intel_lrc.c 72.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290 291
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
292
 * @engine: Engine the descriptor will be used with
293
 *
294 295 296 297 298
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
299 300 301 302 303 304 305
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443
			list_del(&req0->execlist_link);
444
			i915_gem_request_put(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		struct intel_ringbuffer *ringbuf;
486

487
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 489
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
490 491
	}

492
	execlists_submit_requests(req0, req1);
493 494
}

495
static unsigned int
496
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497
{
498
	struct drm_i915_gem_request *head_req;
499

500
	assert_spin_locked(&engine->execlist_lock);
501

502
	head_req = list_first_entry_or_null(&engine->execlist_queue,
503
					    struct drm_i915_gem_request,
504 505
					    execlist_link);

506 507
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
508 509 510 511 512 513

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

514 515
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

516
	list_del(&head_req->execlist_link);
517
	i915_gem_request_put(head_req);
518

519
	return 1;
520 521
}

522
static u32
523
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524
		   u32 *context_id)
B
Ben Widawsky 已提交
525
{
526
	struct drm_i915_private *dev_priv = engine->i915;
527
	u32 status;
B
Ben Widawsky 已提交
528

529 530
	read_pointer %= GEN8_CSB_ENTRIES;

531
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532 533 534

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
535

536
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 538 539
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
540 541
}

542
/*
543 544 545
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
546
static void intel_lrc_irq_handler(unsigned long data)
547
{
548
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
549
	struct drm_i915_private *dev_priv = engine->i915;
550
	u32 status_pointer;
551
	unsigned int read_pointer, write_pointer;
552 553
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
554 555
	unsigned int submit_contexts = 0;

556
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
557

558
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
559

560
	read_pointer = engine->next_context_status_buffer;
561
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
562
	if (read_pointer > write_pointer)
563
		write_pointer += GEN8_CSB_ENTRIES;
564 565

	while (read_pointer < write_pointer) {
566 567 568 569 570 571
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
572

573 574 575 576 577 578 579 580
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

581
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
582 583 584 585 586 587 588

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
589 590 591 592 593
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

594
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
595 596
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
597
				execlists_check_remove_request(engine, csb[i][1]);
598 599
	}

600
	if (submit_contexts) {
601
		if (!engine->disable_lite_restore_wa ||
602 603
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
604
	}
605

606
	spin_unlock(&engine->execlist_lock);
607 608 609

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
610 611
}

612
static void execlists_context_queue(struct drm_i915_gem_request *request)
613
{
614
	struct intel_engine_cs *engine = request->engine;
615
	struct drm_i915_gem_request *cursor;
616
	int num_elements = 0;
617

618
	spin_lock_bh(&engine->execlist_lock);
619

620
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
621 622 623 624
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
625
		struct drm_i915_gem_request *tail_req;
626

627
		tail_req = list_last_entry(&engine->execlist_queue,
628
					   struct drm_i915_gem_request,
629 630
					   execlist_link);

631
		if (request->ctx == tail_req->ctx) {
632
			WARN(tail_req->elsp_submitted != 0,
633
				"More than 2 already-submitted reqs queued\n");
634
			list_del(&tail_req->execlist_link);
635
			i915_gem_request_put(tail_req);
636 637 638
		}
	}

639
	i915_gem_request_get(request);
640
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
641
	request->ctx_hw_id = request->ctx->hw_id;
642
	if (num_elements == 0)
643
		execlists_context_unqueue(engine);
644

645
	spin_unlock_bh(&engine->execlist_lock);
646 647
}

648
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649
{
650
	struct intel_engine_cs *engine = req->engine;
651 652 653 654
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
655
	if (engine->gpu_caches_dirty)
656 657
		flush_domains = I915_GEM_GPU_DOMAINS;

658
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 660 661
	if (ret)
		return ret;

