intel_lrc.c 64.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212 213
#define WA_TAIL_DWORDS 2

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223
 * @dev_priv: i915 device private
224 225 226
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
227
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 229 230
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
231
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232
{
233 234 235
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
236
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 238
		return 1;

239
	if (INTEL_GEN(dev_priv) >= 9)
240 241
		return 1;

242 243 244
	if (enable_execlists == 0)
		return 0;

245 246 247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
292
{
293 294 295 296 297 298
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
299

300 301
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
302 303
}

304 305 306 307 308 309 310 311 312
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

313
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
314
{
315
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
316 317
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
318
	u32 *reg_state = ce->lrc_reg_state;
319

320
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
321

322 323 324 325 326
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
327
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
328
		execlists_update_context_pdps(ppgtt, reg_state);
329 330

	return ce->lrc_desc;
331 332
}

333
static void execlists_submit_ports(struct intel_engine_cs *engine)
334
{
335
	struct execlist_port *port = engine->execlist_port;
336
	u32 __iomem *elsp =
337 338
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
357

358 359 360
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
361 362
}

363
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
364
{
365
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
366
		i915_gem_context_force_single_submission(ctx));
367
}
368

369 370 371 372 373
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
374

375 376
	if (ctx_single_port_submission(prev))
		return false;
377

378
	return true;
379 380
}

381 382 383 384 385 386 387 388 389 390 391
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

392
static void execlists_dequeue(struct intel_engine_cs *engine)
393
{
394
	struct drm_i915_gem_request *last;
395
	struct execlist_port *port = engine->execlist_port;
396
	struct rb_node *rb;
397 398
	bool submit = false;

399
	last = port_request(port);
400 401 402
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
403
		 * as we resubmit the request. See gen8_emit_breadcrumb()
404 405 406 407
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
408

409
	GEM_BUG_ON(port_isset(&port[1]));
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
430
	 */
431

432
	spin_lock_irq(&engine->timeline->lock);
433
	rb = engine->execlist_first;
434
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
435
	while (rb) {
436 437 438 439 440 441 442 443 444 445 446 447 448 449
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
450
			 */
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
			}
483

484 485
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
486

487 488 489 490
			__i915_gem_request_submit(rq);
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
491
		}
492

493
		rb = rb_next(rb);
494 495 496
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
497
			kmem_cache_free(engine->i915->priorities, p);
498
	}
499 500 501
done:
	engine->execlist_first = rb;
	if (submit)
502
		port_assign(port, last);
503
	spin_unlock_irq(&engine->timeline->lock);
504

505 506
	if (submit)
		execlists_submit_ports(engine);
507 508
}

509
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
510
{
511
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
512

513
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
514 515
}

516
/*
517 518 519
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
520
static void intel_lrc_irq_handler(unsigned long data)
521
{
522
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
523
	struct execlist_port *port = engine->execlist_port;
524
	struct drm_i915_private *dev_priv = engine->i915;
525

526 527 528 529 530 531 532 533 534
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

535
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536

537 538 539 540 541
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
542 543 544
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
545
		unsigned int head, tail;
546

547 548 549 550
		/* However GVT emulation depends upon intercepting CSB mmio */
		if (unlikely(engine->csb_use_mmio)) {
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
551
			engine->csb_head = -1; /* force mmio read of CSB ptrs */
552 553
		}

554 555 556 557 558 559 560 561 562 563 564
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
565 566 567 568 569 570 571 572 573 574 575 576 577
		if (unlikely(engine->csb_head == -1)) { /* following a reset */
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
			engine->csb_head = head;
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

			head = engine->csb_head;
			tail = READ_ONCE(buf[write_idx]);
		}
578
		while (head != tail) {
579
			struct drm_i915_gem_request *rq;
580
			unsigned int status;
581
			unsigned int count;
582 583 584

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

603
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
604 605 606
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

607
			/* Check the context/desc id for this event matches */
608
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
609

