intel_lrc.c 71.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_mocs.h"
141

142 143 144 145 146 147 148 149 150 151 152 153 154
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
155

156
#define GEN8_CTX_STATUS_COMPLETED_MASK \
157
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188
#define CTX_REG(reg_state, pos, reg, val) do { \
189
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
190 191 192 193
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
194
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 196
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197
} while (0)
198

199
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
200 201
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202
} while (0)
203

204 205
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
206
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
207

208 209
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
#define WA_TAIL_DWORDS 2
211
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
212
#define PREEMPT_ID 0x1
213

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221
/**
222 223 224
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
225
 * @engine: Engine the descriptor will be used with
226
 *
227 228 229 230 231
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
232 233
 * This is what a descriptor looks like, from LSB to MSB::
 *
234
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
235 236 237 238
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
239
 */
240
static void
241
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
242
				   struct intel_engine_cs *engine)
243
{
244
	struct intel_context *ce = &ctx->engine[engine->id];
245
	u64 desc;
246

247
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
248

249
	desc = ctx->desc_template;				/* bits  0-11 */
250
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
251
								/* bits 12-31 */
252
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275 276 277 278 279 280 281 282
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return ptr_pack_bits(p, first, 1);
317 318
}

319 320 321 322 323 324
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 327
{
	struct drm_i915_gem_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335 336 337 338 339 340 341

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

342 343 344 345 346 347 348 349 350 351 352
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
353 354 355
	}
}

356
void
357 358 359 360 361 362 363 364 365 366
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

367 368 369
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
370
{
371 372 373 374 375 376
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
377

378 379
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
380 381
}

382 383 384 385
static inline void
execlists_context_schedule_in(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
386
	intel_engine_context_in(rq->engine);
387 388 389 390 391
}

static inline void
execlists_context_schedule_out(struct drm_i915_gem_request *rq)
{
392
	intel_engine_context_out(rq->engine);
393 394 395
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

396 397 398 399 400 401 402 403 404
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

405
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
406
{
407
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
408 409
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
410
	u32 *reg_state = ce->lrc_reg_state;
411

412
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
413

414 415 416 417 418
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
419
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
420
		execlists_update_context_pdps(ppgtt, reg_state);
421 422

	return ce->lrc_desc;
423 424
}

C
Chris Wilson 已提交
425 426 427 428 429 430
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

431
static void execlists_submit_ports(struct intel_engine_cs *engine)
432
{
433
	struct execlist_port *port = engine->execlists.port;
434
	u32 __iomem *elsp =
435 436
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
437

438
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
439 440 441 442 443 444 445 446
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
447
				execlists_context_schedule_in(rq);
448 449 450
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
451 452 453 454 455

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
456 457 458 459
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
460

C
Chris Wilson 已提交
461
		elsp_write(desc, elsp);
462
	}
463
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
464 465
}

466
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
467
{
468
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
469
		i915_gem_context_force_single_submission(ctx));
470
}
471

472 473 474 475 476
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
477

478 479
	if (ctx_single_port_submission(prev))
		return false;
480

481
	return true;
482 483
}

484 485 486 487 488 489 490 491 492 493 494
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

511
	GEM_TRACE("\n");
C
Chris Wilson 已提交
512 513 514 515
	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
516
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
C
Chris Wilson 已提交
517 518
}

519
static void execlists_dequeue(struct intel_engine_cs *engine)
520
{
521 522
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
523 524
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
525
	struct drm_i915_gem_request *last = port_request(port);
526
	struct rb_node *rb;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
548
	 */
549

550
	spin_lock_irq(&engine->timeline->lock);
551 552
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
553 554 555 556 557 558 559 560 561 562
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
563
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
564 565 566
		if (port_count(&port[0]) > 1)
			goto unlock;

567 568 569 570 571 572 573 574 575 576
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

577
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
578 579 580 581 582 583 584
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
585 586
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
624 625 626 627 628 629 630 631 632 633 634 635 636 637
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
638
			 */
639 640 641 642 643 644
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
645
				if (port == last_port) {
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
670 671

				GEM_BUG_ON(port_isset(port));
672
			}
673

674 675
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
676
			trace_i915_gem_request_in(rq, port_index(port, execlists));
677 678
			last = rq;
			submit = true;
679
		}
680