662
	engine->gpu_caches_dirty = false;
663 664 665
	return 0;
}

666
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 668
				 struct list_head *vmas)
{
669
	const unsigned other_rings = ~intel_engine_flag(req->engine);
670 671 672 673 674 675 676 677
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

678
		if (obj->active & other_rings) {
679
			ret = i915_gem_object_sync(obj, req->engine, &req);
680 681 682
			if (ret)
				return ret;
		}
683 684 685 686 687 688 689 690 691 692 693 694 695

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
696
	return logical_ring_invalidate_all_caches(req);
697 698
}

699
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700
{
701
	struct intel_engine_cs *engine = request->engine;
702
	struct intel_context *ce = &request->ctx->engine[engine->id];
703
	int ret;
704

705 706 707 708
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
709
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
710

711
	if (!ce->state) {
712 713 714 715 716
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

717
	request->ringbuf = ce->ringbuf;
718

719 720 721 722 723 724
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
725
		ret = i915_guc_wq_check_space(request);
726 727 728 729
		if (ret)
			return ret;
	}

730 731 732
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
733

734 735 736 737
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

738
	if (!ce->initialised) {
739 740 741 742
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

743
		ce->initialised = true;
744 745 746 747 748 749 750 751 752
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

753
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
754 755 756
	return 0;

err_unpin:
757
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
758
	return ret;
759 760 761 762
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
763
 * @request: Request to advance the logical ringbuffer of.
764 765 766 767 768 769
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
770
static int
771
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
772
{
773
	struct intel_ringbuffer *ringbuf = request->ringbuf;
774
	struct intel_engine_cs *engine = request->engine;
775

776 777
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
778

779 780 781 782 783 784 785 786 787
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
788

789 790 791 792 793 794 795 796
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
797

798 799
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
800 801
	else
		execlists_context_queue(request);
802 803

	return 0;
804 805
}

806
/**
807
 * intel_execlists_submission() - submit a batchbuffer for execution, Execlists style
808
 * @params: execbuffer call parameters.
809 810 811 812 813 814 815 816
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
817
int intel_execlists_submission(struct i915_execbuffer_params *params,
818
			       struct drm_i915_gem_execbuffer2 *args,
819
			       struct list_head *vmas)
820
{
821
	struct drm_device       *dev = params->dev;
822
	struct intel_engine_cs *engine = params->engine;
823
	struct drm_i915_private *dev_priv = to_i915(dev);
824
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
825
	u64 exec_start;
826 827 828 829 830 831 832 833 834 835
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
836
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

861
	ret = execlists_move_to_gpu(params->request, vmas);
862 863 864
	if (ret)
		return ret;

865
	if (engine == &dev_priv->engine[RCS] &&
866
	    instp_mode != dev_priv->relative_constants_mode) {
867
		ret = intel_ring_begin(params->request, 4);
868 869 870 871 872
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
873
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
874 875 876 877 878 879
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

880 881 882
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

883
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
884 885 886
	if (ret)
		return ret;

887
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
888

889
	i915_gem_execbuffer_move_to_active(vmas, params->request);
890

891 892 893
	return 0;
}

894
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
895
{
896
	struct drm_i915_gem_request *req, *tmp;
897
	LIST_HEAD(cancel_list);
898

899
	WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
900

901
	spin_lock_bh(&engine->execlist_lock);
902
	list_replace_init(&engine->execlist_queue, &cancel_list);
903
	spin_unlock_bh(&engine->execlist_lock);
904

905
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
906
		list_del(&req->execlist_link);
907
		i915_gem_request_put(req);
908 909 910
	}
}

911
void intel_logical_ring_stop(struct intel_engine_cs *engine)
912
{
913
	struct drm_i915_private *dev_priv = engine->i915;
914 915
	int ret;

916
	if (!intel_engine_initialized(engine))
917 918
		return;

919
	ret = intel_engine_idle(engine);
920
	if (ret)
921
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922
			  engine->name, ret);
923 924

	/* TODO: Is this correct with Execlists enabled? */
925
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
926 927 928 929
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
930
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
931 932
		return;
	}
933
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
934 935
}