610 611 612
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
613
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
614 615 616 617 618
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
619 620 621

				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
622 623
			} else {
				port_set(port, port_pack(rq, count));
624
			}
625

626 627
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
628
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
629
		}
630

631 632 633 634 635
		if (head != engine->csb_head) {
			engine->csb_head = head;
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
636 637
	}

638 639
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
640

641
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
642 643
}

644 645 646 647
static bool
insert_request(struct intel_engine_cs *engine,
	       struct i915_priotree *pt,
	       int prio)
648
{
649 650
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
651 652
	bool first = true;

653 654 655 656
	if (unlikely(engine->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
657 658
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
659 660 661 662 663 664 665 666
	parent = &engine->execlist_queue.rb_node;
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
667
			first = false;
668 669 670
		} else {
			list_add_tail(&pt->link, &p->requests);
			return false;
671 672
		}
	}
673 674 675 676

	if (prio == I915_PRIORITY_NORMAL) {
		p = &engine->default_priolist;
	} else {
677
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			engine->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	rb_link_node(&p->node, rb, parent);
	rb_insert_color(&p->node, &engine->execlist_queue);

	INIT_LIST_HEAD(&p->requests);
	list_add_tail(&pt->link, &p->requests);

	if (first)
		engine->execlist_first = &p->node;
704 705 706 707

	return first;
}

708
static void execlists_submit_request(struct drm_i915_gem_request *request)
709
{
710
	struct intel_engine_cs *engine = request->engine;
711
	unsigned long flags;
712

713 714
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
715

716 717 718
	if (insert_request(engine,
			   &request->priotree,
			   request->priotree.priority)) {
719
		if (execlists_elsp_ready(engine))
720 721
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
722

723 724 725
	GEM_BUG_ON(!engine->execlist_first);
	GEM_BUG_ON(list_empty(&request->priotree.link));

726
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
727 728
}

729 730 731
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
732 733 734 735
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
736 737

	if (engine != locked) {
738 739
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
740 741 742 743 744 745 746
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
747
	struct intel_engine_cs *engine;
748 749 750 751 752 753 754
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

755 756
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

781 782 783 784 785 786 787
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
788 789
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
790
		}
791

792
		list_safe_reset_next(dep, p, dfs_link);
793 794
	}

795 796 797 798 799 800 801 802 803 804 805 806 807
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

808 809 810
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

811 812 813 814 815 816 817 818 819 820 821 822
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
823 824 825
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
826
		}
827 828
	}

829
	spin_unlock_irq(&engine->timeline->lock);
830 831 832 833

	/* XXX Do we need to preempt to make room for us and our deps? */
}

834 835 836
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
837
{
838
	struct intel_context *ce = &ctx->engine[engine->id];
839
	unsigned int flags;
840
	void *vaddr;
841
	int ret;
842

843
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
844

845 846
	if (likely(ce->pin_count++))
		goto out;
847
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
848

849 850 851 852 853
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
854
	GEM_BUG_ON(!ce->state);
855

856
	flags = PIN_GLOBAL | PIN_HIGH;
857 858
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
859 860

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
861
	if (ret)
862
		goto err;
863

864
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
865 866
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
867
		goto unpin_vma;
868 869
	}

870
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
871
	if (ret)
872
		goto unpin_map;
873

874
	intel_lr_context_descriptor_update(ctx, engine);
875

876 877
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
878
		i915_ggtt_offset(ce->ring->vma);
879

C
Chris Wilson 已提交
880
	ce->state->obj->mm.dirty = true;
881

882
	i915_gem_context_get(ctx);
883 884
out:
	return ce->ring;
885

886
unpin_map:
887 888 889
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
890
err:
891
	ce->pin_count = 0;
892
	return ERR_PTR(ret);
893 894
}

895 896
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
897
{
898
	struct intel_context *ce = &ctx->engine[engine->id];
899

900
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
901
	GEM_BUG_ON(ce->pin_count == 0);
902

