intel_lrc.c 75.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
235
					    struct intel_engine_cs *engine);
236
static int intel_lr_context_pin(struct i915_gem_context *ctx,
237
				struct intel_engine_cs *engine);
238

239 240 241 242 243 244
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263 264 265
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
266 267 268 269
		return 1;

	return 0;
}
270

271
static void
272
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
273
{
274
	struct drm_i915_private *dev_priv = engine->i915;
275

276
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
277
		engine->idle_lite_restore_wa = ~0;
278

279 280
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
281
					(engine->id == VCS || engine->id == VCS2);
282

283
	engine->ctx_desc_template = GEN8_CTX_VALID;
284
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
285
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
286
	if (IS_GEN8(dev_priv))
287 288
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
289 290 291 292 293 294 295

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
296 297
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
298 299
}

300
/**
301 302
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
303
 *
304
 * @ctx: Context to work on
305
 * @engine: Engine the descriptor will be used with
306
 *
307 308 309 310 311 312
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
313
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
314
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
315
 *    bits 32-52:    ctx ID, a globally unique tag
316 317
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
318
 */
319
static void
320
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
321
				   struct intel_engine_cs *engine)
322
{
323
	struct intel_context *ce = &ctx->engine[engine->id];
324
	u64 desc;
325

326
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327

328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
329 330
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
331
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
332

333
	ce->lrc_desc = desc;
334 335
}

336
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
337
				     struct intel_engine_cs *engine)
338
{
339
	return ctx->engine[engine->id].lrc_desc;
340
}
341

342 343
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
344
{
345

346
	struct intel_engine_cs *engine = rq0->engine;
347
	struct drm_i915_private *dev_priv = rq0->i915;
348
	uint64_t desc[2];
349

350
	if (rq1) {
351
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
352 353 354 355
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
356

357
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
358
	rq0->elsp_submitted++;
359

360
	/* You must always write both descriptors in the order below. */
361 362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
363

364
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
365
	/* The context is automatically loaded after the following */
366
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
367

368
	/* ELSP is a wo register, use another nearby reg for posting */
369
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
370 371
}

372 373 374 375 376 377 378 379 380 381
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
382
{
383
	struct intel_engine_cs *engine = rq->engine;
384
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
385
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
386

387
	reg_state[CTX_RING_TAIL+1] = rq->tail;
388

389 390 391 392 393 394 395
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
396 397
}

398 399
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
400
{
401
	struct drm_i915_private *dev_priv = rq0->i915;
402
	unsigned int fw_domains = rq0->engine->fw_domains;
403

404
	execlists_update_context(rq0);
405

406
	if (rq1)
407
		execlists_update_context(rq1);
408

409
	spin_lock_irq(&dev_priv->uncore.lock);
410
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
411

412
	execlists_elsp_write(rq0, rq1);
413

414
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
415
	spin_unlock_irq(&dev_priv->uncore.lock);
416 417
}

418
static void execlists_context_unqueue(struct intel_engine_cs *engine)
419
{
420
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
421
	struct drm_i915_gem_request *cursor, *tmp;
422

423
	assert_spin_locked(&engine->execlist_lock);
424

425 426 427 428
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
429
	WARN_ON(!intel_irqs_enabled(engine->i915));
430

431
	/* Try to read in pairs */
432
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
433 434 435
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
436
		} else if (req0->ctx == cursor->ctx) {
437 438
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
439
			cursor->elsp_submitted = req0->elsp_submitted;
440 441
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
442 443 444
			req0 = cursor;
		} else {
			req1 = cursor;
445
			WARN_ON(req1->elsp_submitted);
446 447 448 449
			break;
		}
	}

450 451 452
	if (unlikely(!req0))
		return;

453
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
454
		/*
455 456 457 458 459 460
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
461
		 */
462
		struct intel_ringbuffer *ringbuf;
463

464
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
465 466
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
467 468
	}

469
	execlists_submit_requests(req0, req1);
470 471
}

472
static unsigned int
473
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
474
{
475
	struct drm_i915_gem_request *head_req;
476

