret = gen9_init_perctx_bb(engine,
1400 1401 1402 1403 1404
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1405 1406 1407 1408 1409
	}

out:
	kunmap_atomic(batch);
	if (ret)
1410
		lrc_destroy_wa_ctx_obj(engine);
1411 1412 1413 1414

	return ret;
}

1415 1416
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1417
	struct drm_i915_private *dev_priv = engine->i915;
1418 1419 1420 1421 1422 1423

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1424
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1425
{
1426
	struct drm_i915_private *dev_priv = engine->i915;
1427
	unsigned int next_context_status_buffer_hw;
1428

1429
	lrc_init_hws(engine);
1430

1431 1432 1433
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1434

1435
	I915_WRITE(RING_MODE_GEN7(engine),
1436 1437
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1438
	POSTING_READ(RING_MODE_GEN7(engine));
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1449 1450
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1451
	 */
1452
	next_context_status_buffer_hw =
1453
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1454 1455 1456 1457 1458 1459 1460 1461 1462

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1463 1464
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1465

1466
	intel_engine_init_hangcheck(engine);
1467

1468
	return intel_mocs_init_engine(engine);
1469 1470
}

1471
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1472
{
1473
	struct drm_i915_private *dev_priv = engine->i915;
1474 1475
	int ret;

1476
	ret = gen8_init_common_ring(engine);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1490
	return init_workarounds_ring(engine);
1491 1492
}

1493
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1494 1495 1496
{
	int ret;

1497
	ret = gen8_init_common_ring(engine);
1498 1499 1500
	if (ret)
		return ret;

1501
	return init_workarounds_ring(engine);
1502 1503
}

1504 1505 1506
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1507
	struct intel_engine_cs *engine = req->engine;
1508 1509 1510 1511
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1512
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1513 1514 1515 1516 1517 1518 1519
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1520 1521
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1522
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1523 1524
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1525 1526 1527 1528 1529 1530 1531 1532 1533
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1534
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1535
			      u64 offset, unsigned dispatch_flags)
1536
{
1537
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1538
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1539 1540
	int ret;

1541 1542 1543 1544
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1545 1546
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1547
	if (req->ctx->ppgtt &&
1548
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1549
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1550
		    !intel_vgpu_active(req->i915)) {
1551 1552 1553 1554
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1555

1556
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1557 1558
	}

1559
	ret = intel_ring_begin(req, 4);
1560 1561 1562 1563
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1564 1565 1566 1567
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1568 1569 1570 1571 1572 1573 1574 1575
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1576
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1577
{
1578
	struct drm_i915_private *dev_priv = engine->i915;
1579 1580
	unsigned long flags;

1581
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1582 1583 1584
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1585 1586 1587 1588
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1589 1590 1591 1592 1593 1594
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1595
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1596
{
1597
	struct drm_i915_private *dev_priv = engine->i915;
1598 1599 1600
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601 1602 1603
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1604 1605 1606 1607
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1608
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1609 1610 1611
			   u32 invalidate_domains,
			   u32 unused)
{
1612
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1613
	struct intel_engine_cs *engine = ringbuf->engine;
1614
	struct drm_i915_private *dev_priv = request->i915;
1615 1616 1617
	uint32_t cmd;
	int ret;

1618
	ret = intel_ring_begin(request, 4);
1619 1620 1621 1622 1623
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1624 1625 1626 1627 1628 1629 1630 1631 1632
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1633
		if (engine == &dev_priv->engine[VCS])
1634
			cmd |= MI_INVALIDATE_BSD;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1648
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1649 1650 1651
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1652
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1653
	struct intel_engine_cs *engine = ringbuf->engine;
1654
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1655
	bool vf_flush_wa = false, dc_flush_wa = false;
1656 1657
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1658
	int len;
1659 1660 1661 1662 1663 1664

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1665
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1666
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1679 1680 1681 1682
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1683
		if (IS_GEN9(request->i915))
1684
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1685 1686 1687 1688

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1689
	}
1690

M
Mika Kuoppala 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1700 1701 1702
	if (ret)
		return ret;

1703 1704 1705 1706 1707 1708 1709 1710 1711
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1721 1722 1723 1724 1725 1726
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1737 1738 1739 1740 1741
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1742
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1743
{
1744
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1745 1746
}

1747
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1748
{
1749
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1750 1751
}

1752
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1764
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1765 1766
}

1767
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1768
{
1769
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1770 1771

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1772
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1773 1774
}

1775 1776 1777 1778 1779 1780 1781
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1782
static int gen8_emit_request(struct drm_i915_gem_request *request)
1783
{
1784
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1785 1786
	int ret;

1787
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1788 1789 1790
	if (ret)
		return ret;

1791 1792
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1793 1794

	intel_logical_ring_emit(ringbuf,
1795 1796
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1797
				intel_hws_seqno_address(request->engine) |
1798
				MI_FLUSH_DW_USE_GTT);
1799
	intel_logical_ring_emit(ringbuf, 0);
1800
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1801 1802
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1803 1804
	return intel_logical_ring_advance_and_submit(request);
}
1805

