intel_lrc.c 64.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212 213
#define WA_TAIL_DWORDS 2

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223
 * @dev_priv: i915 device private
224 225 226
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
227
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 229 230
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
231
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232
{
233 234 235
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
236
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 238
		return 1;

239
	if (INTEL_GEN(dev_priv) >= 9)
240 241
		return 1;

242 243 244
	if (enable_execlists == 0)
		return 0;

245 246 247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
292
{
293 294 295 296 297 298
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
299

300 301
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
302 303
}

304 305 306 307 308 309 310 311 312
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

313
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
314
{
315
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
316 317
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
318
	u32 *reg_state = ce->lrc_reg_state;
319

320
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
321

322 323 324 325 326
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
327
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
328
		execlists_update_context_pdps(ppgtt, reg_state);
329 330

	return ce->lrc_desc;
331 332
}

333
static void execlists_submit_ports(struct intel_engine_cs *engine)
334
{
335
	struct execlist_port *port = engine->execlist_port;
336
	u32 __iomem *elsp =
337 338
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
357

358 359 360
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
361 362
}

363
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
364
{
365
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
366
		i915_gem_context_force_single_submission(ctx));
367
}
368

369 370 371 372 373
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
374

375 376
	if (ctx_single_port_submission(prev))
		return false;
377

378
	return true;
379 380
}

381 382 383 384 385 386 387 388 389 390 391
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

392
static void execlists_dequeue(struct intel_engine_cs *engine)
393
{
394
	struct drm_i915_gem_request *last;
395
	struct execlist_port *port = engine->execlist_port;
396
	struct rb_node *rb;
397 398
	bool submit = false;

399
	last = port_request(port);
400 401 402
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
403
		 * as we resubmit the request. See gen8_emit_breadcrumb()
404 405 406 407
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
408

409
	GEM_BUG_ON(port_isset(&port[1]));
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
430
	 */
431

432
	spin_lock_irq(&engine->timeline->lock);
433
	rb = engine->execlist_first;
434
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
435
	while (rb) {
436 437 438 439 440 441 442 443 444 445 446 447 448 449
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
450
			 */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
			}
483

484 485
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
486

487 488 489 490
			__i915_gem_request_submit(rq);
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
491
		}
492

493
		rb = rb_next(rb);
494 495 496
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
497
			kmem_cache_free(engine->i915->priorities, p);
498
	}
499 500 501
done:
	engine->execlist_first = rb;
	if (submit)
502
		port_assign(port, last);
503
	spin_unlock_irq(&engine->timeline->lock);
504

505 506
	if (submit)
		execlists_submit_ports(engine);
507 508
}

509
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
510
{
511
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
512

513
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
514 515
}

516
/*
517 518 519
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
520
static void intel_lrc_irq_handler(unsigned long data)
521
{
522
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
523
	struct execlist_port *port = engine->execlist_port;
524
	struct drm_i915_private *dev_priv = engine->i915;
525

526 527 528 529 530 531 532 533 534
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

535
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536

537 538 539 540 541
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
542 543 544 545
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
546
		unsigned int head, tail;
547

548 549 550 551 552 553 554 555 556 557 558
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
559 560 561 562
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
563
			struct drm_i915_gem_request *rq;
564
			unsigned int status;
565
			unsigned int count;
566 567 568

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

587
			status = readl(buf + 2 * head);
588 589 590
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

591
			/* Check the context/desc id for this event matches */
592
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
593
					 port->context_id);
594

595 596 597
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
598
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
599 600 601 602 603
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
604 605 606

				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
607 608
			} else {
				port_set(port, port_pack(rq, count));
609
			}
610

611 612
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
613
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
614
		}
615

616
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
617
		       csb_mmio);
618 619
	}

620 621
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
622

623
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
624 625
}

626 627 628 629
static bool
insert_request(struct intel_engine_cs *engine,
	       struct i915_priotree *pt,
	       int prio)
630
{
631 632
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
633 634
	bool first = true;

635 636 637 638
	if (unlikely(engine->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
639 640
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
641 642 643 644 645 646 647 648
	parent = &engine->execlist_queue.rb_node;
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
649
			first = false;
650 651 652
		} else {
			list_add_tail(&pt->link, &p->requests);
			return false;
653 654
		}
	}
655 656 657 658

	if (prio == I915_PRIORITY_NORMAL) {
		p = &engine->default_priolist;
	} else {
659
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			engine->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	rb_link_node(&p->node, rb, parent);
	rb_insert_color(&p->node, &engine->execlist_queue);