477
	assert_spin_locked(&engine->execlist_lock);
478

479
	head_req = list_first_entry_or_null(&engine->execlist_queue,
480
					    struct drm_i915_gem_request,
481 482
					    execlist_link);

483 484
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
485 486 487 488 489 490

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

491 492
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
493

494
	return 1;
495 496
}

497
static u32
498
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
499
		   u32 *context_id)
B
Ben Widawsky 已提交
500
{
501
	struct drm_i915_private *dev_priv = engine->i915;
502
	u32 status;
B
Ben Widawsky 已提交
503

504 505
	read_pointer %= GEN8_CSB_ENTRIES;

506
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
507 508 509

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
510

511
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
512 513 514
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
515 516
}

517
/**
518
 * intel_lrc_irq_handler() - handle Context Switch interrupts
519
 * @engine: Engine Command Streamer to handle.
520 521 522 523
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
524
static void intel_lrc_irq_handler(unsigned long data)
525
{
526
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527
	struct drm_i915_private *dev_priv = engine->i915;
528
	u32 status_pointer;
529
	unsigned int read_pointer, write_pointer;
530 531
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
532 533
	unsigned int submit_contexts = 0;

534
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
535

536
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
537

538
	read_pointer = engine->next_context_status_buffer;
539
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
540
	if (read_pointer > write_pointer)
541
		write_pointer += GEN8_CSB_ENTRIES;
542 543

	while (read_pointer < write_pointer) {
544 545 546 547 548 549
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
550

551 552 553 554 555 556 557 558
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

559
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
560 561 562 563 564 565 566

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
567 568 569 570 571
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

572
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
573 574
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
575
				execlists_check_remove_request(engine, csb[i][1]);
576 577
	}

578
	if (submit_contexts) {
579
		if (!engine->disable_lite_restore_wa ||
580 581
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
582
	}
583

584
	spin_unlock(&engine->execlist_lock);
585 586 587

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
588 589
}

590
static void execlists_context_queue(struct drm_i915_gem_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593
	struct drm_i915_gem_request *cursor;
594
	int num_elements = 0;
595

596
	spin_lock_bh(&engine->execlist_lock);
597

598
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
599 600 601 602
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
603
		struct drm_i915_gem_request *tail_req;
604

605
		tail_req = list_last_entry(&engine->execlist_queue,
606
					   struct drm_i915_gem_request,
607 608
					   execlist_link);

609
		if (request->ctx == tail_req->ctx) {
610
			WARN(tail_req->elsp_submitted != 0,
611
				"More than 2 already-submitted reqs queued\n");
612 613
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
614 615 616
		}
	}

617
	i915_gem_request_reference(request);
618
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
619
	request->ctx_hw_id = request->ctx->hw_id;
620
	if (num_elements == 0)
621
		execlists_context_unqueue(engine);
622

623
	spin_unlock_bh(&engine->execlist_lock);
624 625
}

626
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
627
{
628
	struct intel_engine_cs *engine = req->engine;
629 630 631 632
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
633
	if (engine->gpu_caches_dirty)
634 635
		flush_domains = I915_GEM_GPU_DOMAINS;

636
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
637 638 639
	if (ret)
		return ret;

640
	engine->gpu_caches_dirty = false;
641 642 643
	return 0;
}

644
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
645 646
				 struct list_head *vmas)
{
647
	const unsigned other_rings = ~intel_engine_flag(req->engine);
648 649 650 651 652 653 654 655
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

656
		if (obj->active & other_rings) {
657
			ret = i915_gem_object_sync(obj, req->engine, &req);
658 659 660
			if (ret)
				return ret;
		}
661 662 663 664 665 666 667 668 669 670 671 672 673

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
674
	return logical_ring_invalidate_all_caches(req);
675 676
}

677
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
678
{
679
	struct intel_engine_cs *engine = request->engine;
680
	struct intel_context *ce = &request->ctx->engine[engine->id];
681
	int ret;
682

683 684 685 686
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
687
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
688

689
	if (!ce->state) {
690 691 692 693 694
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

