intel_lrc.c 69.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
#define WA_TAIL_DWORDS 2
212
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
213
#define PREEMPT_ID 0x1
214

215
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216
					    struct intel_engine_cs *engine);
217 218 219 220
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
221

222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224
 * @dev_priv: i915 device private
225 226 227
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
228
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 230 231
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
232
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233
{
234 235 236
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
237
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 239
		return 1;

240
	if (INTEL_GEN(dev_priv) >= 9)
241 242
		return 1;

243 244 245
	if (enable_execlists == 0)
		return 0;

246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247
	    USES_PPGTT(dev_priv))
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291 292
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
293
{
294
	struct intel_engine_execlists * const execlists = &engine->execlists;
295 296 297 298
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

299
	if (unlikely(execlists->no_priolist))
300 301 302 303 304
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
305
	parent = &execlists->queue.rb_node;
306 307 308 309 310 311 312 313 314
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
315
			return p;
316 317 318 319
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
320
		p = &execlists->default_priolist;
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
335
			execlists->no_priolist = true;
336 337 338 339 340
			goto find_priolist;
		}
	}

	p->priority = prio;
341
	INIT_LIST_HEAD(&p->requests);
342
	rb_link_node(&p->node, rb, parent);
343
	rb_insert_color(&p->node, &execlists->queue);
344 345

	if (first)
346
		execlists->first = &p->node;
347

348
	return ptr_pack_bits(p, first, 1);
349 350
}

351 352 353 354 355 356 357 358 359
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

static void unwind_incomplete_requests(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *rq, *rn;
360 361
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
362 363 364 365 366 367 368 369 370 371 372 373

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

374 375 376 377 378 379 380 381 382 383 384
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
385 386 387
	}
}

388 389 390
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
391
{
392 393 394 395 396 397
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
398

399 400
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
401 402
}

403 404 405 406 407 408 409 410 411
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

412
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
413
{
414
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
415 416
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
417
	u32 *reg_state = ce->lrc_reg_state;
418

419
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
420

421 422 423 424 425
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
426
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
427
		execlists_update_context_pdps(ppgtt, reg_state);
428 429

	return ce->lrc_desc;
430 431
}

C
Chris Wilson 已提交
432 433 434 435 436 437
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

438
static void execlists_submit_ports(struct intel_engine_cs *engine)
439
{
440
	struct execlist_port *port = engine->execlists.port;
441
	u32 __iomem *elsp =
442 443
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
444

445
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
462

C
Chris Wilson 已提交
463
		elsp_write(desc, elsp);
464
	}
465 466
}

467
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
468
{
469
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
470
		i915_gem_context_force_single_submission(ctx));
471
}
472

473 474 475 476 477
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
478

479 480
	if (ctx_single_port_submission(prev))
		return false;
481

482
	return true;
483 484
}

485 486 487 488 489 490 491 492 493 494 495
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
}

static bool can_preempt(struct intel_engine_cs *engine)
{
	return INTEL_INFO(engine->i915)->has_logical_ring_preemption;
}

523
static void execlists_dequeue(struct intel_engine_cs *engine)
524
{
525 526
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
527 528
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
529
	struct drm_i915_gem_request *last = port_request(port);
530
	struct rb_node *rb;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
552
	 */
553

554
	spin_lock_irq(&engine->timeline->lock);
555 556
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
		if (port_count(&port[0]) > 1)
			goto unlock;

		if (can_preempt(engine) &&
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
578 579
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
617 618 619 620 621 622 623 624 625 626 627 628 629 630
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
631
			 */
632 633 634 635 636 637
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
638
				if (port == last_port) {
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
663 664

				GEM_BUG_ON(port_isset(port));
665
			}
666

667 668
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
669
			trace_i915_gem_request_in(rq, port_index(port, execlists));
670 671
			last = rq;
			submit = true;
672
		}
673

674
		rb = rb_next(rb);
675
		rb_erase(&p->node, &execlists->queue);
676 677
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
678
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
679
	} while (rb);
680
done:
681
	execlists->first = rb;
682
	if (submit)
683
		port_assign(port, last);
C
Chris Wilson 已提交
684
unlock:
685
	spin_unlock_irq(&engine->timeline->lock);
686

