intel_lrc.c 69.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
#define WA_TAIL_DWORDS 2
212
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
213
#define PREEMPT_ID 0x1
214

215
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216
					    struct intel_engine_cs *engine);
217 218 219 220
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
221

222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224
 * @dev_priv: i915 device private
225 226 227
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
228
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 230 231
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
232
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233
{
234 235 236
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
237
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 239
		return 1;

240
	if (INTEL_GEN(dev_priv) >= 9)
241 242
		return 1;

243 244 245
	if (enable_execlists == 0)
		return 0;

246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247
	    USES_PPGTT(dev_priv))
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291 292
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
293
{
294
	struct intel_engine_execlists * const execlists = &engine->execlists;
295 296 297 298
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

299
	if (unlikely(execlists->no_priolist))
300 301 302 303 304
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
305
	parent = &execlists->queue.rb_node;
306 307 308 309 310 311 312 313 314
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
315
			return p;
316 317 318 319
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
320
		p = &execlists->default_priolist;
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
335
			execlists->no_priolist = true;
336 337 338 339 340
			goto find_priolist;
		}
	}

	p->priority = prio;
341
	INIT_LIST_HEAD(&p->requests);
342
	rb_link_node(&p->node, rb, parent);
343
	rb_insert_color(&p->node, &execlists->queue);
344 345

	if (first)
346
		execlists->first = &p->node;
347

348
	return ptr_pack_bits(p, first, 1);
349 350
}

351 352 353 354 355 356
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

357
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
358 359
{
	struct drm_i915_gem_request *rq, *rn;
360 361
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
362 363 364 365 366 367 368 369 370 371 372 373

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

374 375 376 377 378 379 380 381 382 383 384
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
385 386 387
	}
}

388 389 390 391 392 393 394 395 396 397 398
static void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

399 400 401
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
402
{
403 404 405 406 407 408
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
409

410 411
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
412 413
}

414 415 416 417 418 419 420 421 422
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

423
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
424
{
425
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
426 427
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
428
	u32 *reg_state = ce->lrc_reg_state;
429

430
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
431

432 433 434 435 436
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
437
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
438
		execlists_update_context_pdps(ppgtt, reg_state);
439 440

	return ce->lrc_desc;
441 442
}

C
Chris Wilson 已提交
443 444 445 446 447 448
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

449
static void execlists_submit_ports(struct intel_engine_cs *engine)
450
{
451
	struct execlist_port *port = engine->execlists.port;
452
	u32 __iomem *elsp =
453 454
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
455

456
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
473

C
Chris Wilson 已提交
474
		elsp_write(desc, elsp);
475
	}
476 477
}

478
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
479
{
480
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
481
		i915_gem_context_force_single_submission(ctx));
482
}
483

484 485 486 487 488
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
489

490 491
	if (ctx_single_port_submission(prev))
		return false;
492

493
	return true;
494 495
}

496 497 498 499 500 501 502 503 504 505 506
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
}

529
static void execlists_dequeue(struct intel_engine_cs *engine)
530
{
531 532
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
533 534
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
535
	struct drm_i915_gem_request *last = port_request(port);
536
	struct rb_node *rb;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
558
	 */
559

560
	spin_lock_irq(&engine->timeline->lock);
561 562
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
		if (port_count(&port[0]) > 1)
			goto unlock;

576
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
577 578 579 580 581 582 583
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
584 585
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
623 624 625 626 627 628 629 630 631 632 633 634 635 636
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
637
			 */
638 639 640 641 642 643
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
644
				if (port == last_port) {
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
669 670

				GEM_BUG_ON(port_isset(port));
671
			}
672

673 674
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
675
			trace_i915_gem_request_in(rq, port_index(port, execlists));
676 677
			last = rq;
			submit = true;
678
		}
679

680
		rb = rb_next(rb);
681
		rb_erase(&p->node, &execlists->queue);
682 683
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
684
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
685
	} while (rb);
686
done:
687
	execlists->first = rb;
688
	if (submit)
689
		port_assign(port, last);
C
Chris Wilson 已提交
690
unlock:
691
	spin_unlock_irq(&engine->timeline->lock);
692

693 694
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
695
		execlists_submit_ports(engine);
696
	}
697 698
}