695
	request->ringbuf = ce->ringbuf;
696

697 698 699 700 701 702
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
703
		ret = i915_guc_wq_check_space(request);
704 705 706 707
		if (ret)
			return ret;
	}

708 709 710
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
711

712 713 714 715
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

716
	if (!ce->initialised) {
717 718 719 720
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

721
		ce->initialised = true;
722 723 724 725 726 727 728 729 730
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

731
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
732 733 734
	return 0;

err_unpin:
735
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
736
	return ret;
737 738 739 740
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
741
 * @request: Request to advance the logical ringbuffer of.
742 743 744 745 746 747
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
748
static int
749
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
750
{
751
	struct intel_ringbuffer *ringbuf = request->ringbuf;
752
	struct intel_engine_cs *engine = request->engine;
753

754 755
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
756

757 758 759 760 761 762 763 764 765
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
766

767
	if (intel_engine_stopped(engine))
768
		return 0;
769

770 771 772 773 774 775 776 777
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
778

779 780
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
781 782
	else
		execlists_context_queue(request);
783 784

	return 0;
785 786
}

787 788 789 790 791 792 793 794 795 796
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
797
 * @dispatch_flags: translated execbuffer call flags.
798 799 800 801 802 803
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
804
int intel_execlists_submission(struct i915_execbuffer_params *params,
805
			       struct drm_i915_gem_execbuffer2 *args,
806
			       struct list_head *vmas)
807
{
808
	struct drm_device       *dev = params->dev;
809
	struct intel_engine_cs *engine = params->engine;
810
	struct drm_i915_private *dev_priv = dev->dev_private;
811
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
812
	u64 exec_start;
813 814 815 816 817 818 819 820 821 822
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
823
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

848
	ret = execlists_move_to_gpu(params->request, vmas);
849 850 851
	if (ret)
		return ret;

852
	if (engine == &dev_priv->engine[RCS] &&
853
	    instp_mode != dev_priv->relative_constants_mode) {
854
		ret = intel_ring_begin(params->request, 4);
855 856 857 858 859
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
860
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
861 862 863 864 865 866
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

867 868 869
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

870
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
871 872 873
	if (ret)
		return ret;

874
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
875

876
	i915_gem_execbuffer_move_to_active(vmas, params->request);
877

878 879 880
	return 0;
}

881
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
882
{
883
	struct drm_i915_gem_request *req, *tmp;
884
	LIST_HEAD(cancel_list);
885

886
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
887

888
	spin_lock_bh(&engine->execlist_lock);
889
	list_replace_init(&engine->execlist_queue, &cancel_list);
890
	spin_unlock_bh(&engine->execlist_lock);
891

892
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
893
		list_del(&req->execlist_link);
894
		i915_gem_request_unreference(req);
895 896 897
	}
}

898
void intel_logical_ring_stop(struct intel_engine_cs *engine)
899
{
900
	struct drm_i915_private *dev_priv = engine->i915;
901 902
	int ret;

903
	if (!intel_engine_initialized(engine))
904 905
		return;

906
	ret = intel_engine_idle(engine);
907
	if (ret)
908
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
909
			  engine->name, ret);
910 911

	/* TODO: Is this correct with Execlists enabled? */
912 913 914
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
915 916
		return;
	}
917
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
918 919
}

920
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
921
{
922
	struct intel_engine_cs *engine = req->engine;
923 924
	int ret;

925
	if (!engine->gpu_caches_dirty)
926 927
		return 0;

928
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
929 930 931
	if (ret)
		return ret;

932
	engine->gpu_caches_dirty = false;
933 934 935
	return 0;
}

936
static int intel_lr_context_pin(struct i915_gem_context *ctx,
937
				struct intel_engine_cs *engine)
938
{
939
	struct drm_i915_private *dev_priv = ctx->i915;
940
	struct intel_context *ce = &ctx->engine[engine->id];
941 942
	void *vaddr;
	u32 *lrc_reg_state;
943
	int ret;
944

945
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
946

947
	if (ce->pin_count++)
948 949
		return 0;

950 951
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
952
	if (ret)
953
		goto err;
954