	INIT_LIST_HEAD(&p->requests);
	list_add_tail(&pt->link, &p->requests);

	if (first)
		engine->execlist_first = &p->node;
686 687 688 689

	return first;
}

690
static void execlists_submit_request(struct drm_i915_gem_request *request)
691
{
692
	struct intel_engine_cs *engine = request->engine;
693
	unsigned long flags;
694

695 696
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
697

698 699 700
	if (insert_request(engine,
			   &request->priotree,
			   request->priotree.priority)) {
701
		if (execlists_elsp_ready(engine))
702 703
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
704

705 706 707
	GEM_BUG_ON(!engine->execlist_first);
	GEM_BUG_ON(list_empty(&request->priotree.link));

708
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
709 710
}

711 712 713
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
714 715 716 717
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
718 719

	if (engine != locked) {
720 721
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
722 723 724 725 726 727 728
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
729
	struct intel_engine_cs *engine;
730 731 732 733 734 735 736
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

737 738
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

763 764 765 766 767 768 769
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
770 771
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
772
		}
773

774
		list_safe_reset_next(dep, p, dfs_link);
775 776
	}

777 778 779 780 781 782 783 784 785 786 787 788 789
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

790 791 792
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

793 794 795 796 797 798 799 800 801 802 803 804
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
805 806 807
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
808
		}
809 810
	}

811
	spin_unlock_irq(&engine->timeline->lock);
812 813 814 815

	/* XXX Do we need to preempt to make room for us and our deps? */
}

816 817 818
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
819
{
820
	struct intel_context *ce = &ctx->engine[engine->id];
821
	unsigned int flags;
822
	void *vaddr;
823
	int ret;
824

825
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
826

827 828
	if (likely(ce->pin_count++))
		goto out;
829
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
830

831 832 833 834 835
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
836
	GEM_BUG_ON(!ce->state);
837

838
	flags = PIN_GLOBAL | PIN_HIGH;
839 840
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
841 842

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
843
	if (ret)
844
		goto err;
845

846
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
847 848
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
849
		goto unpin_vma;
850 851
	}

852
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
853
	if (ret)
854
		goto unpin_map;
855

856
	intel_lr_context_descriptor_update(ctx, engine);
857

858 859
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
860
		i915_ggtt_offset(ce->ring->vma);
861

C
Chris Wilson 已提交
862
	ce->state->obj->mm.dirty = true;
863

864
	i915_gem_context_get(ctx);
865 866
out:
	return ce->ring;
867

868
unpin_map:
869 870 871
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
872
err:
873
	ce->pin_count = 0;
874
	return ERR_PTR(ret);
875 876
}

877 878
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
879
{
880
	struct intel_context *ce = &ctx->engine[engine->id];
881

882
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
883
	GEM_BUG_ON(ce->pin_count == 0);
884

885
	if (--ce->pin_count)
886
		return;
887

888
	intel_ring_unpin(ce->ring);
889

890 891
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
892

893
	i915_gem_context_put(ctx);
894 895
}

896
static int execlists_request_alloc(struct drm_i915_gem_request *request)
897 898 899
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
900
	u32 *cs;
901 902
	int ret;

903 904
	GEM_BUG_ON(!ce->pin_count);

905 906 907 908 909 910 911 912 913 914 915 916 917 918
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
919
			goto err;
920 921
	}

922 923 924
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
925
		goto err_unreserve;
926
	}
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
949
err:
950 951 952
	return ret;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
969 970
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
971
{
972 973 974 975 976 977 978 979 980
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

981 982 983 984
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
985 986 987 988 989 990 991

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
992 993
}

994 995 996 997 998 999
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1000
 *
1001 1002
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1003
 *
1004 1005 1006 1007
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1008
 */
1009
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1010
{
1011
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1012
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1013

1014
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1015 1016
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1017

1018 1019
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1020 1021 1022 1023 1024 1025 1026
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1027

1028
	/* Pad to end of cacheline */
1029 1030
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1031 1032 1033 1034 1035 1036 1037

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1038
	return batch;
1039 1040
}

1041 1042 1043
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1044
 *
1045
 *  The number of DWORDS written are returned using this field.
1046 1047 1048 1049
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1050
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1051
{
1052
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1053 1054
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1055

1056
	return batch;
1057 1058
}

1059
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1060
{
1061
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1062
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1063

1064
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1065 1066 1067 1068 1069
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1070

1071 1072
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1073
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1074 1075 1076 1077 1078 1079 1080
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1081
	}
1082