699
static void
700
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
701
{
702
	struct execlist_port *port = execlists->port;
703
	unsigned int num_ports = execlists_num_ports(execlists);
704

705
	while (num_ports-- && port_isset(port)) {
706 707
		struct drm_i915_gem_request *rq = port_request(port);

708
		GEM_BUG_ON(!execlists->active);
709
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
710 711
		i915_gem_request_put(rq);

712 713 714
		memset(port, 0, sizeof(*port));
		port++;
	}
715 716
}

717 718
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
719
	struct intel_engine_execlists * const execlists = &engine->execlists;
720 721 722 723 724 725 726
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
727
	execlists_cancel_port_requests(execlists);
728 729 730 731 732 733 734 735 736

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
737
	rb = execlists->first;
738 739 740 741 742 743 744 745 746 747 748
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
749
		rb_erase(&p->node, &execlists->queue);
750 751 752 753 754 755 756
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

757

758 759
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
760
	GEM_BUG_ON(port_isset(execlists->port));
761 762 763 764 765 766 767 768 769 770 771 772

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

773
/*
774 775 776
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
777
static void intel_lrc_irq_handler(unsigned long data)
778
{
779 780
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
781
	struct execlist_port * const port = execlists->port;
782
	struct drm_i915_private *dev_priv = engine->i915;
783

784 785 786 787 788 789 790 791 792
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

793
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
794

795 796 797 798 799
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
800 801 802
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
803
		unsigned int head, tail;
804

805
		if (unlikely(execlists->csb_use_mmio)) {
806 807
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
808
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
809 810
		}

811 812 813 814 815 816 817 818 819 820 821
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
822
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
823 824 825
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
826
			execlists->csb_head = head;
827 828 829 830 831
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

832
			head = execlists->csb_head;
833 834
			tail = READ_ONCE(buf[write_idx]);
		}
835

836
		while (head != tail) {
837
			struct drm_i915_gem_request *rq;
838
			unsigned int status;
839
			unsigned int count;
840 841 842

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

861
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
862 863 864
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

C
Chris Wilson 已提交
865 866
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
			    buf[2*head + 1] == PREEMPT_ID) {
867 868
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
869

870 871 872 873
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
874 875 876 877
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
878 879
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
880 881
				continue;

882 883 884
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

885
			/* Check the context/desc id for this event matches */
886
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
887

888 889 890
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
891
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
892 893 894 895 896
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
897

898
				execlists_port_complete(execlists, port);
899 900
			} else {
				port_set(port, port_pack(rq, count));
901
			}
902

903 904
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
905
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
906 907 908
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
909
		}
910

911 912
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
913 914 915
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
916 917
	}

918
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
919
		execlists_dequeue(engine);
920

921
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
922 923
}

924 925 926 927 928 929 930
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
931
	if (ptr_unmask_bits(p, 1))
932
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
933 934
}

935
static void execlists_submit_request(struct drm_i915_gem_request *request)
936
{
937
	struct intel_engine_cs *engine = request->engine;
938
	unsigned long flags;
939

940 941
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
942

943
	insert_request(engine, &request->priotree, request->priotree.priority);
944

945
	GEM_BUG_ON(!engine->execlists.first);
946 947
	GEM_BUG_ON(list_empty(&request->priotree.link));

948
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
949 950
}

951 952 953 954 955
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

956 957 958
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
959
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
960 961

	GEM_BUG_ON(!locked);
962 963

	if (engine != locked) {
964 965
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
966 967 968 969 970 971 972
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
973
	struct intel_engine_cs *engine;
974 975 976 977
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

978 979
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

980 981 982
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

983 984
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

1009 1010 1011 1012 1013 1014
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1015 1016 1017
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1018
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1019 1020
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1021
		}
1022

1023
		list_safe_reset_next(dep, p, dfs_link);
1024 1025
	}

1026 1027 1028 1029 1030
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1031
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1032 1033 1034 1035 1036 1037 1038
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1039 1040 1041
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1054 1055 1056
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1057
		}
1058 1059
	}

1060
	spin_unlock_irq(&engine->timeline->lock);
1061 1062
}

1063 1064 1065
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1066
{
1067
	struct intel_context *ce = &ctx->engine[engine->id];
1068
	unsigned int flags;
1069
	void *vaddr;
1070
	int ret;
1071