936
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
937
{
938
	struct intel_engine_cs *engine = req->engine;
939 940
	int ret;

941
	if (!engine->gpu_caches_dirty)
942 943
		return 0;

944
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
945 946 947
	if (ret)
		return ret;

948
	engine->gpu_caches_dirty = false;
949 950 951
	return 0;
}

952
static int intel_lr_context_pin(struct i915_gem_context *ctx,
953
				struct intel_engine_cs *engine)
954
{
955
	struct drm_i915_private *dev_priv = ctx->i915;
956
	struct intel_context *ce = &ctx->engine[engine->id];
957 958
	void *vaddr;
	u32 *lrc_reg_state;
959
	int ret;
960

961
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
962

963
	if (ce->pin_count++)
964 965
		return 0;

966 967
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
968
	if (ret)
969
		goto err;
970

971
	vaddr = i915_gem_object_pin_map(ce->state);
972 973
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
974 975 976
		goto unpin_ctx_obj;
	}

977 978
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

979
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
980
	if (ret)
981
		goto unpin_map;
982

983
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
984
	intel_lr_context_descriptor_update(ctx, engine);
985 986 987 988

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
989

990 991 992
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
993

994
	i915_gem_context_get(ctx);
995
	return 0;
996

997
unpin_map:
998
	i915_gem_object_unpin_map(ce->state);
999
unpin_ctx_obj:
1000
	i915_gem_object_ggtt_unpin(ce->state);
1001
err:
1002
	ce->pin_count = 0;
1003 1004 1005
	return ret;
}

1006
void intel_lr_context_unpin(struct i915_gem_context *ctx,
1007
			    struct intel_engine_cs *engine)
1008
{
1009
	struct intel_context *ce = &ctx->engine[engine->id];
1010

1011
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1012
	GEM_BUG_ON(ce->pin_count == 0);
1013

1014
	if (--ce->pin_count)
1015
		return;
1016

1017
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1018

1019 1020
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1021

1022 1023 1024
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1025

1026
	i915_gem_context_put(ctx);
1027 1028
}

1029
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1030 1031
{
	int ret, i;
1032
	struct intel_engine_cs *engine = req->engine;
1033
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1034
	struct i915_workarounds *w = &req->i915->workarounds;
1035

1036
	if (w->count == 0)
1037 1038
		return 0;

1039
	engine->gpu_caches_dirty = true;
1040
	ret = logical_ring_flush_all_caches(req);
1041 1042 1043
	if (ret)
		return ret;

1044
	ret = intel_ring_begin(req, w->count * 2 + 2);
1045 1046 1047 1048 1049
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1050
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1051 1052 1053 1054 1055 1056
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1057
	engine->gpu_caches_dirty = true;
1058
	ret = logical_ring_flush_all_caches(req);
1059 1060 1061 1062 1063 1064
	if (ret)
		return ret;

	return 0;
}

1065
#define wa_ctx_emit(batch, index, cmd)					\
1066
	do {								\
1067 1068
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1069 1070
			return -ENOSPC;					\
		}							\
1071
		batch[__index] = (cmd);					\
1072 1073
	} while (0)

V
Ville Syrjälä 已提交
1074
#define wa_ctx_emit_reg(batch, index, reg) \
1075
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1093
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1094
						uint32_t *batch,
1095 1096 1097 1098
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1099
	/*
1100
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1101 1102 1103 1104
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1105 1106
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1107 1108
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1109
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1110
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1111
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1112
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1113 1114 1115
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1116
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1127
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1128
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1129
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1130
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1131
	wa_ctx_emit(batch, index, 0);
1132 1133 1134 1135

	return index;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1155 1156 1157 1158 1159 1160
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1161
 *
1162 1163
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1164
 *
1165 1166 1167 1168
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1169
 */
1170
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1171
				    struct i915_wa_ctx_bb *wa_ctx,
1172
				    uint32_t *batch,
1173 1174
				    uint32_t *offset)
{
1175
	uint32_t scratch_addr;
1176 1177
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1178
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1179
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1180

