intel_lrc.c 68.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
#define WA_TAIL_DWORDS 2
212
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
213
#define PREEMPT_ID 0x1
214

215
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216
					    struct intel_engine_cs *engine);
217 218 219 220
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
221

222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224
 * @dev_priv: i915 device private
225 226 227
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
228
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 230 231
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
232
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233
{
234 235 236
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
237
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 239
		return 1;

240
	if (INTEL_GEN(dev_priv) >= 9)
241 242
		return 1;

243 244 245
	if (enable_execlists == 0)
		return 0;

246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247
	    USES_PPGTT(dev_priv))
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291 292
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
293
{
294
	struct intel_engine_execlists * const execlists = &engine->execlists;
295 296 297 298
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

299
	if (unlikely(execlists->no_priolist))
300 301 302 303 304
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
305
	parent = &execlists->queue.rb_node;
306 307 308 309 310 311 312 313 314
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
315
			return p;
316 317 318 319
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
320
		p = &execlists->default_priolist;
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
335
			execlists->no_priolist = true;
336 337 338 339 340
			goto find_priolist;
		}
	}

	p->priority = prio;
341
	INIT_LIST_HEAD(&p->requests);
342
	rb_link_node(&p->node, rb, parent);
343
	rb_insert_color(&p->node, &execlists->queue);
344 345

	if (first)
346
		execlists->first = &p->node;
347

348
	return ptr_pack_bits(p, first, 1);
349 350
}

351 352 353 354 355 356 357 358 359
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

static void unwind_incomplete_requests(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *rq, *rn;
360 361
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
362 363 364 365 366 367 368 369 370 371 372 373

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

374 375 376 377 378 379 380 381 382 383 384
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
385 386 387
	}
}

388 389 390
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
391
{
392 393 394 395 396 397
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
398

399 400
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
401 402
}

403 404 405 406 407 408 409 410 411
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

412
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
413
{
414
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
415 416
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
417
	u32 *reg_state = ce->lrc_reg_state;
418

419
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
420

421 422 423 424 425
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
426
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
427
		execlists_update_context_pdps(ppgtt, reg_state);
428 429

	return ce->lrc_desc;
430 431
}

C
Chris Wilson 已提交
432 433 434 435 436 437
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

438
static void execlists_submit_ports(struct intel_engine_cs *engine)
439
{
440
	struct execlist_port *port = engine->execlists.port;
441
	u32 __iomem *elsp =
442 443
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
444

445
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
462

C
Chris Wilson 已提交
463
		elsp_write(desc, elsp);
464
	}
465 466
}

467
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
468
{
469
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
470
		i915_gem_context_force_single_submission(ctx));
471
}
472

473 474 475 476 477
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
478

479 480
	if (ctx_single_port_submission(prev))
		return false;
481

482
	return true;
483 484
}

485 486 487 488 489 490 491 492 493 494 495
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
}

static bool can_preempt(struct intel_engine_cs *engine)
{
	return INTEL_INFO(engine->i915)->has_logical_ring_preemption;
}

523
static void execlists_dequeue(struct intel_engine_cs *engine)
524
{
525 526
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
527 528
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
529
	struct drm_i915_gem_request *last = port_request(port);
530
	struct rb_node *rb;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
552
	 */
553

554
	spin_lock_irq(&engine->timeline->lock);
555 556
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
		if (port_count(&port[0]) > 1)
			goto unlock;

		if (can_preempt(engine) &&
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
			execlists->preempt = true;
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
616 617 618 619 620 621 622 623 624 625 626 627 628 629
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
630
			 */
631 632 633 634 635 636
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
637
				if (port == last_port) {
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
662 663

				GEM_BUG_ON(port_isset(port));
664
			}
665

666 667
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
668
			trace_i915_gem_request_in(rq, port_index(port, execlists));
669 670
			last = rq;
			submit = true;
671
		}
672

673
		rb = rb_next(rb);
674
		rb_erase(&p->node, &execlists->queue);
675 676
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
677
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
678
	} while (rb);
679
done:
680
	execlists->first = rb;
681
	if (submit)
682
		port_assign(port, last);
C
Chris Wilson 已提交
683
unlock:
684
	spin_unlock_irq(&engine->timeline->lock);
685