1806 1807 1808 1809
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1810

1811
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1812 1813 1814
	if (ret)
		return ret;

1815 1816 1817
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1818 1819 1820 1821
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1822
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1823 1824 1825 1826
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1827 1828
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1829 1830
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1831 1832
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1833
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1834
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1835
	return intel_logical_ring_advance_and_submit(request);
1836 1837
}

1838
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1839 1840 1841 1842
{
	struct render_state so;
	int ret;

1843
	ret = i915_gem_render_state_prepare(req->engine, &so);
1844 1845 1846 1847 1848 1849
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1850
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1851
				       I915_DISPATCH_SECURE);
1852 1853 1854
	if (ret)
		goto out;

1855
	ret = req->engine->emit_bb_start(req,
1856 1857 1858 1859 1860
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1861
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1862 1863 1864 1865 1866 1867

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1868
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1869 1870 1871
{
	int ret;

1872
	ret = intel_logical_ring_workarounds_emit(req);
1873 1874 1875
	if (ret)
		return ret;

1876 1877 1878 1879 1880 1881 1882 1883
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1884
	return intel_lr_context_render_state_init(req);
1885 1886
}

1887 1888 1889
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
1890
 * @engine: Engine Command Streamer.
1891 1892
 *
 */
1893
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1894
{
1895
	struct drm_i915_private *dev_priv;
1896

1897
	if (!intel_engine_initialized(engine))
1898 1899
		return;

1900 1901 1902 1903 1904 1905 1906
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1907
	dev_priv = engine->i915;
1908

1909 1910 1911
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1912
	}
1913

1914 1915
	if (engine->cleanup)
		engine->cleanup(engine);
1916

1917 1918
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1919

1920
	if (engine->status_page.obj) {
1921
		i915_gem_object_unpin_map(engine->status_page.obj);
1922
		engine->status_page.obj = NULL;
1923
	}
1924
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1925

1926 1927 1928
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1929

1930
	lrc_destroy_wa_ctx_obj(engine);
1931
	engine->i915 = NULL;
1932 1933
}

1934
static void
1935
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1936 1937
{
	/* Default vfuncs which can be overriden by each engine. */
1938 1939 1940 1941 1942 1943
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1944 1945
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1946
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1947
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1948
		engine->set_seqno = bxt_a_set_seqno;
1949 1950 1951
	}
}

1952
static inline void
1953
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1954
{
1955 1956
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1957
	init_waitqueue_head(&engine->irq_queue);
1958 1959
}

1960
static int
1961 1962 1963
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1964
	void *hws;
1965 1966 1967 1968

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1969 1970 1971 1972
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1973
	engine->status_page.obj = dctx_obj;
1974 1975

	return 0;
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
2024
{
2025
	const struct logical_ring_info *info = &logical_rings[id];
2026
	struct drm_i915_private *dev_priv = to_i915(dev);
2027
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2028
	enum forcewake_domains fw_domains;
2029

2030 2031 2032 2033 2034
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2035

2036
	engine->i915 = dev_priv;
2037

2038 2039
	/* Intentionally left blank. */
	engine->buffer = NULL;
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2069
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2070 2071 2072 2073 2074 2075 2076

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2077
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2078 2079
	int ret;

2080
	ret = i915_cmd_parser_init_ring(engine);
2081
	if (ret)
2082
		goto error;
2083

2084
	ret = execlists_context_deferred_alloc(dctx, engine);
2085
	if (ret)
2086
		goto error;
2087 2088

	/* As this is the default context, always pin it */
2089
	ret = intel_lr_context_pin(dctx, engine);
2090
	if (ret) {
2091 2092
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2093
		goto error;
2094
	}
2095

2096
	/* And setup the hardware status page. */
2097 2098 2099 2100 2101
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2102

2103 2104 2105
	return 0;

error:
2106
	intel_logical_ring_cleanup(engine);
2107
	return ret;
2108 2109 2110 2111
}

static int logical_render_ring_init(struct drm_device *dev)
{
2112
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2113
	int ret;
2114

2115
	if (HAS_L3_DPF(dev))
2116
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2117

2118
	/* Override some for render ring. */
2119
	if (INTEL_INFO(dev)->gen >= 9)
2120
		engine->init_hw = gen9_init_render_ring;
2121
	else
2122 2123 2124 2125 2126
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2127

2128
	ret = intel_init_pipe_control(engine);
2129 2130 2131
	if (ret)
		return ret;

2132
	ret = intel_init_workaround_bb(engine);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2143
	ret = logical_ring_init(engine);
2144
	if (ret) {
2145
		lrc_destroy_wa_ctx_obj(engine);
2146
	}
2147 2148

	return ret;
2149 2150 2151 2152
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2153
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2154

2155
	return logical_ring_init(engine);
2156 2157 2158 2159
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2160
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2161

2162
	return logical_ring_init(engine);
2163 2164 2165 2166
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2167
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2168

