intel_lrc.c 62.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309 310
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
311 312
}

313 314 315 316 317 318 319 320 321
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

322
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323
{
324
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 326
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327
	u32 *reg_state = ce->lrc_reg_state;
328

329
	assert_ring_tail_valid(rq->ring, rq->tail);
C
Chris Wilson 已提交
330
	reg_state[CTX_RING_TAIL+1] = rq->tail;
331

332 333 334 335 336
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
337
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338
		execlists_update_context_pdps(ppgtt, reg_state);
339 340

	return ce->lrc_desc;
341 342
}

343
static void execlists_submit_ports(struct intel_engine_cs *engine)
344
{
345 346
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
347 348 349 350
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

351
	GEM_BUG_ON(port[0].count > 1);
352 353 354 355
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
356
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
357
	port[0].count++;
358 359 360 361 362 363

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
364
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
365
		port[1].count = 1;
366 367 368
	} else {
		desc[1] = 0;
	}
369
	GEM_BUG_ON(desc[0] == desc[1]);
370 371 372 373 374 375 376 377 378 379

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

380
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
381
{
382
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383
		i915_gem_context_force_single_submission(ctx));
384
}
385

386 387 388 389 390
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
391

392 393
	if (ctx_single_port_submission(prev))
		return false;
394

395
	return true;
396 397
}

398
static void execlists_dequeue(struct intel_engine_cs *engine)
399
{
400
	struct drm_i915_gem_request *last;
401
	struct execlist_port *port = engine->execlist_port;
402
	struct rb_node *rb;
403 404 405 406 407 408
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409
		 * as we resubmit the request. See gen8_emit_breadcrumb()
410 411 412 413
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
414

415
	GEM_BUG_ON(port[1].request);
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
436
	 */
437

438
	spin_lock_irq(&engine->timeline->lock);
439 440 441 442 443
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

444 445 446
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
447
		 *
448 449 450 451
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
452
		 */
453 454 455 456 457 458 459 460 461 462 463 464 465
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
466 467
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
468 469 470 471 472 473 474
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
475

476 477 478 479 480
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

481
		__i915_gem_request_submit(cursor);
482
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
483 484 485 486 487
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
488
		engine->execlist_first = rb;
489
	}
490
	spin_unlock_irq(&engine->timeline->lock);
491

492 493
	if (submit)
		execlists_submit_ports(engine);
494 495
}

496
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
497
{
498
	return !engine->execlist_port[0].request;
499 500
}

501
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
502
{
503
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
504

505
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
506 507
}

508
/*
509 510 511
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
512
static void intel_lrc_irq_handler(unsigned long data)
513
{
514
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
515
	struct execlist_port *port = engine->execlist_port;
516
	struct drm_i915_private *dev_priv = engine->i915;
517

518 519 520 521 522 523 524 525 526
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

527
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
528

529 530 531 532 533
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
534 535 536 537
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
538
		unsigned int head, tail;
539

540 541 542 543 544 545 546 547 548 549 550
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
551 552 553 554 555 556 557 558
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
			unsigned int status;

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

577
			status = readl(buf + 2 * head);
578 579 580
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

581
			/* Check the context/desc id for this event matches */
582
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
583
					 port[0].context_id);
584

585 586 587
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
588
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
589 590 591
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

592
				trace_i915_gem_request_out(port[0].request);
593 594 595 596
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
597

598 599
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
600
		}
601

602
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
603
		       csb_mmio);
604 605
	}

606 607
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
608

609
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

638
static void execlists_submit_request(struct drm_i915_gem_request *request)
639
{
640
	struct intel_engine_cs *engine = request->engine;
641
	unsigned long flags;
642

643 644
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
645

646
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
647
		engine->execlist_first = &request->priotree.node;
648
		if (execlists_elsp_ready(engine))
649 650
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
651

652
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
653 654
}

655 656 657
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
658 659 660 661
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
662 663

	if (engine != locked) {
664 665
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
666 667 668 669 670 671 672
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
673
	struct intel_engine_cs *engine;
674 675 676 677 678 679 680
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

681 682
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

707 708 709 710 711 712 713
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
714 715
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
716
		}
717