686 687
	if (submit)
		execlists_submit_ports(engine);
688 689
}

690 691
static void
execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
692
{
693 694
	struct execlist_port *port = execlists->port;
	unsigned int num_ports = ARRAY_SIZE(execlists->port);
695

696
	while (num_ports-- && port_isset(port)) {
697 698
		struct drm_i915_gem_request *rq = port_request(port);

699
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
700 701
		i915_gem_request_put(rq);

702 703 704
		memset(port, 0, sizeof(*port));
		port++;
	}
705 706
}

707 708
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
709
	struct intel_engine_execlists * const execlists = &engine->execlists;
710 711 712 713 714 715 716
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
717
	execlist_cancel_port_requests(execlists);
718 719 720 721 722 723 724 725 726

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
727
	rb = execlists->first;
728 729 730 731 732 733 734 735 736 737 738 739
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
740
		rb_erase(&p->node, &execlists->queue);
741 742 743 744 745 746 747
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

748

749 750
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
751
	GEM_BUG_ON(port_isset(execlists->port));
752 753 754 755 756 757 758 759 760 761 762 763

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

764
/*
765 766 767
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
768
static void intel_lrc_irq_handler(unsigned long data)
769
{
770 771
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
772
	struct execlist_port * const port = execlists->port;
773
	struct drm_i915_private *dev_priv = engine->i915;
774

775 776 777 778 779 780 781 782 783
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

784
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
785

786 787 788 789 790
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
791 792 793
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
794
		unsigned int head, tail;
795

796
		/* However GVT emulation depends upon intercepting CSB mmio */
797
		if (unlikely(execlists->csb_use_mmio)) {
798 799
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
800
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
801 802
		}

803 804 805 806 807 808 809 810 811 812 813
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
814
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
815 816 817
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
818
			execlists->csb_head = head;
819 820 821 822 823
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

824
			head = execlists->csb_head;
825 826
			tail = READ_ONCE(buf[write_idx]);
		}
827

828
		while (head != tail) {
829
			struct drm_i915_gem_request *rq;
830
			unsigned int status;
831
			unsigned int count;
832 833 834

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

853
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
854 855 856
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

C
Chris Wilson 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
			    buf[2*head + 1] == PREEMPT_ID) {
				execlist_cancel_port_requests(execlists);

				spin_lock_irq(&engine->timeline->lock);
				unwind_incomplete_requests(engine);
				spin_unlock_irq(&engine->timeline->lock);

				GEM_BUG_ON(!execlists->preempt);
				execlists->preempt = false;
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
			    execlists->preempt)
				continue;

874
			/* Check the context/desc id for this event matches */
875
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
876

877 878 879
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
880
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
881 882 883 884
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
885
				rq->priotree.priority = INT_MAX;
886
				i915_gem_request_put(rq);
887

888
				execlists_port_complete(execlists, port);
889 890
			} else {
				port_set(port, port_pack(rq, count));
891
			}
892

893 894
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
895
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
896
		}
897

898 899
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
900 901 902
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
903 904
	}

C
Chris Wilson 已提交
905
	if (!execlists->preempt)
906
		execlists_dequeue(engine);
907

908
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
909 910
}

911 912 913 914 915 916 917
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
918
	if (ptr_unmask_bits(p, 1))
919
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
920 921
}

922
static void execlists_submit_request(struct drm_i915_gem_request *request)
923
{
924
	struct intel_engine_cs *engine = request->engine;
925
	unsigned long flags;
926

927 928
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
929

930
	insert_request(engine, &request->priotree, request->priotree.priority);
931

932
	GEM_BUG_ON(!engine->execlists.first);
933 934
	GEM_BUG_ON(list_empty(&request->priotree.link));

935
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
936 937
}

938 939 940 941 942
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

943 944 945
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
946
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
947 948

	GEM_BUG_ON(!locked);
949 950

	if (engine != locked) {
951 952
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
953 954 955 956 957 958 959
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
960
	struct intel_engine_cs *engine;
961 962 963 964
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

965 966
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

967 968 969
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

970 971
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

996 997 998 999 1000 1001
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1002 1003 1004
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1005
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1006 1007
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1008
		}
1009

1010
		list_safe_reset_next(dep, p, dfs_link);
1011 1012
	}

1013 1014 1015 1016 1017
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1018
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1019 1020 1021 1022 1023 1024 1025
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1026 1027 1028
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1041 1042 1043
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1044
		}
1045 1046
	}