1181
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1182
	if (IS_BROADWELL(engine->i915)) {
1183
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1184 1185 1186
		if (rc < 0)
			return rc;
		index = rc;
1187 1188
	}

1189 1190
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1191
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1202

1203 1204
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1205
		wa_ctx_emit(batch, index, MI_NOOP);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1216 1217 1218
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1219
 *
1220
 *  The number of DWORDS written are returned using this field.
1221 1222 1223 1224
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1225
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1226
			       struct i915_wa_ctx_bb *wa_ctx,
1227
			       uint32_t *batch,
1228 1229 1230 1231
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1232
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1233
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1234

1235
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1236 1237 1238 1239

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1240
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1241
				    struct i915_wa_ctx_bb *wa_ctx,
1242
				    uint32_t *batch,
1243 1244
				    uint32_t *offset)
{
1245
	int ret;
1246 1247
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1248
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1249 1250
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1251
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1252

1253
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1254
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1255 1256 1257 1258
	if (ret < 0)
		return ret;
	index = ret;

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1300 1301 1302 1303 1304 1305 1306
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1307
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1308
			       struct i915_wa_ctx_bb *wa_ctx,
1309
			       uint32_t *batch,
1310 1311 1312 1313
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1314
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1315 1316
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1317
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1318
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1319 1320 1321 1322 1323
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1324
	/* WaClearTdlStateAckDirtyBits:bxt */
1325
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1343
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1344 1345
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1346 1347
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1348 1349 1350 1351 1352
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1353
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1354 1355 1356
{
	int ret;

1357 1358
	engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
						    PAGE_ALIGN(size));
1359
	if (IS_ERR(engine->wa_ctx.obj)) {
1360
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1361 1362 1363
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1364 1365
	}

1366
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1367 1368 1369
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1370
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1371 1372 1373 1374 1375 1376
		return ret;
	}

	return 0;
}

1377
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1378
{
1379 1380 1381 1382
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1383 1384 1385
	}
}

1386
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1387 1388 1389 1390 1391
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1392
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1393

1394
	WARN_ON(engine->id != RCS);
1395

1396
	/* update this when WA for higher Gen are added */
1397
	if (INTEL_GEN(engine->i915) > 9) {
1398
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1399
			  INTEL_GEN(engine->i915));
1400
		return 0;
1401
	}
1402

1403
	/* some WA perform writes to scratch page, ensure it is valid */
1404 1405
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1406 1407 1408
		return -EINVAL;
	}

1409
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1410 1411 1412 1413 1414
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1415
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1416 1417 1418
	batch = kmap_atomic(page);
	offset = 0;

1419
	if (IS_GEN8(engine->i915)) {
1420
		ret = gen8_init_indirectctx_bb(engine,
1421 1422 1423 1424 1425 1426
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1427
		ret = gen8_init_perctx_bb(engine,
1428 1429 1430 1431 1432
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1433
	} else if (IS_GEN9(engine->i915)) {
1434
		ret = gen9_init_indirectctx_bb(engine,
1435 1436 1437 1438 1439 1440
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1441
		ret = gen9_init_perctx_bb(engine,
1442 1443 1444 1445 1446
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1447 1448 1449 1450 1451
	}

out:
	kunmap_atomic(batch);
	if (ret)
1452
		lrc_destroy_wa_ctx_obj(engine);
1453 1454 1455 1456

	return ret;
}

1457 1458
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1459
	struct drm_i915_private *dev_priv = engine->i915;
1460 1461 1462 1463 1464 1465

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1466
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1467
{
1468
	struct drm_i915_private *dev_priv = engine->i915;
1469
	unsigned int next_context_status_buffer_hw;
1470