687 688
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
689
		execlists_submit_ports(engine);
690
	}
691 692
}

693 694
static void
execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
695
{
696
	struct execlist_port *port = execlists->port;
697
	unsigned int num_ports = execlists_num_ports(execlists);
698

699
	while (num_ports-- && port_isset(port)) {
700 701
		struct drm_i915_gem_request *rq = port_request(port);

702
		GEM_BUG_ON(!execlists->active);
703
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
704 705
		i915_gem_request_put(rq);

706 707 708
		memset(port, 0, sizeof(*port));
		port++;
	}
709 710
}

711 712
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
713
	struct intel_engine_execlists * const execlists = &engine->execlists;
714 715 716 717 718 719 720
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
721
	execlist_cancel_port_requests(execlists);
722 723 724 725 726 727 728 729 730

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
731
	rb = execlists->first;
732 733 734 735 736 737 738 739 740 741 742
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
743
		rb_erase(&p->node, &execlists->queue);
744 745 746 747 748 749 750
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

751

752 753
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
754
	GEM_BUG_ON(port_isset(execlists->port));
755 756 757 758 759 760 761 762 763 764 765 766

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

767
/*
768 769 770
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
771
static void intel_lrc_irq_handler(unsigned long data)
772
{
773 774
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
775
	struct execlist_port * const port = execlists->port;
776
	struct drm_i915_private *dev_priv = engine->i915;
777

778 779 780 781 782 783 784 785 786
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

787
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
788

789 790 791 792 793
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
794 795 796
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
797
		unsigned int head, tail;
798

799
		if (unlikely(execlists->csb_use_mmio)) {
800 801
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
802
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
803 804
		}

805 806 807 808 809 810 811 812 813 814 815
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
816
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
817 818 819
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
820
			execlists->csb_head = head;
821 822 823 824 825
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

826
			head = execlists->csb_head;
827 828
			tail = READ_ONCE(buf[write_idx]);
		}
829

830
		while (head != tail) {
831
			struct drm_i915_gem_request *rq;
832
			unsigned int status;
833
			unsigned int count;
834 835 836

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

855
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
856 857 858
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

C
Chris Wilson 已提交
859 860 861 862 863 864 865 866
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
			    buf[2*head + 1] == PREEMPT_ID) {
				execlist_cancel_port_requests(execlists);

				spin_lock_irq(&engine->timeline->lock);
				unwind_incomplete_requests(engine);
				spin_unlock_irq(&engine->timeline->lock);

867 868 869 870
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
871 872 873 874
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
875 876
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
877 878
				continue;

879 880 881
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

882
			/* Check the context/desc id for this event matches */
883
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
884

885 886 887
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
888
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
889 890 891 892 893
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
894

895
				execlists_port_complete(execlists, port);
896 897
			} else {
				port_set(port, port_pack(rq, count));
898
			}
899

900 901
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
902
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
903 904 905
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
906
		}
907

908 909
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
910 911 912
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
913 914
	}

915
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
916
		execlists_dequeue(engine);
917

918
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
919 920
}

921 922 923 924 925 926 927
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
928
	if (ptr_unmask_bits(p, 1))
929
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
930 931
}

932
static void execlists_submit_request(struct drm_i915_gem_request *request)
933
{
934
	struct intel_engine_cs *engine = request->engine;
935
	unsigned long flags;
936

937 938
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
939

940
	insert_request(engine, &request->priotree, request->priotree.priority);
941

942
	GEM_BUG_ON(!engine->execlists.first);
943 944
	GEM_BUG_ON(list_empty(&request->priotree.link));

945
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
946 947
}

948 949 950 951 952
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

953 954 955
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
956
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
957 958

	GEM_BUG_ON(!locked);
959 960

	if (engine != locked) {
961 962
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
963 964 965 966 967 968 969
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
970
	struct intel_engine_cs *engine;
971 972 973 974
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

975 976
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

977 978 979
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

980 981
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

1006 1007 1008 1009 1010 1011
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1012 1013 1014
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1015
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1016 1017
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1018
		}
1019

1020
		list_safe_reset_next(dep, p, dfs_link);
1021 1022
	}

1023 1024 1025 1026 1027
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1028
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1029 1030 1031 1032 1033 1034 1035
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1036 1037 1038
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1051 1052 1053
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1054
		}
1055 1056
	}