903
	if (--ce->pin_count)
904
		return;
905

906
	intel_ring_unpin(ce->ring);
907

908 909
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
910

911
	i915_gem_context_put(ctx);
912 913
}

914
static int execlists_request_alloc(struct drm_i915_gem_request *request)
915 916 917
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
918
	u32 *cs;
919 920
	int ret;

921 922
	GEM_BUG_ON(!ce->pin_count);

923 924 925 926 927 928 929 930 931 932 933 934 935 936
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
937
			goto err;
938 939
	}

940 941 942
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
943
		goto err_unreserve;
944
	}
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
967
err:
968 969 970
	return ret;
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
987 988
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
989
{
990 991 992 993 994 995 996 997 998
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

999 1000 1001 1002
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1003 1004 1005 1006 1007 1008 1009

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1010 1011
}

1012 1013 1014 1015 1016 1017
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1018
 *
1019 1020
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1021
 *
1022 1023 1024 1025
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1026
 */
1027
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1028
{
1029
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1030
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1031

1032
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1033 1034
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1035

1036 1037
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1038 1039 1040 1041 1042 1043 1044
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1045

1046
	/* Pad to end of cacheline */
1047 1048
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1049 1050 1051 1052 1053 1054 1055

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1056
	return batch;
1057 1058
}

1059 1060 1061
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1062
 *
1063
 *  The number of DWORDS written are returned using this field.
1064 1065 1066 1067
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1068
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1069
{
1070
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1071 1072
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1073

1074
	return batch;
1075 1076
}

1077
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1078
{
1079
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1080
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1081

1082
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1083 1084 1085 1086 1087
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1088

1089 1090
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1091
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1092 1093 1094 1095 1096 1097 1098
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1099
	}
1100

1101
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1116 1117 1118 1119 1120 1121
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1122 1123
	}

1124
	/* Pad to end of cacheline */
1125 1126
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1127

1128
	return batch;
1129 1130
}

1131
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1132
{
1133
	*batch++ = MI_BATCH_BUFFER_END;
1134

1135
	return batch;
1136 1137
}

1138 1139 1140
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1141
{
1142 1143 1144
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1145

1146
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1147 1148
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1149

1150
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1151 1152 1153
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1154 1155
	}

1156 1157 1158 1159 1160
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1161
	return 0;
1162 1163 1164 1165

err:
	i915_gem_object_put(obj);
	return err;
1166 1167
}

1168
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1169
{
1170
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1171 1172
}

1173 1174
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1175
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1176
{
1177
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1178 1179 1180
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1181
	struct page *page;
1182 1183
	void *batch, *batch_ptr;
	unsigned int i;
1184
	int ret;
1185

1186 1187
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1188

1189
	switch (INTEL_GEN(engine->i915)) {
1190 1191
	case 10:
		return 0;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1202
		return 0;
1203
	}
1204

1205
	ret = lrc_setup_wa_ctx(engine);
1206 1207 1208 1209 1210
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1211
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1212
	batch = batch_ptr = kmap_atomic(page);
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1227 1228
	}

1229 1230
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1231 1232
	kunmap_atomic(batch);
	if (ret)
1233
		lrc_destroy_wa_ctx(engine);
1234 1235 1236 1237

	return ret;
}

1238 1239 1240 1241 1242 1243 1244 1245
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1246
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1247
{
1248
	struct drm_i915_private *dev_priv = engine->i915;
1249 1250
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1251
	bool submit;
1252 1253 1254 1255 1256
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1257

1258
	intel_engine_reset_breadcrumbs(engine);
1259
	intel_engine_init_hangcheck(engine);
1260

1261 1262
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1263
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1264 1265 1266
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1267

1268
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1283
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1284
	engine->csb_head = -1;
1285

1286
	/* After a GPU reset, we may have requests to replay */
1287
	submit = false;
1288
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1289
		if (!port_isset(&port[n]))
1290 1291 1292 1293
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
1294
				 port_request(&port[n])->global_seqno);
1295 1296