1047
	spin_unlock_irq(&engine->timeline->lock);
1048 1049
}

1050 1051 1052
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1053
{
1054
	struct intel_context *ce = &ctx->engine[engine->id];
1055
	unsigned int flags;
1056
	void *vaddr;
1057
	int ret;
1058

1059
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1060

1061 1062
	if (likely(ce->pin_count++))
		goto out;
1063
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1064

1065 1066 1067 1068 1069
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1070
	GEM_BUG_ON(!ce->state);
1071

1072
	flags = PIN_GLOBAL | PIN_HIGH;
1073 1074
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1075 1076

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1077
	if (ret)
1078
		goto err;
1079

1080
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1081 1082
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1083
		goto unpin_vma;
1084 1085
	}

1086
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1087
	if (ret)
1088
		goto unpin_map;
1089

1090
	intel_lr_context_descriptor_update(ctx, engine);
1091

1092 1093
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1094
		i915_ggtt_offset(ce->ring->vma);
1095

C
Chris Wilson 已提交
1096
	ce->state->obj->mm.dirty = true;
1097

1098
	i915_gem_context_get(ctx);
1099 1100
out:
	return ce->ring;
1101

1102
unpin_map:
1103 1104 1105
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1106
err:
1107
	ce->pin_count = 0;
1108
	return ERR_PTR(ret);
1109 1110
}

1111 1112
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1113
{
1114
	struct intel_context *ce = &ctx->engine[engine->id];
1115

1116
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1117
	GEM_BUG_ON(ce->pin_count == 0);
1118

1119
	if (--ce->pin_count)
1120
		return;
1121

1122
	intel_ring_unpin(ce->ring);
1123

1124 1125
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1126

1127
	i915_gem_context_put(ctx);
1128 1129
}

1130
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1131 1132 1133
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1134
	u32 *cs;
1135 1136
	int ret;

1137 1138
	GEM_BUG_ON(!ce->pin_count);

1139 1140 1141 1142 1143 1144
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1145
	cs = intel_ring_begin(request, 0);
1146 1147
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1148 1149 1150 1151

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1152
			return ret;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1184 1185
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1186
{
1187 1188 1189 1190 1191 1192 1193 1194 1195
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1196 1197 1198 1199
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1200 1201 1202 1203 1204 1205 1206

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1207 1208
}

1209 1210 1211 1212 1213 1214
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1215
 *
1216 1217
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1218
 *
1219 1220 1221 1222
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1223
 */
1224
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1225
{
1226
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1227
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1228

1229
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1230 1231
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1232

1233 1234
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1235 1236 1237 1238 1239 1240 1241
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1242

C
Chris Wilson 已提交
1243 1244
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1245
	/* Pad to end of cacheline */
1246 1247
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1248 1249 1250 1251 1252 1253 1254

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1255
	return batch;
1256 1257
}

1258
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1259
{
C
Chris Wilson 已提交
1260 1261
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1262
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1263
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1264

1265
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1266 1267 1268 1269 1270
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1271

1272 1273
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1274
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1275 1276 1277 1278 1279 1280 1281
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1282
	}
1283

1284
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1299 1300 1301 1302 1303 1304
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1305 1306
	}

C
Chris Wilson 已提交
1307 1308
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1309
	/* Pad to end of cacheline */
1310 1311
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1312

1313
	return batch;
1314 1315
}

1316 1317 1318
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1319
{
1320 1321 1322
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1323

1324
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1325 1326
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1327

1328
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1329 1330 1331
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1332 1333
	}

1334 1335 1336 1337 1338
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1339
	return 0;
1340 1341 1342 1343

err:
	i915_gem_object_put(obj);
	return err;
1344 1345
}

1346
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1347
{
1348
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1349 1350
}

1351 1352
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1353
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1354
{
1355
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1356 1357 1358
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1359
	struct page *page;
1360 1361
	void *batch, *batch_ptr;
	unsigned int i;
1362
	int ret;
1363

1364 1365
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1366

1367
	switch (INTEL_GEN(engine->i915)) {
1368 1369
	case 10:
		return 0;
1370 1371
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1372
		wa_bb_fn[1] = NULL;
1373 1374 1375
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1376
		wa_bb_fn[1] = NULL;
1377 1378 1379
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1380
		return 0;
1381
	}
1382