1083
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1098 1099 1100 1101 1102 1103
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1104 1105
	}

1106
	/* Pad to end of cacheline */
1107 1108
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1109

1110
	return batch;
1111 1112
}

1113
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1114
{
1115
	*batch++ = MI_BATCH_BUFFER_END;
1116

1117
	return batch;
1118 1119
}

1120 1121 1122
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1123
{
1124 1125 1126
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1127

1128
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1129 1130
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1131

1132
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1133 1134 1135
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1136 1137
	}

1138 1139 1140 1141 1142
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1143
	return 0;
1144 1145 1146 1147

err:
	i915_gem_object_put(obj);
	return err;
1148 1149
}

1150
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1151
{
1152
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1153 1154
}

1155 1156
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1157
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1158
{
1159
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1160 1161 1162
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1163
	struct page *page;
1164 1165
	void *batch, *batch_ptr;
	unsigned int i;
1166
	int ret;
1167

1168 1169
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1170

1171
	switch (INTEL_GEN(engine->i915)) {
1172 1173
	case 10:
		return 0;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1184
		return 0;
1185
	}
1186

1187
	ret = lrc_setup_wa_ctx(engine);
1188 1189 1190 1191 1192
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1193
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1194
	batch = batch_ptr = kmap_atomic(page);
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1209 1210
	}

1211 1212
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1213 1214
	kunmap_atomic(batch);
	if (ret)
1215
		lrc_destroy_wa_ctx(engine);
1216 1217 1218 1219

	return ret;
}

1220 1221 1222 1223 1224 1225 1226 1227
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1228
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1229
{
1230
	struct drm_i915_private *dev_priv = engine->i915;
1231 1232
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1233
	bool submit;
1234 1235 1236 1237 1238
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1239

1240
	intel_engine_reset_breadcrumbs(engine);
1241
	intel_engine_init_hangcheck(engine);
1242

1243 1244
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1245
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1246 1247 1248
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1249

1250
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1265
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1266

1267
	/* After a GPU reset, we may have requests to replay */
1268
	submit = false;
1269
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1270
		if (!port_isset(&port[n]))
1271 1272 1273 1274
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
1275
				 port_request(&port[n])->global_seqno);
1276 1277

		/* Discard the current inflight count */
1278 1279
		port_set(&port[n], port_request(&port[n]));
		submit = true;
1280
	}
1281

1282
	if (submit && !i915.enable_guc_submission)
1283 1284
		execlists_submit_ports(engine);

1285
	return 0;
1286 1287
}

1288
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1289
{
1290
	struct drm_i915_private *dev_priv = engine->i915;
1291 1292
	int ret;

1293
	ret = gen8_init_common_ring(engine);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1307
	return init_workarounds_ring(engine);
1308 1309
}

1310
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1311 1312 1313
{
	int ret;

1314
	ret = gen8_init_common_ring(engine);
1315 1316 1317
	if (ret)
		return ret;

1318
	return init_workarounds_ring(engine);
1319 1320
}

1321 1322 1323 1324
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1325
	struct intel_context *ce;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	unsigned int n;

	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
	if (!request) {
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		return;
	}

	if (request->ctx != port_request(port)->ctx) {
		i915_gem_request_put(port_request(port));
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1362
	if (request->fence.error != -EIO)
1363
		return;
1364

1365 1366 1367 1368 1369 1370 1371
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1372
	ce = &request->ctx->engine[engine->id];
1373 1374 1375
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1376
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1377 1378
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1379
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1380

1381 1382 1383
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1384
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1385 1386 1387
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1388
	assert_ring_tail_valid(request->ring, request->tail);
1389 1390
}

1391 1392 1393
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1394
	struct intel_engine_cs *engine = req->engine;
1395
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1396 1397
	u32 *cs;
	int i;
1398

1399 1400 1401
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1402

1403
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1404
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1405 1406
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1407 1408 1409 1410
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1411 1412
	}

1413 1414
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1415 1416 1417 1418

	return 0;
}

1419
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1420
			      u64 offset, u32 len,
1421
			      const unsigned int flags)
1422
{
1423
	u32 *cs;
1424 1425
	int ret;

1426 1427 1428 1429
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1430 1431
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1432
	if (req->ctx->ppgtt &&
1433 1434 1435 1436 1437 1438
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1439

1440
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1441 1442
	}

1443 1444 1445
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1446 1447

	/* FIXME(BDW): Address space and security selectors. */
1448 1449 1450
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1451 1452 1453 1454
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1455 1456 1457 1458

	return 0;
}

1459
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1460
{
1461
	struct drm_i915_private *dev_priv = engine->i915;
1462 1463 1464
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1465 1466
}