718
		list_safe_reset_next(dep, p, dfs_link);
719 720
	}

721 722 723
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

724 725 726 727 728 729 730 731 732 733 734 735
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
736 737 738 739 740
		if (!RB_EMPTY_NODE(&pt->node)) {
			rb_erase(&pt->node, &engine->execlist_queue);
			if (insert_request(pt, &engine->execlist_queue))
				engine->execlist_first = &pt->node;
		}
741 742
	}

743
	spin_unlock_irq(&engine->timeline->lock);
744 745 746 747

	/* XXX Do we need to preempt to make room for us and our deps? */
}

748 749
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
750
{
751
	struct intel_context *ce = &ctx->engine[engine->id];
752
	unsigned int flags;
753
	void *vaddr;
754
	int ret;
755

756
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
757

758
	if (ce->pin_count++)
759
		return 0;
760
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
761

762 763 764 765 766
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
767
	GEM_BUG_ON(!ce->state);
768

769
	flags = PIN_GLOBAL | PIN_HIGH;
770 771
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
772 773

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
774
	if (ret)
775
		goto err;
776

777
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
778 779
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
780
		goto unpin_vma;
781 782
	}

783
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
784
	if (ret)
785
		goto unpin_map;
786

787
	intel_lr_context_descriptor_update(ctx, engine);
788

789 790
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
791
		i915_ggtt_offset(ce->ring->vma);
792

C
Chris Wilson 已提交
793
	ce->state->obj->mm.dirty = true;
794

795
	i915_gem_context_get(ctx);
796
	return 0;
797

798
unpin_map:
799 800 801
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
802
err:
803
	ce->pin_count = 0;
804 805 806
	return ret;
}

807 808
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
809
{
810
	struct intel_context *ce = &ctx->engine[engine->id];
811

812
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
813
	GEM_BUG_ON(ce->pin_count == 0);
814

815
	if (--ce->pin_count)
816
		return;
817

818
	intel_ring_unpin(ce->ring);
819

820 821
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
822

823
	i915_gem_context_put(ctx);
824 825
}

826
static int execlists_request_alloc(struct drm_i915_gem_request *request)
827 828 829
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
830
	u32 *cs;
831 832
	int ret;

833 834
	GEM_BUG_ON(!ce->pin_count);

835 836 837 838 839 840
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

841
	GEM_BUG_ON(!ce->ring);
842 843 844 845 846 847 848 849 850 851
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
852
			goto err;
853 854
	}

855 856 857
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
858
		goto err_unreserve;
859
	}
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
882
err:
883 884 885
	return ret;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
902 903
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
904
{
905 906 907 908 909 910 911 912 913
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

914 915 916 917
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
918 919 920 921 922 923 924

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
925 926
}

927 928 929 930 931 932
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
933
 *
934 935
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
936
 *
937 938 939 940
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
941
 */
942
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
943
{
944
	/* WaDisableCtxRestoreArbitration:bdw,chv */
945
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
946

947
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
948 949
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
950

951 952
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
953 954 955 956 957 958 959
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
960

961
	/* Pad to end of cacheline */
962 963
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
964 965 966 967 968 969 970

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

971
	return batch;
972 973
}

974 975 976
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
977
 *
978
 *  The number of DWORDS written are returned using this field.
979 980 981 982
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
983
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
984
{
985
	/* WaDisableCtxRestoreArbitration:bdw,chv */
986 987
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
988

989
	return batch;
990 991
}

992
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
993
{
994
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
995
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
996

997
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
998 999 1000 1001 1002
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1003

1004 1005
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1006
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1007 1008 1009 1010 1011 1012 1013
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1014
	}
1015

1016
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1031 1032 1033 1034 1035 1036
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1037 1038
	}

1039
	/* Pad to end of cacheline */
1040 1041
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1042

1043
	return batch;
1044 1045
}

1046
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1047
{
1048
	*batch++ = MI_BATCH_BUFFER_END;
1049

1050
	return batch;
1051 1052
}

1053 1054 1055
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1056
{
1057 1058 1059
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1060

1061
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1062 1063
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1064