681
		rb = rb_next(rb);
682
		rb_erase(&p->node, &execlists->queue);
683 684
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
685
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
686
	} while (rb);
687
done:
688
	execlists->first = rb;
689
	if (submit)
690
		port_assign(port, last);
C
Chris Wilson 已提交
691
unlock:
692
	spin_unlock_irq(&engine->timeline->lock);
693

694 695
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
696
		execlists_submit_ports(engine);
697
	}
698 699
}

700
void
701
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
702
{
703
	struct execlist_port *port = execlists->port;
704
	unsigned int num_ports = execlists_num_ports(execlists);
705

706
	while (num_ports-- && port_isset(port)) {
707 708
		struct drm_i915_gem_request *rq = port_request(port);

709
		GEM_BUG_ON(!execlists->active);
710
		intel_engine_context_out(rq->engine);
711
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
712 713
		i915_gem_request_put(rq);

714 715 716
		memset(port, 0, sizeof(*port));
		port++;
	}
717 718
}

719 720
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
721
	struct intel_engine_execlists * const execlists = &engine->execlists;
722 723 724 725 726 727 728
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
729
	execlists_cancel_port_requests(execlists);
730 731 732 733 734 735 736 737 738

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
739
	rb = execlists->first;
740 741 742 743 744 745 746 747 748 749 750
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
751
		rb_erase(&p->node, &execlists->queue);
752 753 754 755 756 757 758
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

759

760 761
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
762
	GEM_BUG_ON(port_isset(execlists->port));
763 764 765 766 767 768 769 770 771 772 773 774

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

775
/*
776 777 778
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
779
static void execlists_submission_tasklet(unsigned long data)
780
{
781 782
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
783
	struct execlist_port * const port = execlists->port;
784
	struct drm_i915_private *dev_priv = engine->i915;
785

786 787 788 789 790 791 792 793 794
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

795
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
796

797 798 799 800 801
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
802 803 804
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
805
		unsigned int head, tail;
806

807
		if (unlikely(execlists->csb_use_mmio)) {
808 809
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
810
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
811 812
		}

813 814 815 816 817 818 819 820 821 822 823
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
824
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
825 826 827
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
828
			execlists->csb_head = head;
829 830 831 832 833
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

834
			head = execlists->csb_head;
835 836
			tail = READ_ONCE(buf[write_idx]);
		}
837 838 839 840
		GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
			  engine->name,
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
841

842
		while (head != tail) {
843
			struct drm_i915_gem_request *rq;
844
			unsigned int status;
845
			unsigned int count;
846 847 848

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

867
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
868 869 870
			GEM_TRACE("%s csb[%dd]: status=0x%08x:0x%08x\n",
				  engine->name, head,
				  status, buf[2*head + 1]);
871 872 873 874 875 876 877 878 879

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

880 881 882
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

883 884 885
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

886
			if (status & GEN8_CTX_STATUS_COMPLETE &&
C
Chris Wilson 已提交
887
			    buf[2*head + 1] == PREEMPT_ID) {
888 889
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
890

891 892 893 894
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
895 896 897 898
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
899 900
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
901 902
				continue;

903 904 905
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

906
			/* Check the context/desc id for this event matches */
907
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
908

909
			rq = port_unpack(port, &count);
910 911 912 913
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
914 915
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
916
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
917 918
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
919
				GEM_BUG_ON(!i915_gem_request_completed(rq));
920
				execlists_context_schedule_out(rq);
921 922
				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
923

924
				execlists_port_complete(execlists, port);
925 926
			} else {
				port_set(port, port_pack(rq, count));
927
			}
928

929 930
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
931
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
932 933 934
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
935
		}
936

937 938
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
939 940 941
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
942 943
	}

944
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
945
		execlists_dequeue(engine);
946

947
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
948 949
}

950 951 952 953 954 955 956
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
957
	if (ptr_unmask_bits(p, 1))
958
		tasklet_hi_schedule(&engine->execlists.tasklet);
959 960
}

961
static void execlists_submit_request(struct drm_i915_gem_request *request)
962
{
963
	struct intel_engine_cs *engine = request->engine;
964
	unsigned long flags;
965

966 967
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
968

969
	insert_request(engine, &request->priotree, request->priotree.priority);
970

971
	GEM_BUG_ON(!engine->execlists.first);
972 973
	GEM_BUG_ON(list_empty(&request->priotree.link));

974
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
975 976
}

977 978 979 980 981
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

982 983 984
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
985
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
986 987