955
	vaddr = i915_gem_object_pin_map(ce->state);
956 957
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
958 959 960
		goto unpin_ctx_obj;
	}

961 962
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

963
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
964
	if (ret)
965
		goto unpin_map;
966

967
	i915_gem_context_reference(ctx);
968
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
969
	intel_lr_context_descriptor_update(ctx, engine);
970 971 972 973

	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
974

975 976 977
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
978

979
	return 0;
980

981
unpin_map:
982
	i915_gem_object_unpin_map(ce->state);
983
unpin_ctx_obj:
984
	i915_gem_object_ggtt_unpin(ce->state);
985
err:
986
	ce->pin_count = 0;
987 988 989
	return ret;
}

990
void intel_lr_context_unpin(struct i915_gem_context *ctx,
991
			    struct intel_engine_cs *engine)
992
{
993
	struct intel_context *ce = &ctx->engine[engine->id];
994

995
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
996
	GEM_BUG_ON(ce->pin_count == 0);
997

998
	if (--ce->pin_count)
999
		return;
1000

1001
	intel_unpin_ringbuffer_obj(ce->ringbuf);
1002

1003 1004
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1005

1006 1007 1008
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1009

1010
	i915_gem_context_unreference(ctx);
1011 1012
}

1013
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1014 1015
{
	int ret, i;
1016
	struct intel_engine_cs *engine = req->engine;
1017
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1018
	struct i915_workarounds *w = &req->i915->workarounds;
1019

1020
	if (w->count == 0)
1021 1022
		return 0;

1023
	engine->gpu_caches_dirty = true;
1024
	ret = logical_ring_flush_all_caches(req);
1025 1026 1027
	if (ret)
		return ret;

1028
	ret = intel_ring_begin(req, w->count * 2 + 2);
1029 1030 1031 1032 1033
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1034
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1035 1036 1037 1038 1039 1040
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1041
	engine->gpu_caches_dirty = true;
1042
	ret = logical_ring_flush_all_caches(req);
1043 1044 1045 1046 1047 1048
	if (ret)
		return ret;

	return 0;
}

1049
#define wa_ctx_emit(batch, index, cmd)					\
1050
	do {								\
1051 1052
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1053 1054
			return -ENOSPC;					\
		}							\
1055
		batch[__index] = (cmd);					\
1056 1057
	} while (0)

V
Ville Syrjälä 已提交
1058
#define wa_ctx_emit_reg(batch, index, reg) \
1059
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1077
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1078 1079 1080 1081 1082
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1083 1084 1085 1086 1087 1088
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1089
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1090 1091
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1092
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1093
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1094
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1095
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1096 1097 1098
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1099
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1110
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1111
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1112
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1113
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1114
	wa_ctx_emit(batch, index, 0);
1115 1116 1117 1118

	return index;
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1157
 *
1158 1159 1160 1161 1162 1163 1164 1165
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1166
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1167 1168 1169 1170
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1171
	uint32_t scratch_addr;
1172 1173
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1174
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1175
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1176

1177
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1178
	if (IS_BROADWELL(engine->i915)) {
1179
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1180 1181 1182
		if (rc < 0)
			return rc;
		index = rc;
1183 1184
	}

1185 1186
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1187
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1198

1199 1200
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1201
		wa_ctx_emit(batch, index, MI_NOOP);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1219
 * @batch: page in which WA are loaded
1220 1221 1222 1223 1224 1225 1226 1227 1228
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1229
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1230 1231 1232 1233 1234 1235
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1236
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1237
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1238

1239
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1240 1241 1242 1243

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1244
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1245 1246 1247 1248
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1249
	int ret;
1250 1251
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1252
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1253 1254
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1255
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1256

1257
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1258
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1259 1260 1261 1262
	if (ret < 0)
		return ret;
	index = ret;

1263 1264 1265 1266 1267 1268 1269
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1270
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1271 1272 1273 1274 1275 1276
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1277
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1278 1279
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1280
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1281
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1282 1283 1284 1285 1286
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1287
	/* WaClearTdlStateAckDirtyBits:bxt */
1288
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1306
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1307 1308
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1309 1310
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1311 1312 1313 1314 1315
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1316
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1317 1318 1319
{
	int ret;