1065
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1066 1067 1068
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1069 1070
	}

1071 1072 1073 1074 1075
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1076
	return 0;
1077 1078 1079 1080

err:
	i915_gem_object_put(obj);
	return err;
1081 1082
}

1083
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1084
{
1085
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1086 1087
}

1088 1089
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1090
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1091
{
1092
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1093 1094 1095
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1096
	struct page *page;
1097 1098
	void *batch, *batch_ptr;
	unsigned int i;
1099
	int ret;
1100

1101 1102
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1115
		return 0;
1116
	}
1117

1118
	ret = lrc_setup_wa_ctx(engine);
1119 1120 1121 1122 1123
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1124
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1125
	batch = batch_ptr = kmap_atomic(page);
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1140 1141
	}

1142 1143
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1144 1145
	kunmap_atomic(batch);
	if (ret)
1146
		lrc_destroy_wa_ctx(engine);
1147 1148 1149 1150

	return ret;
}

1151
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1152
{
1153
	struct drm_i915_private *dev_priv = engine->i915;
1154 1155
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1156 1157 1158 1159 1160
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1161

1162
	intel_engine_reset_breadcrumbs(engine);
1163
	intel_engine_init_hangcheck(engine);
1164

1165 1166
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1167
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1168 1169 1170
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1171

1172
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1173

1174
	/* After a GPU reset, we may have requests to replay */
1175
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
		if (!port[n].request)
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
				 port[n].request->global_seqno);

		/* Discard the current inflight count */
		port[n].count = 0;
1187
	}
1188

1189 1190 1191
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine))
		execlists_submit_ports(engine);

1192
	return 0;
1193 1194
}

1195
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1196
{
1197
	struct drm_i915_private *dev_priv = engine->i915;
1198 1199
	int ret;

1200
	ret = gen8_init_common_ring(engine);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1214
	return init_workarounds_ring(engine);
1215 1216
}

1217
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1218 1219 1220
{
	int ret;

1221
	ret = gen8_init_common_ring(engine);
1222 1223 1224
	if (ret)
		return ret;

1225
	return init_workarounds_ring(engine);
1226 1227
}

1228 1229 1230 1231
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1246

1247 1248 1249 1250 1251 1252 1253
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1254
	ce = &request->ctx->engine[engine->id];
1255 1256 1257
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1258
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1259 1260
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1261
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1274 1275

	/* Reset WaIdleLiteRestore:bdw,skl as well */
1276 1277 1278
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1279
	assert_ring_tail_valid(request->ring, request->tail);
1280 1281
}

1282 1283 1284
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1285
	struct intel_engine_cs *engine = req->engine;
1286
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1287 1288
	u32 *cs;
	int i;
1289

1290 1291 1292
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1293

1294
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1295
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1296 1297
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1298 1299 1300 1301
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1302 1303
	}

1304 1305
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1306 1307 1308 1309

	return 0;
}

1310
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1311
			      u64 offset, u32 len,
1312
			      const unsigned int flags)
1313
{
1314
	u32 *cs;
1315 1316
	int ret;

1317 1318 1319 1320
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1321 1322
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1323
	if (req->ctx->ppgtt &&
1324 1325 1326 1327 1328 1329
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1330

1331
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1332 1333
	}

1334 1335 1336
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1337 1338

	/* FIXME(BDW): Address space and security selectors. */
1339 1340 1341
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1342 1343 1344 1345
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1346 1347 1348 1349

	return 0;
}

1350
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1351
{
1352
	struct drm_i915_private *dev_priv = engine->i915;
1353 1354 1355
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1356 1357
}

1358
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1359
{
1360
	struct drm_i915_private *dev_priv = engine->i915;
1361
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1362 1363
}

1364
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1365
{
1366
	u32 cmd, *cs;
1367

1368 1369 1370
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1371 1372 1373

	cmd = MI_FLUSH_DW + 1;

1374 1375 1376 1377 1378 1379 1380
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1381
	if (mode & EMIT_INVALIDATE) {
1382
		cmd |= MI_INVALIDATE_TLB;
1383
		if (request->engine->id == VCS)
1384
			cmd |= MI_INVALIDATE_BSD;
1385 1386
	}