1467
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1468
{
1469
	struct drm_i915_private *dev_priv = engine->i915;
1470
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1471 1472
}

1473
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1474
{
1475
	u32 cmd, *cs;
1476

1477 1478 1479
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1480 1481 1482

	cmd = MI_FLUSH_DW + 1;

1483 1484 1485 1486 1487 1488 1489
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1490
	if (mode & EMIT_INVALIDATE) {
1491
		cmd |= MI_INVALIDATE_TLB;
1492
		if (request->engine->id == VCS)
1493
			cmd |= MI_INVALIDATE_BSD;
1494 1495
	}

1496 1497 1498 1499 1500
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1501 1502 1503 1504

	return 0;
}

1505
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1506
				  u32 mode)
1507
{
1508
	struct intel_engine_cs *engine = request->engine;
1509 1510
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1511
	bool vf_flush_wa = false, dc_flush_wa = false;
1512
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1513
	int len;
1514 1515 1516

	flags |= PIPE_CONTROL_CS_STALL;

1517
	if (mode & EMIT_FLUSH) {
1518 1519
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1520
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1521
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1522 1523
	}

1524
	if (mode & EMIT_INVALIDATE) {
1525 1526 1527 1528 1529 1530 1531 1532 1533
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1534 1535 1536 1537
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1538
		if (IS_GEN9(request->i915))
1539
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1540 1541 1542 1543

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1544
	}
1545

M
Mika Kuoppala 已提交
1546 1547 1548 1549 1550 1551 1552 1553
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1554 1555 1556
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1557

1558 1559
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1560

1561 1562 1563
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1564

1565
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1566

1567 1568
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1569

1570
	intel_ring_advance(request, cs);
1571 1572 1573 1574

	return 0;
}

1575 1576 1577 1578 1579
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1580
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1581
{
1582 1583 1584
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1585
}
1586

1587
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1588
{
1589 1590
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1591

1592 1593 1594 1595 1596 1597 1598
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1599
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1600

1601
	gen8_emit_wa_tail(request, cs);
1602
}
1603

1604 1605
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1606
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1607
					u32 *cs)
1608
{
1609 1610 1611
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1612 1613 1614 1615
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1616 1617 1618 1619 1620 1621
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1622
	/* We're thrashing one dword of HWS. */
1623 1624 1625 1626
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1627
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1628

1629
	gen8_emit_wa_tail(request, cs);
1630 1631
}

1632 1633
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1634
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1635 1636 1637
{
	int ret;

1638
	ret = intel_ring_workarounds_emit(req);
1639 1640 1641
	if (ret)
		return ret;

1642 1643 1644 1645 1646 1647 1648 1649
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1650
	return i915_gem_render_state_emit(req);
1651 1652
}

1653 1654
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1655
 * @engine: Engine Command Streamer.
1656
 */
1657
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1658
{
1659
	struct drm_i915_private *dev_priv;
1660

1661 1662 1663 1664 1665 1666 1667
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1668
	dev_priv = engine->i915;
1669

1670 1671
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1672
	}
1673

1674 1675
	if (engine->cleanup)
		engine->cleanup(engine);
1676

1677 1678 1679
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1680
	}
1681 1682

	intel_engine_cleanup_common(engine);
1683

1684
	lrc_destroy_wa_ctx(engine);
1685
	engine->i915 = NULL;
1686 1687
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1688 1689
}

1690
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1691
{
1692 1693
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1694
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1695 1696
}

1697
static void
1698
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1699 1700
{
	/* Default vfuncs which can be overriden by each engine. */
1701
	engine->init_hw = gen8_init_common_ring;
1702
	engine->reset_hw = reset_common_ring;
1703 1704 1705 1706

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1707 1708
	engine->request_alloc = execlists_request_alloc;

1709
	engine->emit_flush = gen8_emit_flush;
1710
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1711
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1712 1713

	engine->set_default_submission = execlists_set_default_submission;
1714

1715 1716
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1717
	engine->emit_bb_start = gen8_emit_bb_start;
1718 1719
}

1720
static inline void
1721
logical_ring_default_irqs(struct intel_engine_cs *engine)
1722
{
1723
	unsigned shift = engine->irq_shift;
1724 1725
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1726 1727
}

1728
static int
1729
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1730
{
1731
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1732
	void *hws;
1733 1734