1057
	spin_unlock_irq(&engine->timeline->lock);
1058 1059
}

1060 1061 1062
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1063
{
1064
	struct intel_context *ce = &ctx->engine[engine->id];
1065
	unsigned int flags;
1066
	void *vaddr;
1067
	int ret;
1068

1069
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1070

1071 1072
	if (likely(ce->pin_count++))
		goto out;
1073
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1074

1075 1076 1077 1078 1079
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1080
	GEM_BUG_ON(!ce->state);
1081

1082
	flags = PIN_GLOBAL | PIN_HIGH;
1083 1084
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1085 1086

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1087
	if (ret)
1088
		goto err;
1089

1090
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1091 1092
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1093
		goto unpin_vma;
1094 1095
	}

1096
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1097
	if (ret)
1098
		goto unpin_map;
1099

1100
	intel_lr_context_descriptor_update(ctx, engine);
1101

1102 1103
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1104
		i915_ggtt_offset(ce->ring->vma);
1105

C
Chris Wilson 已提交
1106
	ce->state->obj->mm.dirty = true;
1107
	ce->state->obj->pin_global++;
1108

1109
	i915_gem_context_get(ctx);
1110 1111
out:
	return ce->ring;
1112

1113
unpin_map:
1114 1115 1116
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1117
err:
1118
	ce->pin_count = 0;
1119
	return ERR_PTR(ret);
1120 1121
}

1122 1123
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1124
{
1125
	struct intel_context *ce = &ctx->engine[engine->id];
1126

1127
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1128
	GEM_BUG_ON(ce->pin_count == 0);
1129

1130
	if (--ce->pin_count)
1131
		return;
1132

1133
	intel_ring_unpin(ce->ring);
1134

1135
	ce->state->obj->pin_global--;
1136 1137
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1138

1139
	i915_gem_context_put(ctx);
1140 1141
}

1142
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1143 1144 1145
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1146
	u32 *cs;
1147 1148
	int ret;

1149 1150
	GEM_BUG_ON(!ce->pin_count);

1151 1152 1153 1154 1155 1156
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1157
	cs = intel_ring_begin(request, 0);
1158 1159
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1160 1161 1162 1163

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1164
			return ret;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1196 1197
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1198
{
1199 1200 1201 1202 1203 1204 1205 1206 1207
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1208 1209 1210 1211
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1212 1213 1214 1215 1216 1217 1218

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1219 1220
}

1221 1222 1223 1224 1225 1226
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1227
 *
1228 1229
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1230
 *
1231 1232 1233 1234
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1235
 */
1236
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1237
{
1238
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1239
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1240

1241
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1242 1243
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1244

1245 1246
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1247 1248 1249 1250 1251 1252 1253
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1254

C
Chris Wilson 已提交
1255 1256
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1257
	/* Pad to end of cacheline */
1258 1259
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1260 1261 1262 1263 1264 1265 1266

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1267
	return batch;
1268 1269
}

1270
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1271
{
C
Chris Wilson 已提交
1272 1273
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1274
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1275
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1276

1277
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1278 1279 1280 1281 1282
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1283

1284 1285
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1286
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1287 1288 1289 1290 1291 1292 1293
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1294
	}
1295

1296
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1311 1312 1313 1314 1315 1316
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1317 1318
	}

C
Chris Wilson 已提交
1319 1320
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1321
	/* Pad to end of cacheline */
1322 1323
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1324

1325
	return batch;
1326 1327
}

1328 1329 1330
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1331
{
1332 1333 1334
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1335

1336
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1337 1338
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1339

1340
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1341 1342 1343
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1344 1345
	}

1346 1347 1348 1349 1350
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1351
	return 0;
1352 1353 1354 1355

err:
	i915_gem_object_put(obj);
	return err;
1356 1357
}

1358
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1359
{
1360
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1361 1362
}

1363 1364
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1365
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1366
{
1367
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1368 1369 1370
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1371
	struct page *page;
1372 1373
	void *batch, *batch_ptr;
	unsigned int i;
1374
	int ret;
1375