	GEM_BUG_ON(!locked);
988 989

	if (engine != locked) {
990 991
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
992 993 994 995 996 997 998
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
999
	struct intel_engine_cs *engine;
1000 1001 1002 1003
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1004 1005
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1006 1007 1008
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1009 1010
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

1035 1036 1037 1038 1039 1040
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1041 1042 1043
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1044
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1045 1046
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1047
		}
1048

1049
		list_safe_reset_next(dep, p, dfs_link);
1050 1051
	}

1052 1053 1054 1055 1056
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1057
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1058 1059 1060 1061 1062 1063 1064
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1065 1066 1067
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1080 1081 1082
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1083
		}
1084 1085
	}

1086
	spin_unlock_irq(&engine->timeline->lock);
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1112 1113 1114
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1115
{
1116
	struct intel_context *ce = &ctx->engine[engine->id];
1117
	void *vaddr;
1118
	int ret;
1119

1120
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1121

1122 1123
	if (likely(ce->pin_count++))
		goto out;
1124
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1125

1126 1127 1128 1129 1130
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1131
	GEM_BUG_ON(!ce->state);
1132

1133
	ret = __context_pin(ctx, ce->state);
1134
	if (ret)
1135
		goto err;
1136

1137
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1138 1139
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1140
		goto unpin_vma;
1141 1142
	}

1143
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1144
	if (ret)
1145
		goto unpin_map;
1146

1147
	intel_lr_context_descriptor_update(ctx, engine);
1148

1149 1150
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1151
		i915_ggtt_offset(ce->ring->vma);
1152

1153
	ce->state->obj->pin_global++;
1154
	i915_gem_context_get(ctx);
1155 1156
out:
	return ce->ring;
1157

1158
unpin_map:
1159 1160 1161
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1162
err:
1163
	ce->pin_count = 0;
1164
	return ERR_PTR(ret);
1165 1166
}

1167 1168
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1169
{
1170
	struct intel_context *ce = &ctx->engine[engine->id];
1171

1172
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1173
	GEM_BUG_ON(ce->pin_count == 0);
1174

1175
	if (--ce->pin_count)
1176
		return;
1177

1178
	intel_ring_unpin(ce->ring);
1179

1180
	ce->state->obj->pin_global--;
1181 1182
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1183

1184
	i915_gem_context_put(ctx);
1185 1186
}

1187
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1188 1189 1190
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1191
	int ret;
1192

1193 1194
	GEM_BUG_ON(!ce->pin_count);

1195 1196 1197 1198 1199 1200
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1201 1202 1203
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1232 1233
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1234
{
1235 1236 1237 1238 1239 1240 1241 1242 1243
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1244 1245 1246 1247
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1248 1249 1250 1251 1252 1253 1254

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1255 1256
}

1257 1258 1259 1260 1261 1262
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1263
 *
1264 1265
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1266
 *
1267 1268 1269 1270
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1271
 */
1272
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1273
{
1274
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1275
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1276

1277
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1278 1279
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1280

1281 1282
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1283 1284 1285 1286 1287 1288 1289
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1290

C
Chris Wilson 已提交
1291 1292
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1293
	/* Pad to end of cacheline */
1294 1295
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1296 1297 1298 1299 1300 1301 1302

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1303
	return batch;
1304 1305
}

1306
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1307
{
C
Chris Wilson 已提交
1308 1309
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1310
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1311
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1312

1313
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1314 1315 1316 1317 1318
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1319

1320 1321
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1322
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1323 1324 1325 1326 1327 1328 1329
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1330
	}
1331

1332
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1347 1348 1349 1350 1351 1352
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1353 1354
	}

C
Chris Wilson 已提交
1355 1356
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1357
	/* Pad to end of cacheline */
1358 1359
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1360

1361
	return batch;
1362 1363
}

1364 1365 1366
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1367
{
1368 1369 1370
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1371

1372
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1373 1374
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1375

1376
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1377 1378 1379
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1380 1381
	}

1382 1383 1384 1385 1386
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1387
	return 0;
1388 1389 1390 1391

err:
	i915_gem_object_put(obj);
	return err;
1392 1393
}

1394
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1395
{
1396
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1397 1398
}

1399 1400
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1401
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1402
{
1403
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1404 1405 1406
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1407
	struct page *page;
1408 1409
	void *batch, *batch_ptr;
	unsigned int i;
1410
	int ret;
1411