1320
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1321
						   PAGE_ALIGN(size));
1322
	if (IS_ERR(engine->wa_ctx.obj)) {
1323
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1324 1325 1326
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1327 1328
	}

1329
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1330 1331 1332
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1333
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1334 1335 1336 1337 1338 1339
		return ret;
	}

	return 0;
}

1340
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1341
{
1342 1343 1344 1345
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1346 1347 1348
	}
}

1349
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1350 1351 1352 1353 1354
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1355
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1356

1357
	WARN_ON(engine->id != RCS);
1358

1359
	/* update this when WA for higher Gen are added */
1360
	if (INTEL_GEN(engine->i915) > 9) {
1361
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1362
			  INTEL_GEN(engine->i915));
1363
		return 0;
1364
	}
1365

1366
	/* some WA perform writes to scratch page, ensure it is valid */
1367 1368
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1369 1370 1371
		return -EINVAL;
	}

1372
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1373 1374 1375 1376 1377
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1378
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1379 1380 1381
	batch = kmap_atomic(page);
	offset = 0;

1382
	if (IS_GEN8(engine->i915)) {
1383
		ret = gen8_init_indirectctx_bb(engine,
1384 1385 1386 1387 1388 1389
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1390
		ret = gen8_init_perctx_bb(engine,
1391 1392 1393 1394 1395
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1396
	} else if (IS_GEN9(engine->i915)) {
1397
		ret = gen9_init_indirectctx_bb(engine,
1398 1399 1400 1401 1402 1403
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1404
		ret = gen9_init_perctx_bb(engine,
1405 1406 1407 1408 1409
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1410 1411 1412 1413 1414
	}

out:
	kunmap_atomic(batch);
	if (ret)
1415
		lrc_destroy_wa_ctx_obj(engine);
1416 1417 1418 1419

	return ret;
}

1420 1421
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1422
	struct drm_i915_private *dev_priv = engine->i915;
1423 1424 1425 1426 1427 1428

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1429
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1430
{
1431
	struct drm_i915_private *dev_priv = engine->i915;
1432
	unsigned int next_context_status_buffer_hw;
1433

1434
	lrc_init_hws(engine);
1435

1436 1437 1438
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1439

1440
	I915_WRITE(RING_MODE_GEN7(engine),
1441 1442
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1443
	POSTING_READ(RING_MODE_GEN7(engine));
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1454 1455
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1456
	 */
1457
	next_context_status_buffer_hw =
1458
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1459 1460 1461 1462 1463 1464 1465 1466 1467

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1468 1469
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1470

1471
	intel_engine_init_hangcheck(engine);
1472

1473
	return intel_mocs_init_engine(engine);
1474 1475
}

1476
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1477
{
1478
	struct drm_i915_private *dev_priv = engine->i915;
1479 1480
	int ret;

1481
	ret = gen8_init_common_ring(engine);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1495
	return init_workarounds_ring(engine);
1496 1497
}

1498
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1499 1500 1501
{
	int ret;

1502
	ret = gen8_init_common_ring(engine);
1503 1504 1505
	if (ret)
		return ret;

1506
	return init_workarounds_ring(engine);
1507 1508
}

1509 1510 1511
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1512
	struct intel_engine_cs *engine = req->engine;
1513 1514 1515 1516
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1517
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1518 1519 1520 1521 1522 1523 1524
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1525 1526
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1527
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1528 1529
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1530 1531 1532 1533 1534 1535 1536 1537 1538
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1539
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1540
			      u64 offset, unsigned dispatch_flags)
1541
{
1542
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1543
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1544 1545
	int ret;

1546 1547 1548 1549
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1550 1551
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1552
	if (req->ctx->ppgtt &&
1553
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1554
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1555
		    !intel_vgpu_active(req->i915)) {
1556 1557 1558 1559
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1560

1561
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1562 1563
	}

1564
	ret = intel_ring_begin(req, 4);
1565 1566 1567 1568
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1569 1570 1571 1572
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1573 1574 1575 1576 1577 1578 1579 1580
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1581
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1582
{
1583
	struct drm_i915_private *dev_priv = engine->i915;
1584 1585
	unsigned long flags;