1376 1377
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1378

1379
	switch (INTEL_GEN(engine->i915)) {
1380 1381
	case 10:
		return 0;
1382 1383
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1384
		wa_bb_fn[1] = NULL;
1385 1386 1387
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1388
		wa_bb_fn[1] = NULL;
1389 1390 1391
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1392
		return 0;
1393
	}
1394

1395
	ret = lrc_setup_wa_ctx(engine);
1396 1397 1398 1399 1400
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1401
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1402
	batch = batch_ptr = kmap_atomic(page);
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1415 1416
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1417
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1418 1419
	}

1420 1421
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1422 1423
	kunmap_atomic(batch);
	if (ret)
1424
		lrc_destroy_wa_ctx(engine);
1425 1426 1427 1428

	return ret;
}

1429 1430 1431 1432 1433 1434 1435 1436
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1437
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1438
{
1439
	struct drm_i915_private *dev_priv = engine->i915;
1440
	struct intel_engine_execlists * const execlists = &engine->execlists;
1441 1442 1443 1444 1445
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1446

1447
	intel_engine_reset_breadcrumbs(engine);
1448
	intel_engine_init_hangcheck(engine);
1449

1450 1451
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1452
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1453 1454 1455
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1456

1457
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1472
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1473
	execlists->csb_head = -1;
1474
	execlists->active = 0;
1475

1476
	/* After a GPU reset, we may have requests to replay */
1477
	if (execlists->first)
1478
		tasklet_schedule(&execlists->irq_tasklet);
1479

1480
	return 0;
1481 1482
}

1483
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1484
{
1485
	struct drm_i915_private *dev_priv = engine->i915;
1486 1487
	int ret;

1488
	ret = gen8_init_common_ring(engine);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1502
	return init_workarounds_ring(engine);
1503 1504
}

1505
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1506 1507 1508
{
	int ret;

1509
	ret = gen8_init_common_ring(engine);
1510 1511 1512
	if (ret)
		return ret;

1513
	return init_workarounds_ring(engine);
1514 1515
}

1516 1517 1518
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1519
	struct intel_engine_execlists * const execlists = &engine->execlists;
1520
	struct intel_context *ce;
1521
	unsigned long flags;
1522

1523 1524
	spin_lock_irqsave(&engine->timeline->lock, flags);

1525 1526 1527 1528 1529 1530 1531 1532 1533
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1534
	execlist_cancel_port_requests(execlists);
1535

1536
	/* Push back any incomplete requests for replay after the reset. */
1537
	unwind_incomplete_requests(engine);
1538

1539
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1551
	if (!request || request->fence.error != -EIO)
1552
		return;
1553

1554 1555 1556 1557 1558 1559 1560
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1561
	ce = &request->ctx->engine[engine->id];
1562 1563 1564
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1565
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1566 1567
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1568
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1569

1570 1571 1572
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1573
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1574
	unwind_wa_tail(request);
1575 1576
}

1577 1578 1579
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1580
	struct intel_engine_cs *engine = req->engine;
1581
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1582 1583
	u32 *cs;
	int i;
1584

1585 1586 1587
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1588

1589
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1590
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1591 1592
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1593 1594 1595 1596
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1597 1598
	}

1599 1600
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1601 1602 1603 1604

	return 0;
}

1605
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1606
			      u64 offset, u32 len,
1607
			      const unsigned int flags)
1608
{
1609
	u32 *cs;
1610 1611
	int ret;

1612 1613 1614 1615
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1616 1617
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1618
	if (req->ctx->ppgtt &&
1619 1620 1621 1622 1623 1624
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1625

1626
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1627 1628
	}

1629 1630 1631
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1650 1651
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1652
	/* FIXME(BDW): Address space and security selectors. */
1653 1654 1655
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1656 1657 1658
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1659 1660 1661 1662

	return 0;
}

1663
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1664
{
1665
	struct drm_i915_private *dev_priv = engine->i915;
1666 1667 1668
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1669 1670
}

1671
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1672
{
1673
	struct drm_i915_private *dev_priv = engine->i915;
1674
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1675 1676
}

1677
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1678
{
1679
	u32 cmd, *cs;
1680

1681 1682 1683
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1684 1685 1686

	cmd = MI_FLUSH_DW + 1;

1687 1688 1689 1690 1691 1692 1693
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1694
	if (mode & EMIT_INVALIDATE) {
1695
		cmd |= MI_INVALIDATE_TLB;
1696
		if (request->engine->id == VCS)
1697
			cmd |= MI_INVALIDATE_BSD;
1698 1699
	}