1412 1413
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1414

1415
	switch (INTEL_GEN(engine->i915)) {
1416 1417
	case 10:
		return 0;
1418 1419
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1420
		wa_bb_fn[1] = NULL;
1421 1422 1423
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1424
		wa_bb_fn[1] = NULL;
1425 1426 1427
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1428
		return 0;
1429
	}
1430

1431
	ret = lrc_setup_wa_ctx(engine);
1432 1433 1434 1435 1436
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1437
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1438
	batch = batch_ptr = kmap_atomic(page);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1451 1452
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1453
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1454 1455
	}

1456 1457
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1458 1459
	kunmap_atomic(batch);
	if (ret)
1460
		lrc_destroy_wa_ctx(engine);
1461 1462 1463 1464

	return ret;
}

1465 1466 1467 1468 1469 1470 1471 1472
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1473
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1474
{
1475
	struct drm_i915_private *dev_priv = engine->i915;
1476
	struct intel_engine_execlists * const execlists = &engine->execlists;
1477 1478 1479 1480 1481
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1482

1483
	intel_engine_reset_breadcrumbs(engine);
1484
	intel_engine_init_hangcheck(engine);
1485

1486 1487
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1488
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1489 1490 1491
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1492

1493
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1508
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1509
	execlists->csb_head = -1;
1510
	execlists->active = 0;
1511

1512
	/* After a GPU reset, we may have requests to replay */
1513
	if (execlists->first)
1514
		tasklet_schedule(&execlists->tasklet);
1515

1516
	return 0;
1517 1518
}

1519
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1520
{
1521
	struct drm_i915_private *dev_priv = engine->i915;
1522 1523
	int ret;

1524
	ret = gen8_init_common_ring(engine);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1538
	return init_workarounds_ring(engine);
1539 1540
}

1541
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1542 1543 1544
{
	int ret;

1545
	ret = gen8_init_common_ring(engine);
1546 1547 1548
	if (ret)
		return ret;

1549
	return init_workarounds_ring(engine);
1550 1551
}

1552 1553 1554
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1555
	struct intel_engine_execlists * const execlists = &engine->execlists;
1556
	struct intel_context *ce;
1557
	unsigned long flags;
1558

1559 1560
	spin_lock_irqsave(&engine->timeline->lock, flags);

1561 1562 1563 1564 1565 1566 1567 1568 1569
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1570
	execlists_cancel_port_requests(execlists);
1571

1572
	/* Push back any incomplete requests for replay after the reset. */
1573
	__unwind_incomplete_requests(engine);
1574

1575
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1587
	if (!request || request->fence.error != -EIO)
1588
		return;
1589

1590 1591 1592 1593 1594 1595 1596
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1597
	ce = &request->ctx->engine[engine->id];
1598 1599 1600
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1601
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1602 1603
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1604
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1605

1606 1607 1608
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1609
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1610
	unwind_wa_tail(request);
1611 1612
}

1613 1614 1615
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1616
	struct intel_engine_cs *engine = req->engine;
1617
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1618 1619
	u32 *cs;
	int i;
1620

1621 1622 1623
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1624

1625
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1626
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1627 1628
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1629 1630 1631 1632
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1633 1634
	}

1635 1636
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1637 1638 1639 1640

	return 0;
}

1641
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1642
			      u64 offset, u32 len,
1643
			      const unsigned int flags)
1644
{
1645
	u32 *cs;
1646 1647
	int ret;

1648 1649 1650 1651
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1652 1653
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1654
	if (req->ctx->ppgtt &&
1655 1656 1657 1658 1659 1660
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1661

1662
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1663 1664
	}

1665 1666 1667
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1668

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1686 1687
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1688
	/* FIXME(BDW): Address space and security selectors. */
1689 1690 1691
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1692 1693 1694
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1695 1696 1697 1698

	return 0;
}

1699
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1700
{
1701
	struct drm_i915_private *dev_priv = engine->i915;
1702 1703 1704
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1705 1706
}

1707
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1708
{
1709
	struct drm_i915_private *dev_priv = engine->i915;
1710
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1711 1712
}

1713
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1714
{
1715
	u32 cmd, *cs;
1716

1717 1718 1719
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1720 1721 1722

	cmd = MI_FLUSH_DW + 1;