1383
	ret = lrc_setup_wa_ctx(engine);
1384 1385 1386 1387 1388
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1389
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1390
	batch = batch_ptr = kmap_atomic(page);
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1403 1404
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1405
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1406 1407
	}

1408 1409
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1410 1411
	kunmap_atomic(batch);
	if (ret)
1412
		lrc_destroy_wa_ctx(engine);
1413 1414 1415 1416

	return ret;
}

1417 1418 1419 1420 1421 1422 1423 1424
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1425
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1426
{
1427
	struct drm_i915_private *dev_priv = engine->i915;
1428
	struct intel_engine_execlists * const execlists = &engine->execlists;
1429 1430 1431 1432 1433
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1434

1435
	intel_engine_reset_breadcrumbs(engine);
1436
	intel_engine_init_hangcheck(engine);
1437

1438 1439
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1440
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1441 1442 1443
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1444

1445
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1460
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1461
	execlists->csb_head = -1;
C
Chris Wilson 已提交
1462
	execlists->preempt = false;
1463

1464
	/* After a GPU reset, we may have requests to replay */
1465 1466
	if (!i915_modparams.enable_guc_submission && execlists->first)
		tasklet_schedule(&execlists->irq_tasklet);
1467

1468
	return 0;
1469 1470
}

1471
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1472
{
1473
	struct drm_i915_private *dev_priv = engine->i915;
1474 1475
	int ret;

1476
	ret = gen8_init_common_ring(engine);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1490
	return init_workarounds_ring(engine);
1491 1492
}

1493
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1494 1495 1496
{
	int ret;

1497
	ret = gen8_init_common_ring(engine);
1498 1499 1500
	if (ret)
		return ret;

1501
	return init_workarounds_ring(engine);
1502 1503
}

1504 1505 1506
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1507
	struct intel_engine_execlists * const execlists = &engine->execlists;
1508
	struct intel_context *ce;
1509
	unsigned long flags;
1510

1511 1512
	spin_lock_irqsave(&engine->timeline->lock, flags);

1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1522
	execlist_cancel_port_requests(execlists);
1523

1524
	/* Push back any incomplete requests for replay after the reset. */
1525
	unwind_incomplete_requests(engine);
1526

1527
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1539
	if (!request || request->fence.error != -EIO)
1540
		return;
1541

1542 1543 1544 1545 1546 1547 1548
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1549
	ce = &request->ctx->engine[engine->id];
1550 1551 1552
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1553
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1554 1555
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1556
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1557

1558 1559 1560
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1561
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1562
	unwind_wa_tail(request);
1563 1564
}

1565 1566 1567
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1568
	struct intel_engine_cs *engine = req->engine;
1569
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1570 1571
	u32 *cs;
	int i;
1572

1573 1574 1575
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1576

1577
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1578
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1579 1580
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1581 1582 1583 1584
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1585 1586
	}

1587 1588
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1589 1590 1591 1592

	return 0;
}

1593
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1594
			      u64 offset, u32 len,
1595
			      const unsigned int flags)
1596
{
1597
	u32 *cs;
1598 1599
	int ret;

1600 1601 1602 1603
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1604 1605
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1606
	if (req->ctx->ppgtt &&
1607 1608 1609 1610 1611 1612
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1613

1614
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1615 1616
	}

1617 1618 1619
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1620

1621 1622 1623
	/* WaDisableCtxRestoreArbitration:bdw,chv */
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1624
	/* FIXME(BDW): Address space and security selectors. */
1625 1626 1627
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1628 1629 1630
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1631 1632 1633 1634

	return 0;
}

1635
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1636
{
1637
	struct drm_i915_private *dev_priv = engine->i915;
1638 1639 1640
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1641 1642
}

1643
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1644
{
1645
	struct drm_i915_private *dev_priv = engine->i915;
1646
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1647 1648
}

1649
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1650
{
1651
	u32 cmd, *cs;
1652

1653 1654 1655
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1656 1657 1658

	cmd = MI_FLUSH_DW + 1;