1700 1701 1702 1703 1704
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1705 1706 1707 1708

	return 0;
}

1709
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1710
				  u32 mode)
1711
{
1712
	struct intel_engine_cs *engine = request->engine;
1713 1714
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1715
	bool vf_flush_wa = false, dc_flush_wa = false;
1716
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1717
	int len;
1718 1719 1720

	flags |= PIPE_CONTROL_CS_STALL;

1721
	if (mode & EMIT_FLUSH) {
1722 1723
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1724
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1725
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1726 1727
	}

1728
	if (mode & EMIT_INVALIDATE) {
1729 1730 1731 1732 1733 1734 1735 1736 1737
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1738 1739 1740 1741
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1742
		if (IS_GEN9(request->i915))
1743
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1744 1745 1746 1747

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1748
	}
1749

M
Mika Kuoppala 已提交
1750 1751 1752 1753 1754 1755 1756 1757
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1758 1759 1760
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1761

1762 1763
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1764

1765 1766 1767
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1768

1769
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1770

1771 1772
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1773

1774
	intel_ring_advance(request, cs);
1775 1776 1777 1778

	return 0;
}

1779 1780 1781 1782 1783
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1784
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1785
{
C
Chris Wilson 已提交
1786 1787
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1788 1789
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1790
}
1791

1792
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1793
{
1794 1795
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1796

1797 1798
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1799 1800 1801
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1802
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1803

1804
	gen8_emit_wa_tail(request, cs);
1805
}
1806 1807
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1808
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1809
					u32 *cs)
1810
{
1811 1812 1813
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1814 1815
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1816 1817 1818
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1819
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1820

1821
	gen8_emit_wa_tail(request, cs);
1822
}
1823
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1824

1825
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1826 1827 1828
{
	int ret;

1829
	ret = intel_ring_workarounds_emit(req);
1830 1831 1832
	if (ret)
		return ret;

1833 1834 1835 1836 1837 1838 1839 1840
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1841
	return i915_gem_render_state_emit(req);
1842 1843
}

1844 1845
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1846
 * @engine: Engine Command Streamer.
1847
 */
1848
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1849
{
1850
	struct drm_i915_private *dev_priv;
1851

1852 1853 1854 1855
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1856 1857
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1858

1859
	dev_priv = engine->i915;
1860

1861 1862
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1863
	}
1864

1865 1866
	if (engine->cleanup)
		engine->cleanup(engine);
1867

1868
	intel_engine_cleanup_common(engine);
1869

1870
	lrc_destroy_wa_ctx(engine);
1871
	engine->i915 = NULL;
1872 1873
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1874 1875
}

1876
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1877
{
1878
	engine->submit_request = execlists_submit_request;
1879
	engine->cancel_requests = execlists_cancel_requests;
1880
	engine->schedule = execlists_schedule;
1881
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1882 1883 1884

	engine->park = NULL;
	engine->unpark = NULL;
1885 1886
}

1887
static void
1888
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1889 1890
{
	/* Default vfuncs which can be overriden by each engine. */
1891
	engine->init_hw = gen8_init_common_ring;
1892
	engine->reset_hw = reset_common_ring;
1893 1894 1895 1896

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1897 1898
	engine->request_alloc = execlists_request_alloc;

1899
	engine->emit_flush = gen8_emit_flush;
1900
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1901
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1902 1903

	engine->set_default_submission = execlists_set_default_submission;
1904

1905 1906
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1907
	engine->emit_bb_start = gen8_emit_bb_start;
1908 1909
}

1910
static inline void
1911
logical_ring_default_irqs(struct intel_engine_cs *engine)
1912
{
1913
	unsigned shift = engine->irq_shift;
1914 1915
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1916 1917
}

1918 1919 1920 1921 1922 1923
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1924 1925
	intel_engine_setup_common(engine);

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1941
	engine->execlists.fw_domains = fw_domains;
1942

1943
	tasklet_init(&engine->execlists.irq_tasklet,
1944 1945 1946 1947 1948 1949
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1950
static int logical_ring_init(struct intel_engine_cs *engine)
1951 1952 1953
{
	int ret;