1471
	lrc_init_hws(engine);
1472

1473 1474 1475
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1476

1477
	I915_WRITE(RING_MODE_GEN7(engine),
1478 1479
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1480
	POSTING_READ(RING_MODE_GEN7(engine));
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1491 1492
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1493
	 */
1494
	next_context_status_buffer_hw =
1495
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1496 1497 1498 1499 1500 1501 1502 1503 1504

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1505 1506
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1507

1508
	intel_engine_init_hangcheck(engine);
1509

1510
	return intel_mocs_init_engine(engine);
1511 1512
}

1513
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1514
{
1515
	struct drm_i915_private *dev_priv = engine->i915;
1516 1517
	int ret;

1518
	ret = gen8_init_common_ring(engine);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1532
	return init_workarounds_ring(engine);
1533 1534
}

1535
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1536 1537 1538
{
	int ret;

1539
	ret = gen8_init_common_ring(engine);
1540 1541 1542
	if (ret)
		return ret;

1543
	return init_workarounds_ring(engine);
1544 1545
}

1546 1547 1548
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1549
	struct intel_engine_cs *engine = req->engine;
1550 1551 1552 1553
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1554
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1555 1556 1557 1558 1559 1560 1561
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1562 1563
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1564
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1565 1566
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1567 1568 1569 1570 1571 1572 1573 1574 1575
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1576
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1577
			      u64 offset, unsigned dispatch_flags)
1578
{
1579
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1580
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1581 1582
	int ret;

1583 1584 1585 1586
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1587 1588
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1589
	if (req->ctx->ppgtt &&
1590
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1591
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1592
		    !intel_vgpu_active(req->i915)) {
1593 1594 1595 1596
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1597

1598
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1599 1600
	}

1601
	ret = intel_ring_begin(req, 4);
1602 1603 1604 1605
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1606 1607 1608 1609
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1610 1611 1612 1613 1614 1615 1616 1617
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1618
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1619
{
1620
	struct drm_i915_private *dev_priv = engine->i915;
1621 1622 1623
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1624 1625
}

1626
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1627
{
1628
	struct drm_i915_private *dev_priv = engine->i915;
1629
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1630 1631
}

1632
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1633 1634 1635
			   u32 invalidate_domains,
			   u32 unused)
{
1636
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1637
	struct intel_engine_cs *engine = ringbuf->engine;
1638
	struct drm_i915_private *dev_priv = request->i915;
1639 1640 1641
	uint32_t cmd;
	int ret;

1642
	ret = intel_ring_begin(request, 4);
1643 1644 1645 1646 1647
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1648 1649 1650 1651 1652 1653 1654 1655 1656
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1657
		if (engine == &dev_priv->engine[VCS])
1658
			cmd |= MI_INVALIDATE_BSD;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1672
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1673 1674 1675
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1676
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1677
	struct intel_engine_cs *engine = ringbuf->engine;
1678
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1679
	bool vf_flush_wa = false, dc_flush_wa = false;
1680 1681
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1682
	int len;
1683 1684 1685 1686 1687 1688

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1689
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1690
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1703 1704 1705 1706
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1707
		if (IS_GEN9(request->i915))
1708
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1709 1710 1711 1712

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1713
	}
1714

M
Mika Kuoppala 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1724 1725 1726
	if (ret)
		return ret;

1727 1728 1729 1730 1731 1732 1733 1734 1735
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1745 1746 1747 1748 1749 1750
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1761 1762 1763 1764 1765
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1766
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1778
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1779 1780
}

1781 1782 1783 1784 1785 1786 1787
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1788
static int gen8_emit_request(struct drm_i915_gem_request *request)
1789
{
1790
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1791 1792
	int ret;

1793
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1794 1795 1796
	if (ret)
		return ret;

1797 1798
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1799 1800

	intel_logical_ring_emit(ringbuf,
1801 1802
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1803
				intel_hws_seqno_address(request->engine) |
1804
				MI_FLUSH_DW_USE_GTT);
1805
	intel_logical_ring_emit(ringbuf, 0);
1806
	intel_logical_ring_emit(ringbuf, request->fence.seqno);
1807 1808
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1809 1810
	return intel_logical_ring_advance_and_submit(request);
}
1811