1659 1660 1661 1662 1663 1664 1665
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1666
	if (mode & EMIT_INVALIDATE) {
1667
		cmd |= MI_INVALIDATE_TLB;
1668
		if (request->engine->id == VCS)
1669
			cmd |= MI_INVALIDATE_BSD;
1670 1671
	}

1672 1673 1674 1675 1676
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1677 1678 1679 1680

	return 0;
}

1681
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1682
				  u32 mode)
1683
{
1684
	struct intel_engine_cs *engine = request->engine;
1685 1686
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1687
	bool vf_flush_wa = false, dc_flush_wa = false;
1688
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1689
	int len;
1690 1691 1692

	flags |= PIPE_CONTROL_CS_STALL;

1693
	if (mode & EMIT_FLUSH) {
1694 1695
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1696
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1697
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1698 1699
	}

1700
	if (mode & EMIT_INVALIDATE) {
1701 1702 1703 1704 1705 1706 1707 1708 1709
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1710 1711 1712 1713
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1714
		if (IS_GEN9(request->i915))
1715
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1716 1717 1718 1719

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1720
	}
1721

M
Mika Kuoppala 已提交
1722 1723 1724 1725 1726 1727 1728 1729
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1730 1731 1732
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1733

1734 1735
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1736

1737 1738 1739
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1740

1741
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1742

1743 1744
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1745

1746
	intel_ring_advance(request, cs);
1747 1748 1749 1750

	return 0;
}

1751 1752 1753 1754 1755
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1756
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1757
{
C
Chris Wilson 已提交
1758 1759
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1760 1761
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1762
}
1763

1764
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1765
{
1766 1767
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1768

1769 1770 1771 1772 1773 1774 1775
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1776
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1777

1778
	gen8_emit_wa_tail(request, cs);
1779
}
1780 1781
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1782
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1783
					u32 *cs)
1784
{
1785 1786 1787
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1788 1789 1790 1791
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1792 1793 1794 1795 1796 1797
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1798
	/* We're thrashing one dword of HWS. */
1799 1800 1801 1802
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1803
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1804

1805
	gen8_emit_wa_tail(request, cs);
1806
}
1807 1808
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1809
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1810 1811 1812
{
	int ret;

1813
	ret = intel_ring_workarounds_emit(req);
1814 1815 1816
	if (ret)
		return ret;

1817 1818 1819 1820 1821 1822 1823 1824
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1825
	return i915_gem_render_state_emit(req);
1826 1827
}

1828 1829
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1830
 * @engine: Engine Command Streamer.
1831
 */
1832
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1833
{
1834
	struct drm_i915_private *dev_priv;
1835

1836 1837 1838 1839
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1840 1841
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1842

1843
	dev_priv = engine->i915;
1844

1845 1846
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1847
	}
1848

1849 1850
	if (engine->cleanup)
		engine->cleanup(engine);
1851

1852
	intel_engine_cleanup_common(engine);
1853

1854
	lrc_destroy_wa_ctx(engine);
1855
	engine->i915 = NULL;
1856 1857
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1858 1859
}

1860
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1861
{
1862
	engine->submit_request = execlists_submit_request;
1863
	engine->cancel_requests = execlists_cancel_requests;
1864
	engine->schedule = execlists_schedule;
1865
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1866 1867
}

1868
static void
1869
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1870 1871
{
	/* Default vfuncs which can be overriden by each engine. */
1872
	engine->init_hw = gen8_init_common_ring;
1873
	engine->reset_hw = reset_common_ring;
1874 1875 1876 1877

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1878 1879
	engine->request_alloc = execlists_request_alloc;

1880
	engine->emit_flush = gen8_emit_flush;
1881
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1882
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1883 1884

	engine->set_default_submission = execlists_set_default_submission;
1885

1886 1887
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1888
	engine->emit_bb_start = gen8_emit_bb_start;
1889 1890
}

1891
static inline void
1892
logical_ring_default_irqs(struct intel_engine_cs *engine)
1893
{
1894
	unsigned shift = engine->irq_shift;
1895 1896
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1897 1898
}

1899 1900 1901 1902 1903 1904
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1905 1906
	intel_engine_setup_common(engine);

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1922
	engine->execlists.fw_domains = fw_domains;
1923

1924
	tasklet_init(&engine->execlists.irq_tasklet,
1925 1926 1927 1928 1929 1930
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1931
static int logical_ring_init(struct intel_engine_cs *engine)
1932 1933 1934
{
	int ret;