1586
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1587 1588 1589
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1590 1591 1592 1593
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1594 1595 1596 1597 1598 1599
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1600
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1601
{
1602
	struct drm_i915_private *dev_priv = engine->i915;
1603 1604 1605
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1606 1607 1608
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1609 1610 1611 1612
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1613
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1614 1615 1616
			   u32 invalidate_domains,
			   u32 unused)
{
1617
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1618
	struct intel_engine_cs *engine = ringbuf->engine;
1619
	struct drm_i915_private *dev_priv = request->i915;
1620 1621 1622
	uint32_t cmd;
	int ret;

1623
	ret = intel_ring_begin(request, 4);
1624 1625 1626 1627 1628
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1629 1630 1631 1632 1633 1634 1635 1636 1637
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1638
		if (engine == &dev_priv->engine[VCS])
1639
			cmd |= MI_INVALIDATE_BSD;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1653
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1654 1655 1656
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1657
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1658
	struct intel_engine_cs *engine = ringbuf->engine;
1659
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1660
	bool vf_flush_wa = false;
1661 1662 1663 1664 1665 1666 1667 1668
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1669
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1670
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1683 1684 1685 1686
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1687
		if (IS_GEN9(request->i915))
1688 1689
			vf_flush_wa = true;
	}
1690

1691
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1692 1693 1694
	if (ret)
		return ret;

1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1715
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1716
{
1717
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1718 1719
}

1720
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1721
{
1722
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1723 1724
}

1725
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1737
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1738 1739
}

1740
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1741
{
1742
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1743 1744

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1745
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1746 1747
}

1748 1749 1750 1751 1752 1753 1754
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1755
static int gen8_emit_request(struct drm_i915_gem_request *request)
1756
{
1757
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1758 1759
	int ret;

1760
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1761 1762 1763
	if (ret)
		return ret;

1764 1765
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1766 1767

	intel_logical_ring_emit(ringbuf,
1768 1769
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1770
				intel_hws_seqno_address(request->engine) |
1771
				MI_FLUSH_DW_USE_GTT);
1772
	intel_logical_ring_emit(ringbuf, 0);
1773
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1774 1775
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1776 1777
	return intel_logical_ring_advance_and_submit(request);
}
1778

1779 1780 1781 1782
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1783

1784
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1785 1786 1787
	if (ret)
		return ret;

1788 1789 1790
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1791 1792 1793 1794
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1795
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1796 1797 1798 1799
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1800 1801
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1802 1803
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1804 1805
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1806
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1807
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1808
	return intel_logical_ring_advance_and_submit(request);
1809 1810
}

1811
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1812 1813 1814 1815
{
	struct render_state so;
	int ret;

1816
	ret = i915_gem_render_state_prepare(req->engine, &so);
1817 1818 1819 1820 1821 1822
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1823
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1824
				       I915_DISPATCH_SECURE);
1825 1826 1827
	if (ret)
		goto out;

1828
	ret = req->engine->emit_bb_start(req,
1829 1830 1831 1832 1833
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1834
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1835 1836 1837 1838 1839 1840

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1841
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1842 1843 1844
{
	int ret;

1845
	ret = intel_logical_ring_workarounds_emit(req);
1846 1847 1848
	if (ret)
		return ret;

1849 1850 1851 1852 1853 1854 1855 1856
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1857
	return intel_lr_context_render_state_init(req);
1858 1859
}

1860 1861 1862 1863 1864 1865
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1866
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1867
{
1868
	struct drm_i915_private *dev_priv;
1869

1870
	if (!intel_engine_initialized(engine))
1871 1872
		return;

1873 1874 1875 1876 1877 1878 1879
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1880
	dev_priv = engine->i915;
1881

1882 1883 1884
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1885
	}
1886

1887 1888
	if (engine->cleanup)
		engine->cleanup(engine);
1889

1890 1891
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1892

1893
	if (engine->status_page.obj) {
1894
		i915_gem_object_unpin_map(engine->status_page.obj);
1895
		engine->status_page.obj = NULL;
1896
	}
1897
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1898