1812 1813 1814 1815
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1816

1817
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1818 1819 1820
	if (ret)
		return ret;

1821 1822 1823
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1824 1825 1826 1827
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1828
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1829 1830 1831 1832
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1833 1834
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1835 1836
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1837 1838
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1839
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1840
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1841
	return intel_logical_ring_advance_and_submit(request);
1842 1843
}

1844
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1845 1846 1847 1848
{
	struct render_state so;
	int ret;

1849
	ret = i915_gem_render_state_prepare(req->engine, &so);
1850 1851 1852 1853 1854 1855
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1856
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1857
				       I915_DISPATCH_SECURE);
1858 1859 1860
	if (ret)
		goto out;

1861
	ret = req->engine->emit_bb_start(req,
1862 1863 1864 1865 1866
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1867
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1868 1869 1870 1871 1872 1873

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1874
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1875 1876 1877
{
	int ret;

1878
	ret = intel_logical_ring_workarounds_emit(req);
1879 1880 1881
	if (ret)
		return ret;

1882 1883 1884 1885 1886 1887 1888 1889
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1890
	return intel_lr_context_render_state_init(req);
1891 1892
}

1893 1894
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1895
 * @engine: Engine Command Streamer.
1896
 */
1897
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1898
{
1899
	struct drm_i915_private *dev_priv;
1900

1901
	if (!intel_engine_initialized(engine))
1902 1903
		return;

1904 1905 1906 1907 1908 1909 1910
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1911
	dev_priv = engine->i915;
1912

1913 1914 1915
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1916
	}
1917

1918 1919
	if (engine->cleanup)
		engine->cleanup(engine);
1920

1921 1922
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1923

1924 1925
	intel_engine_fini_breadcrumbs(engine);

1926
	if (engine->status_page.obj) {
1927
		i915_gem_object_unpin_map(engine->status_page.obj);
1928
		engine->status_page.obj = NULL;
1929
	}
1930
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1931

1932 1933 1934
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1935

1936
	lrc_destroy_wa_ctx_obj(engine);
1937
	engine->i915 = NULL;
1938 1939
}

1940
static void
1941
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1942 1943
{
	/* Default vfuncs which can be overriden by each engine. */
1944 1945 1946
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
1947 1948
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1949
	engine->emit_bb_start = gen8_emit_bb_start;
1950
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1951
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1952 1953
}

1954
static inline void
1955
logical_ring_default_irqs(struct intel_engine_cs *engine)
1956
{
1957
	unsigned shift = engine->irq_shift;
1958 1959
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1960 1961
}

1962
static int
1963 1964 1965
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1966
	void *hws;
1967 1968 1969 1970

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1971 1972 1973 1974
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1975
	engine->status_page.obj = dctx_obj;
1976 1977

	return 0;
1978 1979
}

1980 1981 1982 1983 1984 1985
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1986 1987
	intel_engine_setup_common(engine);

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2013 2014 2015 2016 2017 2018
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

2019
	ret = intel_engine_init_common(engine);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2049
int logical_render_ring_init(struct intel_engine_cs *engine)
2050 2051 2052 2053
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2054 2055
	logical_ring_setup(engine);

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2069
	ret = intel_init_pipe_control(engine, 4096);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2092
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2093 2094 2095 2096
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2097 2098
}

2099
static u32
2100
make_rpcs(struct drm_i915_private *dev_priv)
2101 2102 2103 2104 2105 2106 2107
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2108
	if (INTEL_GEN(dev_priv) < 9)
2109 2110 2111 2112 2113 2114 2115 2116
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2117
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2118
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2119
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2120 2121 2122 2123
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2124
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2125
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2126
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2127 2128 2129 2130
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2131 2132
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2133
			GEN8_RPCS_EU_MIN_SHIFT;
2134
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2135 2136 2137 2138 2139 2140 2141
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2142
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2143 2144 2145
{
	u32 indirect_ctx_offset;