1072
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1073

1074 1075
	if (likely(ce->pin_count++))
		goto out;
1076
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1077

1078 1079 1080 1081 1082
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1083
	GEM_BUG_ON(!ce->state);
1084

1085
	flags = PIN_GLOBAL | PIN_HIGH;
1086 1087
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1088 1089

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1090
	if (ret)
1091
		goto err;
1092

1093
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1094 1095
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1096
		goto unpin_vma;
1097 1098
	}

1099
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1100
	if (ret)
1101
		goto unpin_map;
1102

1103
	intel_lr_context_descriptor_update(ctx, engine);
1104

1105 1106
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1107
		i915_ggtt_offset(ce->ring->vma);
1108

C
Chris Wilson 已提交
1109
	ce->state->obj->mm.dirty = true;
1110
	ce->state->obj->pin_global++;
1111

1112
	i915_gem_context_get(ctx);
1113 1114
out:
	return ce->ring;
1115

1116
unpin_map:
1117 1118 1119
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1120
err:
1121
	ce->pin_count = 0;
1122
	return ERR_PTR(ret);
1123 1124
}

1125 1126
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1127
{
1128
	struct intel_context *ce = &ctx->engine[engine->id];
1129

1130
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1131
	GEM_BUG_ON(ce->pin_count == 0);
1132

1133
	if (--ce->pin_count)
1134
		return;
1135

1136
	intel_ring_unpin(ce->ring);
1137

1138
	ce->state->obj->pin_global--;
1139 1140
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1141

1142
	i915_gem_context_put(ctx);
1143 1144
}

1145
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1146 1147 1148
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1149
	u32 *cs;
1150 1151
	int ret;

1152 1153
	GEM_BUG_ON(!ce->pin_count);

1154 1155 1156 1157 1158 1159
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1160
	cs = intel_ring_begin(request, 0);
1161 1162
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1163 1164 1165 1166

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1167
			return ret;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1199 1200
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1201
{
1202 1203 1204 1205 1206 1207 1208 1209 1210
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1211 1212 1213 1214
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1215 1216 1217 1218 1219 1220 1221

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1222 1223
}

1224 1225 1226 1227 1228 1229
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1230
 *
1231 1232
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1233
 *
1234 1235 1236 1237
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1238
 */
1239
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1240
{
1241
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1242
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1243

1244
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1245 1246
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1247

1248 1249
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1250 1251 1252 1253 1254 1255 1256
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1257

C
Chris Wilson 已提交
1258 1259
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1260
	/* Pad to end of cacheline */
1261 1262
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1263 1264 1265 1266 1267 1268 1269

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1270
	return batch;
1271 1272
}

1273
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1274
{
C
Chris Wilson 已提交
1275 1276
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1277
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1278
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1279

1280
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1281 1282 1283 1284 1285
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1286

1287 1288
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1289
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1290 1291 1292 1293 1294 1295 1296
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1297
	}
1298

1299
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1314 1315 1316 1317 1318 1319
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1320 1321
	}

C
Chris Wilson 已提交
1322 1323
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1324
	/* Pad to end of cacheline */
1325 1326
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1327

1328
	return batch;
1329 1330
}

1331 1332 1333
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1334
{
1335 1336 1337
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1338

1339
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1340 1341
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1342

1343
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1344 1345 1346
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1347 1348
	}

1349 1350 1351 1352 1353
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1354
	return 0;
1355 1356 1357 1358

err:
	i915_gem_object_put(obj);
	return err;
1359 1360
}

1361
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1362
{
1363
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1364 1365
}

1366 1367
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1368
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1369
{
1370
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1371 1372 1373
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1374
	struct page *page;
1375 1376
	void *batch, *batch_ptr;
	unsigned int i;
1377
	int ret;
1378

1379 1380
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1381

1382
	switch (INTEL_GEN(engine->i915)) {
1383 1384
	case 10:
		return 0;
1385 1386
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1387
		wa_bb_fn[1] = NULL;
1388 1389 1390
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1391
		wa_bb_fn[1] = NULL;
1392 1393 1394
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1395
		return 0;
1396
	}
1397