1899 1900 1901
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1902

1903
	lrc_destroy_wa_ctx_obj(engine);
1904
	engine->i915 = NULL;
1905 1906
}

1907
static void
1908
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1909 1910
{
	/* Default vfuncs which can be overriden by each engine. */
1911 1912 1913 1914 1915 1916
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1917 1918
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1919
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1920
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1921
		engine->set_seqno = bxt_a_set_seqno;
1922 1923 1924
	}
}

1925
static inline void
1926
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1927
{
1928 1929
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1930
	init_waitqueue_head(&engine->irq_queue);
1931 1932
}

1933
static int
1934 1935 1936
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1937
	void *hws;
1938 1939 1940 1941

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1942 1943 1944 1945
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1946
	engine->status_page.obj = dctx_obj;
1947 1948

	return 0;
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
1997
{
1998
	const struct logical_ring_info *info = &logical_rings[id];
1999
	struct drm_i915_private *dev_priv = to_i915(dev);
2000
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2001
	enum forcewake_domains fw_domains;
2002

2003 2004 2005 2006 2007
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2008

2009
	engine->i915 = dev_priv;
2010

2011 2012
	/* Intentionally left blank. */
	engine->buffer = NULL;
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2042
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2043 2044 2045 2046 2047 2048 2049

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2050
	struct i915_gem_context *dctx = engine->i915->kernel_context;
2051 2052
	int ret;

2053
	ret = i915_cmd_parser_init_ring(engine);
2054
	if (ret)
2055
		goto error;
2056

2057
	ret = execlists_context_deferred_alloc(dctx, engine);
2058
	if (ret)
2059
		goto error;
2060 2061

	/* As this is the default context, always pin it */
2062
	ret = intel_lr_context_pin(dctx, engine);
2063
	if (ret) {
2064 2065
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2066
		goto error;
2067
	}
2068

2069
	/* And setup the hardware status page. */
2070 2071 2072 2073 2074
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2075

2076 2077 2078
	return 0;

error:
2079
	intel_logical_ring_cleanup(engine);
2080
	return ret;
2081 2082 2083 2084
}

static int logical_render_ring_init(struct drm_device *dev)
{
2085
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2086
	int ret;
2087

2088
	if (HAS_L3_DPF(dev))
2089
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2090

2091
	/* Override some for render ring. */
2092
	if (INTEL_INFO(dev)->gen >= 9)
2093
		engine->init_hw = gen9_init_render_ring;
2094
	else
2095 2096 2097 2098 2099
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2100

2101
	ret = intel_init_pipe_control(engine);
2102 2103 2104
	if (ret)
		return ret;

2105
	ret = intel_init_workaround_bb(engine);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2116
	ret = logical_ring_init(engine);
2117
	if (ret) {
2118
		lrc_destroy_wa_ctx_obj(engine);
2119
	}
2120 2121

	return ret;
2122 2123 2124 2125
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2126
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2127

2128
	return logical_ring_init(engine);
2129 2130 2131 2132
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2133
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2134

2135
	return logical_ring_init(engine);
2136 2137 2138 2139
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2140
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2141

2142
	return logical_ring_init(engine);
2143 2144 2145 2146
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2147
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2148

2149
	return logical_ring_init(engine);
2150 2151
}

2152 2153 2154 2155 2156
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2157
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2158 2159 2160 2161
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2198
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2199
cleanup_blt_ring:
2200
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2201
cleanup_bsd_ring:
2202
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2203
cleanup_render_ring:
2204
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2205 2206 2207 2208

	return ret;
}

2209
static u32
2210
make_rpcs(struct drm_i915_private *dev_priv)
2211 2212 2213 2214 2215 2216 2217
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2218
	if (INTEL_GEN(dev_priv) < 9)
2219 2220 2221 2222 2223 2224 2225 2226
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2227
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2228
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2229
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2230 2231 2232 2233
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2234
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2235
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2236
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2237 2238 2239 2240
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2241 2242
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2243
			GEN8_RPCS_EU_MIN_SHIFT;
2244
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2245 2246 2247 2248 2249 2250 2251
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2252
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2253 2254 2255
{
	u32 indirect_ctx_offset;