1723 1724 1725 1726 1727 1728 1729
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1730
	if (mode & EMIT_INVALIDATE) {
1731
		cmd |= MI_INVALIDATE_TLB;
1732
		if (request->engine->id == VCS)
1733
			cmd |= MI_INVALIDATE_BSD;
1734 1735
	}

1736 1737 1738 1739 1740
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1741 1742 1743 1744

	return 0;
}

1745
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1746
				  u32 mode)
1747
{
1748
	struct intel_engine_cs *engine = request->engine;
1749 1750
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1751
	bool vf_flush_wa = false, dc_flush_wa = false;
1752
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1753
	int len;
1754 1755 1756

	flags |= PIPE_CONTROL_CS_STALL;

1757
	if (mode & EMIT_FLUSH) {
1758 1759
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1760
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1761
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1762 1763
	}

1764
	if (mode & EMIT_INVALIDATE) {
1765 1766 1767 1768 1769 1770 1771 1772 1773
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1774 1775 1776 1777
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1778
		if (IS_GEN9(request->i915))
1779
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1780 1781 1782 1783

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1784
	}
1785

M
Mika Kuoppala 已提交
1786 1787 1788 1789 1790 1791 1792 1793
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1794 1795 1796
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1797

1798 1799
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1800

1801 1802 1803
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1804

1805
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1806

1807 1808
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1809

1810
	intel_ring_advance(request, cs);
1811 1812 1813 1814

	return 0;
}

1815 1816 1817 1818 1819
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1820
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1821
{
C
Chris Wilson 已提交
1822 1823
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1824 1825
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1826
}
1827

1828
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1829
{
1830 1831
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1832

1833 1834
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1835 1836 1837
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1838
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1839

1840
	gen8_emit_wa_tail(request, cs);
1841
}
1842 1843
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1844
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1845
					u32 *cs)
1846
{
1847 1848 1849
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1850 1851
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1852 1853 1854
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1855
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1856

1857
	gen8_emit_wa_tail(request, cs);
1858
}
1859
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1860

1861
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1862 1863 1864
{
	int ret;

1865
	ret = intel_ring_workarounds_emit(req);
1866 1867 1868
	if (ret)
		return ret;

1869 1870 1871 1872 1873 1874 1875 1876
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1877
	return i915_gem_render_state_emit(req);
1878 1879
}

1880 1881
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1882
 * @engine: Engine Command Streamer.
1883
 */
1884
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1885
{
1886
	struct drm_i915_private *dev_priv;
1887

1888 1889 1890 1891
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1892 1893 1894
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1895

1896
	dev_priv = engine->i915;
1897

1898 1899
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1900
	}
1901

1902 1903
	if (engine->cleanup)
		engine->cleanup(engine);
1904

1905
	intel_engine_cleanup_common(engine);
1906

1907
	lrc_destroy_wa_ctx(engine);
1908
	engine->i915 = NULL;
1909 1910
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1911 1912
}

1913
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1914
{
1915
	engine->submit_request = execlists_submit_request;
1916
	engine->cancel_requests = execlists_cancel_requests;
1917
	engine->schedule = execlists_schedule;
1918
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1919 1920 1921

	engine->park = NULL;
	engine->unpark = NULL;
1922 1923

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1924 1925
}

1926
static void
1927
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1928 1929
{
	/* Default vfuncs which can be overriden by each engine. */
1930
	engine->init_hw = gen8_init_common_ring;
1931
	engine->reset_hw = reset_common_ring;
1932 1933 1934 1935

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1936 1937
	engine->request_alloc = execlists_request_alloc;

1938
	engine->emit_flush = gen8_emit_flush;
1939
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1940
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1941 1942

	engine->set_default_submission = execlists_set_default_submission;
1943

1944 1945
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1946
	engine->emit_bb_start = gen8_emit_bb_start;
1947 1948
}

1949
static inline void
1950
logical_ring_default_irqs(struct intel_engine_cs *engine)
1951
{
1952
	unsigned shift = engine->irq_shift;
1953 1954
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1955 1956
}

1957 1958 1959 1960 1961 1962
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1963 1964
	intel_engine_setup_common(engine);

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1980
	engine->execlists.fw_domains = fw_domains;
1981

1982 1983
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
1984 1985 1986 1987 1988

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1989
static int logical_ring_init(struct intel_engine_cs *engine)
1990 1991 1992
{
	int ret;