1398
	ret = lrc_setup_wa_ctx(engine);
1399 1400 1401 1402 1403
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1404
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1405
	batch = batch_ptr = kmap_atomic(page);
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1418 1419
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1420
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1421 1422
	}

1423 1424
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1425 1426
	kunmap_atomic(batch);
	if (ret)
1427
		lrc_destroy_wa_ctx(engine);
1428 1429 1430 1431

	return ret;
}

1432 1433 1434 1435 1436 1437 1438 1439
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1440
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1441
{
1442
	struct drm_i915_private *dev_priv = engine->i915;
1443
	struct intel_engine_execlists * const execlists = &engine->execlists;
1444 1445 1446 1447 1448
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1449

1450
	intel_engine_reset_breadcrumbs(engine);
1451
	intel_engine_init_hangcheck(engine);
1452

1453 1454
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1455
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1456 1457 1458
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1459

1460
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1475
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1476
	execlists->csb_head = -1;
1477
	execlists->active = 0;
1478

1479
	/* After a GPU reset, we may have requests to replay */
1480
	if (execlists->first)
1481
		tasklet_schedule(&execlists->irq_tasklet);
1482

1483
	return 0;
1484 1485
}

1486
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1487
{
1488
	struct drm_i915_private *dev_priv = engine->i915;
1489 1490
	int ret;

1491
	ret = gen8_init_common_ring(engine);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1505
	return init_workarounds_ring(engine);
1506 1507
}

1508
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1509 1510 1511
{
	int ret;

1512
	ret = gen8_init_common_ring(engine);
1513 1514 1515
	if (ret)
		return ret;

1516
	return init_workarounds_ring(engine);
1517 1518
}

1519 1520 1521
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1522
	struct intel_engine_execlists * const execlists = &engine->execlists;
1523
	struct intel_context *ce;
1524
	unsigned long flags;
1525

1526 1527
	spin_lock_irqsave(&engine->timeline->lock, flags);

1528 1529 1530 1531 1532 1533 1534 1535 1536
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1537
	execlists_cancel_port_requests(execlists);
1538

1539
	/* Push back any incomplete requests for replay after the reset. */
1540
	__unwind_incomplete_requests(engine);
1541

1542
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1554
	if (!request || request->fence.error != -EIO)
1555
		return;
1556

1557 1558 1559 1560 1561 1562 1563
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1564
	ce = &request->ctx->engine[engine->id];
1565 1566 1567
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1568
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1569 1570
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1571
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1572

1573 1574 1575
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1576
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1577
	unwind_wa_tail(request);
1578 1579
}

1580 1581 1582
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1583
	struct intel_engine_cs *engine = req->engine;
1584
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1585 1586
	u32 *cs;
	int i;
1587

1588 1589 1590
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1591

1592
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1593
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1594 1595
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1596 1597 1598 1599
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1600 1601
	}

1602 1603
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1604 1605 1606 1607

	return 0;
}

1608
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1609
			      u64 offset, u32 len,
1610
			      const unsigned int flags)
1611
{
1612
	u32 *cs;
1613 1614
	int ret;

1615 1616 1617 1618
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1619 1620
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1621
	if (req->ctx->ppgtt &&
1622 1623 1624 1625 1626 1627
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1628

1629
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1630 1631
	}

1632 1633 1634
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1653 1654
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1655
	/* FIXME(BDW): Address space and security selectors. */
1656 1657 1658
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1659 1660 1661
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1662 1663 1664 1665

	return 0;
}

1666
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1667
{
1668
	struct drm_i915_private *dev_priv = engine->i915;
1669 1670 1671
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1672 1673
}

1674
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1675
{
1676
	struct drm_i915_private *dev_priv = engine->i915;
1677
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1678 1679
}

1680
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1681
{
1682
	u32 cmd, *cs;
1683

1684 1685 1686
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1687 1688 1689

	cmd = MI_FLUSH_DW + 1;

1690 1691 1692 1693 1694 1695 1696
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1697
	if (mode & EMIT_INVALIDATE) {
1698
		cmd |= MI_INVALIDATE_TLB;
1699
		if (request->engine->id == VCS)
1700
			cmd |= MI_INVALIDATE_BSD;
1701 1702
	}