2256
	switch (INTEL_GEN(engine->i915)) {
2257
	default:
2258
		MISSING_CASE(INTEL_GEN(engine->i915));
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2273
static int
2274
populate_lr_context(struct i915_gem_context *ctx,
2275
		    struct drm_i915_gem_object *ctx_obj,
2276 2277
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2278
{
2279
	struct drm_i915_private *dev_priv = ctx->i915;
2280
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2281 2282
	void *vaddr;
	u32 *reg_state;
2283 2284
	int ret;

2285 2286 2287
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2288 2289 2290 2291 2292 2293
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2294 2295 2296 2297
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2298 2299
		return ret;
	}
2300
	ctx_obj->dirty = true;
2301 2302 2303

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2304
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2305 2306 2307 2308 2309 2310

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2311
	reg_state[CTX_LRI_HEADER_0] =
2312 2313 2314
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2315 2316
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2317
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2318
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2319 2320 2321 2322
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2323 2324 2325
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2326 2327 2328 2329
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2330
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2331 2332 2333 2334 2335 2336
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2337
		       RING_BB_PPGTT);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2353 2354 2355 2356 2357 2358 2359
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2360
				intel_lr_indirect_ctx_offset(engine) << 6;
2361 2362 2363 2364 2365

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2366
	}
2367
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2368 2369
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2370
	/* PDP values well be assigned later if needed */
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2400
		execlists_update_context_pdps(ppgtt, reg_state);
2401 2402
	}

2403
	if (engine->id == RCS) {
2404
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2405
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2406
			       make_rpcs(dev_priv));
2407 2408
	}

2409
	i915_gem_object_unpin_map(ctx_obj);
2410 2411 2412 2413

	return 0;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2428
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2429 2430 2431
{
	int ret = 0;

2432
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2433

2434
	switch (engine->id) {
2435
	case RCS:
2436
		if (INTEL_GEN(engine->i915) >= 9)
2437 2438 2439
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2450 2451
}

2452
/**
2453
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2454
 * @ctx: LR context to create.
2455
 * @engine: engine to be used with the context.
2456 2457 2458 2459 2460 2461 2462
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2463
 * Return: non-zero on error.
2464
 */
2465
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2466
					    struct intel_engine_cs *engine)
2467
{
2468
	struct drm_i915_gem_object *ctx_obj;
2469
	struct intel_context *ce = &ctx->engine[engine->id];
2470
	uint32_t context_size;
2471
	struct intel_ringbuffer *ringbuf;
2472 2473
	int ret;

2474
	WARN_ON(ce->state);
2475

2476
	context_size = round_up(intel_lr_context_size(engine), 4096);
2477

2478 2479 2480
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2481
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2482
	if (IS_ERR(ctx_obj)) {
2483
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2484
		return PTR_ERR(ctx_obj);
2485 2486
	}

2487
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2488 2489
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2490
		goto error_deref_obj;
2491 2492
	}

2493
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2494 2495
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2496
		goto error_ringbuf;
2497 2498
	}

2499 2500 2501
	ce->ringbuf = ringbuf;
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2502 2503

	return 0;
2504

2505 2506
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2507
error_deref_obj:
2508
	drm_gem_object_unreference(&ctx_obj->base);
2509 2510
	ce->ringbuf = NULL;
	ce->state = NULL;
2511
	return ret;
2512
}
2513

2514
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2515
			    struct i915_gem_context *ctx)
2516
{
2517
	struct intel_engine_cs *engine;
2518

2519
	for_each_engine(engine, dev_priv) {
2520 2521
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2522
		void *vaddr;
2523 2524 2525 2526 2527
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2528 2529
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2530
			continue;
2531 2532 2533

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2534 2535 2536 2537

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2538
		i915_gem_object_unpin_map(ctx_obj);
2539

2540 2541
		ce->ringbuf->head = 0;
		ce->ringbuf->tail = 0;
2542 2543
	}
}