		/* Discard the current inflight count */
1297 1298
		port_set(&port[n], port_request(&port[n]));
		submit = true;
1299
	}
1300

1301
	if (submit && !i915.enable_guc_submission)
1302 1303
		execlists_submit_ports(engine);

1304
	return 0;
1305 1306
}

1307
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1308
{
1309
	struct drm_i915_private *dev_priv = engine->i915;
1310 1311
	int ret;

1312
	ret = gen8_init_common_ring(engine);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1326
	return init_workarounds_ring(engine);
1327 1328
}

1329
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1330 1331 1332
{
	int ret;

1333
	ret = gen8_init_common_ring(engine);
1334 1335 1336
	if (ret)
		return ret;

1337
	return init_workarounds_ring(engine);
1338 1339
}

1340 1341 1342 1343
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1344
	struct intel_context *ce;
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	unsigned int n;

	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
	if (!request) {
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		return;
	}

	if (request->ctx != port_request(port)->ctx) {
		i915_gem_request_put(port_request(port));
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1381
	if (request->fence.error != -EIO)
1382
		return;
1383

1384 1385 1386 1387 1388 1389 1390
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1391
	ce = &request->ctx->engine[engine->id];
1392 1393 1394
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1395
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1396 1397
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1398
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1399

1400 1401 1402
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1403
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1404 1405 1406
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1407
	assert_ring_tail_valid(request->ring, request->tail);
1408 1409
}

1410 1411 1412
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1413
	struct intel_engine_cs *engine = req->engine;
1414
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1415 1416
	u32 *cs;
	int i;
1417

1418 1419 1420
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1421

1422
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1423
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1424 1425
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1426 1427 1428 1429
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1430 1431
	}

1432 1433
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1434 1435 1436 1437

	return 0;
}

1438
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1439
			      u64 offset, u32 len,
1440
			      const unsigned int flags)
1441
{
1442
	u32 *cs;
1443 1444
	int ret;

1445 1446 1447 1448
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1449 1450
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1451
	if (req->ctx->ppgtt &&
1452 1453 1454 1455 1456 1457
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1458

1459
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1460 1461
	}

1462 1463 1464
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1465 1466

	/* FIXME(BDW): Address space and security selectors. */
1467 1468 1469
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1470 1471 1472 1473
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1474 1475 1476 1477

	return 0;
}

1478
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1479
{
1480
	struct drm_i915_private *dev_priv = engine->i915;
1481 1482 1483
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1484 1485
}

1486
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1487
{
1488
	struct drm_i915_private *dev_priv = engine->i915;
1489
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1490 1491
}

1492
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1493
{
1494
	u32 cmd, *cs;
1495

1496 1497 1498
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1499 1500 1501

	cmd = MI_FLUSH_DW + 1;

1502 1503 1504 1505 1506 1507 1508
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1509
	if (mode & EMIT_INVALIDATE) {
1510
		cmd |= MI_INVALIDATE_TLB;
1511
		if (request->engine->id == VCS)
1512
			cmd |= MI_INVALIDATE_BSD;
1513 1514
	}

1515 1516 1517 1518 1519
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1520 1521 1522 1523

	return 0;
}

1524
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1525
				  u32 mode)
1526
{
1527
	struct intel_engine_cs *engine = request->engine;
1528 1529
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1530
	bool vf_flush_wa = false, dc_flush_wa = false;
1531
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1532
	int len;
1533 1534 1535

	flags |= PIPE_CONTROL_CS_STALL;

1536
	if (mode & EMIT_FLUSH) {
1537 1538
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1539
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1540
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1541 1542
	}

1543
	if (mode & EMIT_INVALIDATE) {
1544 1545 1546 1547 1548 1549 1550 1551 1552
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1553 1554 1555 1556
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1557
		if (IS_GEN9(request->i915))
1558
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1559 1560 1561 1562