1703 1704 1705 1706 1707
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1708 1709 1710 1711

	return 0;
}

1712
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1713
				  u32 mode)
1714
{
1715
	struct intel_engine_cs *engine = request->engine;
1716 1717
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1718
	bool vf_flush_wa = false, dc_flush_wa = false;
1719
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1720
	int len;
1721 1722 1723

	flags |= PIPE_CONTROL_CS_STALL;

1724
	if (mode & EMIT_FLUSH) {
1725 1726
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1727
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1728
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1729 1730
	}

1731
	if (mode & EMIT_INVALIDATE) {
1732 1733 1734 1735 1736 1737 1738 1739 1740
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1741 1742 1743 1744
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1745
		if (IS_GEN9(request->i915))
1746
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1747 1748 1749 1750

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1751
	}
1752

M
Mika Kuoppala 已提交
1753 1754 1755 1756 1757 1758 1759 1760
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1761 1762 1763
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1764

1765 1766
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1767

1768 1769 1770
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1771

1772
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1773

1774 1775
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1776

1777
	intel_ring_advance(request, cs);
1778 1779 1780 1781

	return 0;
}

1782 1783 1784 1785 1786
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1787
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1788
{
C
Chris Wilson 已提交
1789 1790
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1791 1792
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1793
}
1794

1795
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1796
{
1797 1798
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1799

1800 1801
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1802 1803 1804
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1805
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1806

1807
	gen8_emit_wa_tail(request, cs);
1808
}
1809 1810
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1811
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1812
					u32 *cs)
1813
{
1814 1815 1816
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1817 1818
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1819 1820 1821
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1822
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1823

1824
	gen8_emit_wa_tail(request, cs);
1825
}
1826
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1827

1828
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1829 1830 1831
{
	int ret;

1832
	ret = intel_ring_workarounds_emit(req);
1833 1834 1835
	if (ret)
		return ret;

1836 1837 1838 1839 1840 1841 1842 1843
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1844
	return i915_gem_render_state_emit(req);
1845 1846
}

1847 1848
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1849
 * @engine: Engine Command Streamer.
1850
 */
1851
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1852
{
1853
	struct drm_i915_private *dev_priv;
1854

1855 1856 1857 1858
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1859 1860
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1861

1862
	dev_priv = engine->i915;
1863

1864 1865
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1866
	}
1867

1868 1869
	if (engine->cleanup)
		engine->cleanup(engine);
1870

1871
	intel_engine_cleanup_common(engine);
1872

1873
	lrc_destroy_wa_ctx(engine);
1874
	engine->i915 = NULL;
1875 1876
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1877 1878
}

1879
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1880
{
1881
	engine->submit_request = execlists_submit_request;
1882
	engine->cancel_requests = execlists_cancel_requests;
1883
	engine->schedule = execlists_schedule;
1884
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1885 1886 1887

	engine->park = NULL;
	engine->unpark = NULL;
1888 1889
}

1890
static void
1891
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1892 1893
{
	/* Default vfuncs which can be overriden by each engine. */
1894
	engine->init_hw = gen8_init_common_ring;
1895
	engine->reset_hw = reset_common_ring;
1896 1897 1898 1899

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1900 1901
	engine->request_alloc = execlists_request_alloc;

1902
	engine->emit_flush = gen8_emit_flush;
1903
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1904
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1905 1906

	engine->set_default_submission = execlists_set_default_submission;
1907

1908 1909
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1910
	engine->emit_bb_start = gen8_emit_bb_start;
1911 1912
}

1913
static inline void
1914
logical_ring_default_irqs(struct intel_engine_cs *engine)
1915
{
1916
	unsigned shift = engine->irq_shift;
1917 1918
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1919 1920
}

1921 1922 1923 1924 1925 1926
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1927 1928
	intel_engine_setup_common(engine);

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1944
	engine->execlists.fw_domains = fw_domains;
1945

1946
	tasklet_init(&engine->execlists.irq_tasklet,
1947 1948 1949 1950 1951 1952
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1953
static int logical_ring_init(struct intel_engine_cs *engine)
1954 1955 1956
{
	int ret;