	/* The HWSP is part of the default context object in LRC mode. */
1735
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1736 1737
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1738 1739

	engine->status_page.page_addr = hws + hws_offset;
1740
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1741
	engine->status_page.vma = vma;
1742 1743

	return 0;
1744 1745
}

1746 1747 1748 1749 1750 1751
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1752 1753
	intel_engine_setup_common(engine);

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1778 1779 1780 1781 1782 1783
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1784
	ret = intel_engine_init_common(engine);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1802
int logical_render_ring_init(struct intel_engine_cs *engine)
1803 1804 1805 1806
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1807 1808
	logical_ring_setup(engine);

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1819
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1820
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1821

1822
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1837
	return logical_ring_init(engine);
1838 1839
}

1840
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1841 1842 1843 1844
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1845 1846
}

1847
static u32
1848
make_rpcs(struct drm_i915_private *dev_priv)
1849 1850 1851 1852 1853 1854 1855
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1856
	if (INTEL_GEN(dev_priv) < 9)
1857 1858 1859 1860 1861 1862 1863 1864
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1865
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1866
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1867
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1868 1869 1870 1871
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1872
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1873
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1874
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1875 1876 1877 1878
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1879 1880
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1881
			GEN8_RPCS_EU_MIN_SHIFT;
1882
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1883 1884 1885 1886 1887 1888 1889
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1890
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1891 1892 1893
{
	u32 indirect_ctx_offset;

1894
	switch (INTEL_GEN(engine->i915)) {
1895
	default:
1896
		MISSING_CASE(INTEL_GEN(engine->i915));
1897
		/* fall through */
1898 1899 1900 1901
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1915
static void execlists_init_reg_state(u32 *regs,
1916 1917 1918
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1919
{
1920 1921
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1956

1957
		if (engine->wa_ctx.vma) {
1958
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1959
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1960

1961
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1962 1963
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1964

1965
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1966
				intel_lr_indirect_ctx_offset(engine) << 6;
1967

1968
			regs[CTX_BB_PER_CTX_PTR + 1] =
1969
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1970
		}
1971
	}
1972 1973 1974 1975

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1976
	/* PDP values well be assigned later if needed */
1977 1978 1979 1980 1981 1982 1983 1984
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1985

1986
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1987 1988 1989 1990
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1991
		ASSIGN_CTX_PML4(ppgtt, regs);
1992 1993
	}

1994 1995 1996 1997
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1998 1999

		i915_oa_init_reg_state(engine, ctx, regs);
2000
	}
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2024
	ctx_obj->mm.dirty = true;
2025 2026 2027 2028 2029 2030

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2031

2032
	i915_gem_object_unpin_map(ctx_obj);
2033 2034 2035 2036

	return 0;
}

2037
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2038
					    struct intel_engine_cs *engine)
2039
{
2040
	struct drm_i915_gem_object *ctx_obj;
2041
	struct intel_context *ce = &ctx->engine[engine->id];
2042
	struct i915_vma *vma;
2043
	uint32_t context_size;
2044
	struct intel_ring *ring;
2045 2046
	int ret;

2047
	WARN_ON(ce->state);
2048

2049
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2050

2051 2052 2053 2054 2055
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2056

2057
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2058
	if (IS_ERR(ctx_obj)) {
2059
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2060
		return PTR_ERR(ctx_obj);
2061 2062
	}

2063
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2064 2065 2066 2067 2068
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2069
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2070 2071
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2072
		goto error_deref_obj;
2073 2074
	}

2075
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2076 2077
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2078
		goto error_ring_free;
2079 2080
	}

2081
	ce->ring = ring;
2082
	ce->state = vma;
2083
	ce->initialised |= engine->init_context == NULL;
2084 2085

	return 0;
2086

2087
error_ring_free:
2088
	intel_ring_free(ring);
2089
error_deref_obj:
2090
	i915_gem_object_put(ctx_obj);
2091
	return ret;
2092
}
2093

2094
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2095
{
2096
	struct intel_engine_cs *engine;
2097
	struct i915_gem_context *ctx;
2098
	enum intel_engine_id id;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2110
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2111
		for_each_engine(engine, dev_priv, id) {
2112 2113
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2114

2115 2116
			if (!ce->state)
				continue;
2117

2118 2119 2120 2121
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2122

2123 2124 2125
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2126

C
Chris Wilson 已提交
2127
			ce->state->obj->mm.dirty = true;
2128
			i915_gem_object_unpin_map(ce->state->obj);
2129

2130
			intel_ring_reset(ce->ring, 0);
2131
		}
2132 2133
	}
}