2169
	return logical_ring_init(engine);
2170 2171 2172 2173
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2174
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2175

2176
	return logical_ring_init(engine);
2177 2178
}

2179 2180 2181 2182 2183
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2184
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2185 2186 2187 2188
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2225
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2226
cleanup_blt_ring:
2227
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2228
cleanup_bsd_ring:
2229
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2230
cleanup_render_ring:
2231
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2232 2233 2234 2235

	return ret;
}

2236
static u32
2237
make_rpcs(struct drm_i915_private *dev_priv)
2238 2239 2240 2241 2242 2243 2244
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2245
	if (INTEL_GEN(dev_priv) < 9)
2246 2247 2248 2249 2250 2251 2252 2253
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2254
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2255
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2256
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2257 2258 2259 2260
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2261
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2262
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2263
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2264 2265 2266 2267
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2268 2269
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2270
			GEN8_RPCS_EU_MIN_SHIFT;
2271
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2272 2273 2274 2275 2276 2277 2278
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2279
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2280 2281 2282
{
	u32 indirect_ctx_offset;

2283
	switch (INTEL_GEN(engine->i915)) {
2284
	default:
2285
		MISSING_CASE(INTEL_GEN(engine->i915));
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2300
static int
2301
populate_lr_context(struct i915_gem_context *ctx,
2302
		    struct drm_i915_gem_object *ctx_obj,
2303 2304
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2305
{
2306
	struct drm_i915_private *dev_priv = ctx->i915;
2307
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2308 2309
	void *vaddr;
	u32 *reg_state;
2310 2311
	int ret;

2312 2313 2314
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2315 2316 2317 2318 2319 2320
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2321 2322 2323 2324
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2325 2326
		return ret;
	}
2327
	ctx_obj->dirty = true;
2328 2329 2330

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2331
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2332 2333 2334 2335 2336 2337

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2338
	reg_state[CTX_LRI_HEADER_0] =
2339 2340 2341
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2342 2343
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2344
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2345
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2346 2347 2348 2349
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2350 2351 2352
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2353 2354 2355 2356
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2357
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2358 2359 2360 2361 2362 2363
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2364
		       RING_BB_PPGTT);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2380 2381 2382 2383 2384 2385 2386
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2387
				intel_lr_indirect_ctx_offset(engine) << 6;
2388 2389 2390 2391 2392

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2393
	}
2394
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2395 2396
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2397
	/* PDP values well be assigned later if needed */
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2414

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2427
		execlists_update_context_pdps(ppgtt, reg_state);
2428 2429
	}

2430
	if (engine->id == RCS) {
2431
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2432
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2433
			       make_rpcs(dev_priv));
2434 2435
	}

2436
	i915_gem_object_unpin_map(ctx_obj);
2437 2438 2439 2440

	return 0;
}

2441 2442
/**
 * intel_lr_context_size() - return the size of the context for an engine
2443
 * @engine: which engine to find the context size for
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2455
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2456 2457 2458
{
	int ret = 0;

2459
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2460

2461
	switch (engine->id) {
2462
	case RCS:
2463
		if (INTEL_GEN(engine->i915) >= 9)
2464 2465 2466
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2477 2478
}

2479
/**
2480
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2481
 * @ctx: LR context to create.
2482
 * @engine: engine to be used with the context.
2483 2484 2485 2486 2487 2488 2489
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2490
 * Return: non-zero on error.
2491
 */
2492
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2493
					    struct intel_engine_cs *engine)
2494
{
2495
	struct drm_i915_gem_object *ctx_obj;
2496
	struct intel_context *ce = &ctx->engine[engine->id];
2497
	uint32_t context_size;
2498
	struct intel_ringbuffer *ringbuf;
2499 2500
	int ret;

2501
	WARN_ON(ce->state);
2502

2503
	context_size = round_up(intel_lr_context_size(engine), 4096);
2504

2505 2506 2507
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2508
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2509
	if (IS_ERR(ctx_obj)) {
2510
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2511
		return PTR_ERR(ctx_obj);
2512 2513
	}

2514
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2515 2516
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2517
		goto error_deref_obj;
2518 2519
	}

2520
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2521 2522
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2523
		goto error_ringbuf;
2524 2525
	}

2526 2527 2528
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2529 2530

	return 0;
2531

2532 2533
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2534
error_deref_obj:
2535
	drm_gem_object_unreference(&ctx_obj->base);
2536 2537
	ce->ringbuf = NULL;
	ce->state = NULL;
2538
	return ret;
2539
}
2540

2541
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2542
			    struct i915_gem_context *ctx)
2543
{
2544
	struct intel_engine_cs *engine;
2545

2546
	for_each_engine(engine, dev_priv) {
2547 2548
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2549
		void *vaddr;
2550 2551 2552 2553 2554
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2555 2556
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2557
			continue;
2558 2559 2560

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2561 2562 2563 2564

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2565
		i915_gem_object_unpin_map(ctx_obj);
2566

2567 2568
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2569 2570
	}
}