2146
	switch (INTEL_GEN(engine->i915)) {
2147
	default:
2148
		MISSING_CASE(INTEL_GEN(engine->i915));
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2163
static int
2164
populate_lr_context(struct i915_gem_context *ctx,
2165
		    struct drm_i915_gem_object *ctx_obj,
2166 2167
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2168
{
2169
	struct drm_i915_private *dev_priv = ctx->i915;
2170
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2171 2172
	void *vaddr;
	u32 *reg_state;
2173 2174
	int ret;

2175 2176 2177
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2178 2179 2180 2181 2182 2183
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2184 2185 2186 2187
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2188 2189
		return ret;
	}
2190
	ctx_obj->dirty = true;
2191 2192 2193

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2194
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2195 2196 2197 2198 2199 2200

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2201
	reg_state[CTX_LRI_HEADER_0] =
2202 2203 2204
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2205 2206
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2207
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2208
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2209 2210 2211 2212
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2213 2214 2215
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2216 2217 2218 2219
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2220
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2221 2222 2223 2224 2225 2226
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2227
		       RING_BB_PPGTT);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2243 2244 2245 2246 2247 2248 2249
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2250
				intel_lr_indirect_ctx_offset(engine) << 6;
2251 2252 2253 2254 2255

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2256
	}
2257
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2258 2259
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2260
	/* PDP values well be assigned later if needed */
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2290
		execlists_update_context_pdps(ppgtt, reg_state);
2291 2292
	}

2293
	if (engine->id == RCS) {
2294
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2295
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2296
			       make_rpcs(dev_priv));
2297 2298
	}

2299
	i915_gem_object_unpin_map(ctx_obj);
2300 2301 2302 2303

	return 0;
}

2304 2305
/**
 * intel_lr_context_size() - return the size of the context for an engine
2306
 * @engine: which engine to find the context size for
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2318
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2319 2320 2321
{
	int ret = 0;

2322
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2323

2324
	switch (engine->id) {
2325
	case RCS:
2326
		if (INTEL_GEN(engine->i915) >= 9)
2327 2328 2329
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2340 2341
}

2342
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2343
					    struct intel_engine_cs *engine)
2344
{
2345
	struct drm_i915_gem_object *ctx_obj;
2346
	struct intel_context *ce = &ctx->engine[engine->id];
2347
	uint32_t context_size;
2348
	struct intel_ringbuffer *ringbuf;
2349 2350
	int ret;

2351
	WARN_ON(ce->state);
2352

2353
	context_size = round_up(intel_lr_context_size(engine), 4096);
2354

2355 2356 2357
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2358
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2359
	if (IS_ERR(ctx_obj)) {
2360
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2361
		return PTR_ERR(ctx_obj);
2362 2363
	}

2364
	ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2365 2366
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2367
		goto error_deref_obj;
2368 2369
	}

2370
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2371 2372
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2373
		goto error_ringbuf;
2374 2375
	}

2376 2377 2378
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2379 2380

	return 0;
2381

2382 2383
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2384
error_deref_obj:
2385
	drm_gem_object_unreference(&ctx_obj->base);
2386 2387
	ce->ringbuf = NULL;
	ce->state = NULL;
2388
	return ret;
2389
}
2390

2391
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2392
			    struct i915_gem_context *ctx)
2393
{
2394
	struct intel_engine_cs *engine;
2395

2396
	for_each_engine(engine, dev_priv) {
2397 2398
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2399
		void *vaddr;
2400 2401 2402 2403 2404
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2405 2406
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2407
			continue;
2408 2409 2410

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2411 2412 2413 2414

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2415
		i915_gem_object_unpin_map(ctx_obj);
2416

2417 2418
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2419 2420
	}
}