1954
	ret = intel_engine_init_common(engine);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1965
int logical_render_ring_init(struct intel_engine_cs *engine)
1966 1967 1968 1969
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1970 1971
	logical_ring_setup(engine);

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1982 1983
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
1984

1985
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2000
	return logical_ring_init(engine);
2001 2002
}

2003
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2004 2005 2006 2007
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2008 2009
}

2010
static u32
2011
make_rpcs(struct drm_i915_private *dev_priv)
2012 2013 2014 2015 2016 2017 2018
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2019
	if (INTEL_GEN(dev_priv) < 9)
2020 2021 2022 2023 2024 2025 2026 2027
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2028
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2029
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2030
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2031 2032 2033 2034
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2035
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2036
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2037
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2038 2039 2040 2041
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2042 2043
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2044
			GEN8_RPCS_EU_MIN_SHIFT;
2045
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2046 2047 2048 2049 2050 2051 2052
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2053
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2054 2055 2056
{
	u32 indirect_ctx_offset;

2057
	switch (INTEL_GEN(engine->i915)) {
2058
	default:
2059
		MISSING_CASE(INTEL_GEN(engine->i915));
2060
		/* fall through */
2061 2062 2063 2064
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2078
static void execlists_init_reg_state(u32 *regs,
2079 2080 2081
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2082
{
2083 2084
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2115 2116
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2117 2118 2119
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2120
		if (wa_ctx->indirect_ctx.size) {
2121
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2122

2123
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2124 2125
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2126

2127
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2128
				intel_lr_indirect_ctx_offset(engine) << 6;
2129 2130 2131 2132 2133
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2134

2135
			regs[CTX_BB_PER_CTX_PTR + 1] =
2136
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2137
		}
2138
	}
2139 2140 2141 2142

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2143
	/* PDP values well be assigned later if needed */
2144 2145 2146 2147 2148 2149 2150 2151
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2152

2153
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2154 2155 2156 2157
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2158
		ASSIGN_CTX_PML4(ppgtt, regs);
2159 2160
	}

2161 2162 2163 2164
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2165 2166

		i915_oa_init_reg_state(engine, ctx, regs);
2167
	}
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2191
	ctx_obj->mm.dirty = true;
2192 2193 2194 2195 2196 2197

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2198

2199
	i915_gem_object_unpin_map(ctx_obj);
2200 2201 2202 2203

	return 0;
}

2204
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2205
					    struct intel_engine_cs *engine)
2206
{
2207
	struct drm_i915_gem_object *ctx_obj;
2208
	struct intel_context *ce = &ctx->engine[engine->id];
2209
	struct i915_vma *vma;
2210
	uint32_t context_size;
2211
	struct intel_ring *ring;
2212 2213
	int ret;

2214
	WARN_ON(ce->state);
2215

2216
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2217

2218 2219 2220 2221 2222
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2223

2224
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2225
	if (IS_ERR(ctx_obj)) {
2226
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2227
		return PTR_ERR(ctx_obj);
2228 2229
	}

2230
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2231 2232 2233 2234 2235
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2236
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2237 2238
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2239
		goto error_deref_obj;
2240 2241
	}

2242
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2243 2244
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2245
		goto error_ring_free;
2246 2247
	}

2248
	ce->ring = ring;
2249
	ce->state = vma;
2250
	ce->initialised |= engine->init_context == NULL;
2251 2252

	return 0;
2253

2254
error_ring_free:
2255
	intel_ring_free(ring);
2256
error_deref_obj:
2257
	i915_gem_object_put(ctx_obj);
2258
	return ret;
2259
}
2260

2261
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2262
{
2263
	struct intel_engine_cs *engine;
2264
	struct i915_gem_context *ctx;
2265
	enum intel_engine_id id;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2277
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2278
		for_each_engine(engine, dev_priv, id) {
2279 2280
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2281

2282 2283
			if (!ce->state)
				continue;
2284

2285 2286 2287 2288
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2289

2290 2291 2292
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2293

C
Chris Wilson 已提交
2294
			ce->state->obj->mm.dirty = true;
2295
			i915_gem_object_unpin_map(ce->state->obj);
2296

2297
			intel_ring_reset(ce->ring, 0);
2298
		}
2299 2300
	}
}