1957
	ret = intel_engine_init_common(engine);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1968
int logical_render_ring_init(struct intel_engine_cs *engine)
1969 1970 1971 1972
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1973 1974
	logical_ring_setup(engine);

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1985 1986
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
1987

1988
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2003
	return logical_ring_init(engine);
2004 2005
}

2006
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2007 2008 2009 2010
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2011 2012
}

2013
static u32
2014
make_rpcs(struct drm_i915_private *dev_priv)
2015 2016 2017 2018 2019 2020 2021
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2022
	if (INTEL_GEN(dev_priv) < 9)
2023 2024 2025 2026 2027 2028 2029 2030
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2031
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2032
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2033
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2034 2035 2036 2037
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2038
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2039
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2040
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2041 2042 2043 2044
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2045 2046
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2047
			GEN8_RPCS_EU_MIN_SHIFT;
2048
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2049 2050 2051 2052 2053 2054 2055
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2056
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2057 2058 2059
{
	u32 indirect_ctx_offset;

2060
	switch (INTEL_GEN(engine->i915)) {
2061
	default:
2062
		MISSING_CASE(INTEL_GEN(engine->i915));
2063
		/* fall through */
2064 2065 2066 2067
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2081
static void execlists_init_reg_state(u32 *regs,
2082 2083 2084
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2085
{
2086 2087
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2118 2119
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2120 2121 2122
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2123
		if (wa_ctx->indirect_ctx.size) {
2124
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2125

2126
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2127 2128
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2129

2130
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2131
				intel_lr_indirect_ctx_offset(engine) << 6;
2132 2133 2134 2135 2136
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2137

2138
			regs[CTX_BB_PER_CTX_PTR + 1] =
2139
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2140
		}
2141
	}
2142 2143 2144 2145

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2146
	/* PDP values well be assigned later if needed */
2147 2148 2149 2150 2151 2152 2153 2154
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2155

2156
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2157 2158 2159 2160
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2161
		ASSIGN_CTX_PML4(ppgtt, regs);
2162 2163
	}

2164 2165 2166 2167
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2168 2169

		i915_oa_init_reg_state(engine, ctx, regs);
2170
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2194
	ctx_obj->mm.dirty = true;
2195 2196 2197 2198 2199 2200

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2201

2202
	i915_gem_object_unpin_map(ctx_obj);
2203 2204 2205 2206

	return 0;
}

2207
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2208
					    struct intel_engine_cs *engine)
2209
{
2210
	struct drm_i915_gem_object *ctx_obj;
2211
	struct intel_context *ce = &ctx->engine[engine->id];
2212
	struct i915_vma *vma;
2213
	uint32_t context_size;
2214
	struct intel_ring *ring;
2215 2216
	int ret;

2217
	WARN_ON(ce->state);
2218

2219
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2220

2221 2222 2223 2224 2225
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2226

2227
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2228
	if (IS_ERR(ctx_obj)) {
2229
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2230
		return PTR_ERR(ctx_obj);
2231 2232
	}

2233
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2234 2235 2236 2237 2238
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2239
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2240 2241
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2242
		goto error_deref_obj;
2243 2244
	}

2245
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2246 2247
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2248
		goto error_ring_free;
2249 2250
	}

2251
	ce->ring = ring;
2252
	ce->state = vma;
2253
	ce->initialised |= engine->init_context == NULL;
2254 2255

	return 0;
2256

2257
error_ring_free:
2258
	intel_ring_free(ring);
2259
error_deref_obj:
2260
	i915_gem_object_put(ctx_obj);
2261
	return ret;
2262
}
2263

2264
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2265
{
2266
	struct intel_engine_cs *engine;
2267
	struct i915_gem_context *ctx;
2268
	enum intel_engine_id id;
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2280
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2281
		for_each_engine(engine, dev_priv, id) {
2282 2283
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2284

2285 2286
			if (!ce->state)
				continue;
2287

2288 2289 2290 2291
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2292

2293 2294 2295
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2296

C
Chris Wilson 已提交
2297
			ce->state->obj->mm.dirty = true;
2298
			i915_gem_object_unpin_map(ce->state->obj);
2299

2300
			intel_ring_reset(ce->ring, 0);
2301
		}
2302 2303
	}
}