1993
	ret = intel_engine_init_common(engine);
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2004
int logical_render_ring_init(struct intel_engine_cs *engine)
2005 2006 2007 2008
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2009 2010
	logical_ring_setup(engine);

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2021 2022
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2023

2024
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2039
	return logical_ring_init(engine);
2040 2041
}

2042
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2043 2044 2045 2046
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2047 2048
}

2049
static u32
2050
make_rpcs(struct drm_i915_private *dev_priv)
2051 2052 2053 2054 2055 2056 2057
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2058
	if (INTEL_GEN(dev_priv) < 9)
2059 2060 2061 2062 2063 2064 2065 2066
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2067
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2068
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2069
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2070 2071 2072 2073
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2074
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2075
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2076
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2077 2078 2079 2080
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2081 2082
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2083
			GEN8_RPCS_EU_MIN_SHIFT;
2084
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2085 2086 2087 2088 2089 2090 2091
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2092
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2093 2094 2095
{
	u32 indirect_ctx_offset;

2096
	switch (INTEL_GEN(engine->i915)) {
2097
	default:
2098
		MISSING_CASE(INTEL_GEN(engine->i915));
2099
		/* fall through */
2100 2101 2102 2103
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2117
static void execlists_init_reg_state(u32 *regs,
2118 2119 2120
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2121
{
2122 2123
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2153 2154
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2155 2156 2157
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2158
		if (wa_ctx->indirect_ctx.size) {
2159
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2160

2161
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2162 2163
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2164

2165
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2166
				intel_lr_indirect_ctx_offset(engine) << 6;
2167 2168 2169 2170 2171
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2172

2173
			regs[CTX_BB_PER_CTX_PTR + 1] =
2174
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2175
		}
2176
	}
2177 2178 2179 2180

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2181
	/* PDP values well be assigned later if needed */
2182 2183 2184 2185 2186 2187 2188 2189
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2190

2191
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2192 2193 2194 2195
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2196
		ASSIGN_CTX_PML4(ppgtt, regs);
2197 2198
	}

2199 2200 2201 2202
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2203 2204

		i915_oa_init_reg_state(engine, ctx, regs);
2205
	}
2206 2207 2208 2209 2210 2211 2212 2213 2214
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2215
	u32 *regs;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2230
	ctx_obj->mm.dirty = true;
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2250 2251
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2252 2253 2254 2255 2256
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2257

2258
	i915_gem_object_unpin_map(ctx_obj);
2259 2260 2261 2262

	return 0;
}

2263
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2264
					    struct intel_engine_cs *engine)
2265
{
2266
	struct drm_i915_gem_object *ctx_obj;
2267
	struct intel_context *ce = &ctx->engine[engine->id];
2268
	struct i915_vma *vma;
2269
	uint32_t context_size;
2270
	struct intel_ring *ring;
2271 2272
	int ret;

2273
	WARN_ON(ce->state);
2274

2275
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2276

2277 2278 2279 2280 2281
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2282

2283
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2284
	if (IS_ERR(ctx_obj)) {
2285
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2286
		return PTR_ERR(ctx_obj);
2287 2288
	}

2289
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2290 2291 2292 2293 2294
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2295
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2296 2297
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2298
		goto error_deref_obj;
2299 2300
	}

2301
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2302 2303
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2304
		goto error_ring_free;
2305 2306
	}

2307
	ce->ring = ring;
2308
	ce->state = vma;
2309 2310

	return 0;
2311

2312
error_ring_free:
2313
	intel_ring_free(ring);
2314
error_deref_obj:
2315
	i915_gem_object_put(ctx_obj);
2316
	return ret;
2317
}
2318

2319
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2320
{
2321
	struct intel_engine_cs *engine;
2322
	struct i915_gem_context *ctx;
2323
	enum intel_engine_id id;
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2335
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2336
		for_each_engine(engine, dev_priv, id) {
2337 2338
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2339

2340 2341
			if (!ce->state)
				continue;
2342

2343 2344 2345 2346
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2347

2348 2349 2350
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2351

C
Chris Wilson 已提交
2352
			ce->state->obj->mm.dirty = true;
2353
			i915_gem_object_unpin_map(ce->state->obj);
2354

2355
			intel_ring_reset(ce->ring, 0);
2356
		}
2357 2358
	}
}