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1563
	}
1564

M
Mika Kuoppala 已提交
1565 1566 1567 1568 1569 1570 1571 1572
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1573 1574 1575
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1576

1577 1578
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1579

1580 1581 1582
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1583

1584
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1585

1586 1587
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1588

1589
	intel_ring_advance(request, cs);
1590 1591 1592 1593

	return 0;
}

1594 1595 1596 1597 1598
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1599
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1600
{
1601 1602 1603
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1604
}
1605

1606
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1607
{
1608 1609
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1610

1611 1612 1613 1614 1615 1616 1617
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1618
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1619

1620
	gen8_emit_wa_tail(request, cs);
1621
}
1622

1623 1624
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1625
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1626
					u32 *cs)
1627
{
1628 1629 1630
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1631 1632 1633 1634
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1635 1636 1637 1638 1639 1640
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1641
	/* We're thrashing one dword of HWS. */
1642 1643 1644 1645
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1646
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1647

1648
	gen8_emit_wa_tail(request, cs);
1649 1650
}

1651 1652
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1653
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1654 1655 1656
{
	int ret;

1657
	ret = intel_ring_workarounds_emit(req);
1658 1659 1660
	if (ret)
		return ret;

1661 1662 1663 1664 1665 1666 1667 1668
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1669
	return i915_gem_render_state_emit(req);
1670 1671
}

1672 1673
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1674
 * @engine: Engine Command Streamer.
1675
 */
1676
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1677
{
1678
	struct drm_i915_private *dev_priv;
1679

1680 1681 1682 1683 1684 1685 1686
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1687
	dev_priv = engine->i915;
1688

1689 1690
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1691
	}
1692

1693 1694
	if (engine->cleanup)
		engine->cleanup(engine);
1695

1696
	intel_engine_cleanup_common(engine);
1697

1698
	lrc_destroy_wa_ctx(engine);
1699
	engine->i915 = NULL;
1700 1701
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1702 1703
}

1704
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1705
{
1706 1707
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1708
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1709 1710
}

1711
static void
1712
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1713 1714
{
	/* Default vfuncs which can be overriden by each engine. */
1715
	engine->init_hw = gen8_init_common_ring;
1716
	engine->reset_hw = reset_common_ring;
1717 1718 1719 1720

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1721 1722
	engine->request_alloc = execlists_request_alloc;

1723
	engine->emit_flush = gen8_emit_flush;
1724
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1725
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1726 1727

	engine->set_default_submission = execlists_set_default_submission;
1728

1729 1730
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1731
	engine->emit_bb_start = gen8_emit_bb_start;
1732 1733
}

1734
static inline void
1735
logical_ring_default_irqs(struct intel_engine_cs *engine)
1736
{
1737
	unsigned shift = engine->irq_shift;
1738 1739
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1740 1741
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static bool irq_handler_force_mmio(struct drm_i915_private *i915)
{
	/* GVT emulation depends upon intercepting CSB mmio */
	if (intel_vgpu_active(i915))
		return true;

	/*
	 * IOMMU adds unpredictable latency causing the CSB write (from the
	 * GPU into the HWSP) to only be visible some time after the interrupt
	 * (missed breadcrumb syndrome).
	 */
	if (intel_vtd_active())
		return true;

	return false;
}

1759 1760 1761 1762 1763 1764
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1765 1766
	intel_engine_setup_common(engine);

1767 1768 1769
	/* Intentionally left blank. */
	engine->buffer = NULL;

1770 1771
	engine->csb_use_mmio = irq_handler_force_mmio(dev_priv);

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1793
static int logical_ring_init(struct intel_engine_cs *engine)
1794 1795 1796
{
	int ret;

1797
	ret = intel_engine_init_common(engine);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1808
int logical_render_ring_init(struct intel_engine_cs *engine)
1809 1810 1811 1812
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1813 1814
	logical_ring_setup(engine);

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1825
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1826
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1827