1935
	ret = intel_engine_init_common(engine);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1946
int logical_render_ring_init(struct intel_engine_cs *engine)
1947 1948 1949 1950
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1951 1952
	logical_ring_setup(engine);

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1963
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1964
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1965

1966
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1981
	return logical_ring_init(engine);
1982 1983
}

1984
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1985 1986 1987 1988
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1989 1990
}

1991
static u32
1992
make_rpcs(struct drm_i915_private *dev_priv)
1993 1994 1995 1996 1997 1998 1999
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2000
	if (INTEL_GEN(dev_priv) < 9)
2001 2002 2003 2004 2005 2006 2007 2008
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2009
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2010
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2011
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2012 2013 2014 2015
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2016
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2017
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2018
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2019 2020 2021 2022
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2023 2024
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2025
			GEN8_RPCS_EU_MIN_SHIFT;
2026
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2027 2028 2029 2030 2031 2032 2033
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2034
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2035 2036 2037
{
	u32 indirect_ctx_offset;

2038
	switch (INTEL_GEN(engine->i915)) {
2039
	default:
2040
		MISSING_CASE(INTEL_GEN(engine->i915));
2041
		/* fall through */
2042 2043 2044 2045
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2059
static void execlists_init_reg_state(u32 *regs,
2060 2061 2062
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2063
{
2064 2065
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2096 2097
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2098 2099 2100
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2101
		if (wa_ctx->indirect_ctx.size) {
2102
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2103

2104
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2105 2106
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2107

2108
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2109
				intel_lr_indirect_ctx_offset(engine) << 6;
2110 2111 2112 2113 2114
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2115

2116
			regs[CTX_BB_PER_CTX_PTR + 1] =
2117
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2118
		}
2119
	}
2120 2121 2122 2123

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2124
	/* PDP values well be assigned later if needed */
2125 2126 2127 2128 2129 2130 2131 2132
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2133

2134
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2135 2136 2137 2138
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2139
		ASSIGN_CTX_PML4(ppgtt, regs);
2140 2141
	}

2142 2143 2144 2145
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2146 2147

		i915_oa_init_reg_state(engine, ctx, regs);
2148
	}
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2172
	ctx_obj->mm.dirty = true;
2173 2174 2175 2176 2177 2178

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2179

2180
	i915_gem_object_unpin_map(ctx_obj);
2181 2182 2183 2184

	return 0;
}

2185
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2186
					    struct intel_engine_cs *engine)
2187
{
2188
	struct drm_i915_gem_object *ctx_obj;
2189
	struct intel_context *ce = &ctx->engine[engine->id];
2190
	struct i915_vma *vma;
2191
	uint32_t context_size;
2192
	struct intel_ring *ring;
2193 2194
	int ret;

2195
	WARN_ON(ce->state);
2196

2197
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2198

2199 2200 2201 2202 2203
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2204

2205
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2206
	if (IS_ERR(ctx_obj)) {
2207
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2208
		return PTR_ERR(ctx_obj);
2209 2210
	}

2211
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2212 2213 2214 2215 2216
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2217
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2218 2219
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2220
		goto error_deref_obj;
2221 2222
	}

2223
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2224 2225
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2226
		goto error_ring_free;
2227 2228
	}

2229
	ce->ring = ring;
2230
	ce->state = vma;
2231
	ce->initialised |= engine->init_context == NULL;
2232 2233

	return 0;
2234

2235
error_ring_free:
2236
	intel_ring_free(ring);
2237
error_deref_obj:
2238
	i915_gem_object_put(ctx_obj);
2239
	return ret;
2240
}
2241

2242
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2243
{
2244
	struct intel_engine_cs *engine;
2245
	struct i915_gem_context *ctx;
2246
	enum intel_engine_id id;
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2258
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2259
		for_each_engine(engine, dev_priv, id) {
2260 2261
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2262

2263 2264
			if (!ce->state)
				continue;
2265

2266 2267 2268 2269
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2270

2271 2272 2273
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2274

C
Chris Wilson 已提交
2275
			ce->state->obj->mm.dirty = true;
2276
			i915_gem_object_unpin_map(ce->state->obj);
2277

2278
			intel_ring_reset(ce->ring, 0);
2279
		}
2280 2281
	}
}