1828
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1843
	return logical_ring_init(engine);
1844 1845
}

1846
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1847 1848 1849 1850
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1851 1852
}

1853
static u32
1854
make_rpcs(struct drm_i915_private *dev_priv)
1855 1856 1857 1858 1859 1860 1861
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1862
	if (INTEL_GEN(dev_priv) < 9)
1863 1864 1865 1866 1867 1868 1869 1870
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1871
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1872
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1873
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1874 1875 1876 1877
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1878
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1879
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1880
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1881 1882 1883 1884
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1885 1886
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1887
			GEN8_RPCS_EU_MIN_SHIFT;
1888
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1889 1890 1891 1892 1893 1894 1895
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1896
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1897 1898 1899
{
	u32 indirect_ctx_offset;

1900
	switch (INTEL_GEN(engine->i915)) {
1901
	default:
1902
		MISSING_CASE(INTEL_GEN(engine->i915));
1903
		/* fall through */
1904 1905 1906 1907
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1921
static void execlists_init_reg_state(u32 *regs,
1922 1923 1924
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1925
{
1926 1927
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1962

1963
		if (engine->wa_ctx.vma) {
1964
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1965
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1966

1967
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1968 1969
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1970

1971
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1972
				intel_lr_indirect_ctx_offset(engine) << 6;
1973

1974
			regs[CTX_BB_PER_CTX_PTR + 1] =
1975
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1976
		}
1977
	}
1978 1979 1980 1981

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1982
	/* PDP values well be assigned later if needed */
1983 1984 1985 1986 1987 1988 1989 1990
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1991

1992
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1993 1994 1995 1996
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1997
		ASSIGN_CTX_PML4(ppgtt, regs);
1998 1999
	}

2000 2001 2002 2003
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2004 2005

		i915_oa_init_reg_state(engine, ctx, regs);
2006
	}
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2030
	ctx_obj->mm.dirty = true;
2031 2032 2033 2034 2035 2036

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2037

2038
	i915_gem_object_unpin_map(ctx_obj);
2039 2040 2041 2042

	return 0;
}

2043
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2044
					    struct intel_engine_cs *engine)
2045
{
2046
	struct drm_i915_gem_object *ctx_obj;
2047
	struct intel_context *ce = &ctx->engine[engine->id];
2048
	struct i915_vma *vma;
2049
	uint32_t context_size;
2050
	struct intel_ring *ring;
2051 2052
	int ret;

2053
	WARN_ON(ce->state);
2054

2055
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2056

2057 2058 2059 2060 2061
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2062

2063
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2064
	if (IS_ERR(ctx_obj)) {
2065
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2066
		return PTR_ERR(ctx_obj);
2067 2068
	}

2069
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2070 2071 2072 2073 2074
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2075
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2076 2077
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2078
		goto error_deref_obj;
2079 2080
	}

2081
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2082 2083
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2084
		goto error_ring_free;
2085 2086
	}

2087
	ce->ring = ring;
2088
	ce->state = vma;
2089
	ce->initialised |= engine->init_context == NULL;
2090 2091

	return 0;
2092

2093
error_ring_free:
2094
	intel_ring_free(ring);
2095
error_deref_obj:
2096
	i915_gem_object_put(ctx_obj);
2097
	return ret;
2098
}
2099

2100
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2101
{
2102
	struct intel_engine_cs *engine;
2103
	struct i915_gem_context *ctx;
2104
	enum intel_engine_id id;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2116
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2117
		for_each_engine(engine, dev_priv, id) {
2118 2119
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2120

2121 2122
			if (!ce->state)
				continue;
2123

2124 2125 2126 2127
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2128

2129 2130 2131
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2132

C
Chris Wilson 已提交
2133
			ce->state->obj->mm.dirty = true;
2134
			i915_gem_object_unpin_map(ce->state->obj);
2135

2136
			intel_ring_reset(ce->ring, 0);
2137
		}
2138 2139
	}
}