1387 1388 1389 1390 1391
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1392 1393 1394 1395

	return 0;
}

1396
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1397
				  u32 mode)
1398
{
1399
	struct intel_engine_cs *engine = request->engine;
1400 1401
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1402
	bool vf_flush_wa = false, dc_flush_wa = false;
1403
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1404
	int len;
1405 1406 1407

	flags |= PIPE_CONTROL_CS_STALL;

1408
	if (mode & EMIT_FLUSH) {
1409 1410
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1411
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1412
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1413 1414
	}

1415
	if (mode & EMIT_INVALIDATE) {
1416 1417 1418 1419 1420 1421 1422 1423 1424
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1425 1426 1427 1428
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1429
		if (IS_GEN9(request->i915))
1430
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1431 1432 1433 1434

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1435
	}
1436

M
Mika Kuoppala 已提交
1437 1438 1439 1440 1441 1442 1443 1444
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1445 1446 1447
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1448

1449 1450
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1451

1452 1453 1454
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1455

1456
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1457

1458 1459
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1460

1461
	intel_ring_advance(request, cs);
1462 1463 1464 1465

	return 0;
}

1466 1467 1468 1469 1470
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1471
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1472
{
1473 1474 1475
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1476
}
1477

1478
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1479
{
1480 1481
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1482

1483 1484 1485 1486 1487 1488 1489
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1490
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1491

1492
	gen8_emit_wa_tail(request, cs);
1493
}
1494

1495 1496
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1497
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1498
					u32 *cs)
1499
{
1500 1501 1502
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1503 1504 1505 1506
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1507 1508 1509 1510 1511 1512
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1513
	/* We're thrashing one dword of HWS. */
1514 1515 1516 1517
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1518
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1519

1520
	gen8_emit_wa_tail(request, cs);
1521 1522
}

1523 1524
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1525
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1526 1527 1528
{
	int ret;

1529
	ret = intel_ring_workarounds_emit(req);
1530 1531 1532
	if (ret)
		return ret;

1533 1534 1535 1536 1537 1538 1539 1540
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1541
	return i915_gem_render_state_emit(req);
1542 1543
}

1544 1545
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1546
 * @engine: Engine Command Streamer.
1547
 */
1548
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1549
{
1550
	struct drm_i915_private *dev_priv;
1551

1552 1553 1554 1555 1556 1557 1558
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1559
	dev_priv = engine->i915;
1560

1561 1562
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1563
	}
1564

1565 1566
	if (engine->cleanup)
		engine->cleanup(engine);
1567

1568 1569 1570
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1571
	}
1572 1573

	intel_engine_cleanup_common(engine);
1574

1575
	lrc_destroy_wa_ctx(engine);
1576
	engine->i915 = NULL;
1577 1578
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1579 1580
}

1581
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1582
{
1583 1584
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1585
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1586 1587
}

1588
static void
1589
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1590 1591
{
	/* Default vfuncs which can be overriden by each engine. */
1592
	engine->init_hw = gen8_init_common_ring;
1593
	engine->reset_hw = reset_common_ring;
1594 1595 1596 1597

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1598 1599
	engine->request_alloc = execlists_request_alloc;

1600
	engine->emit_flush = gen8_emit_flush;
1601
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1602
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1603 1604

	engine->set_default_submission = execlists_set_default_submission;
1605

1606 1607
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1608
	engine->emit_bb_start = gen8_emit_bb_start;
1609 1610
}

1611
static inline void
1612
logical_ring_default_irqs(struct intel_engine_cs *engine)
1613
{
1614
	unsigned shift = engine->irq_shift;
1615 1616
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1617 1618
}

1619
static int
1620
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1621
{
1622
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1623
	void *hws;
1624 1625

	/* The HWSP is part of the default context object in LRC mode. */
1626
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1627 1628
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1629 1630

	engine->status_page.page_addr = hws + hws_offset;
1631
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1632
	engine->status_page.vma = vma;
1633 1634

	return 0;
1635 1636
}

1637 1638 1639 1640 1641 1642
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1643 1644
	intel_engine_setup_common(engine);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1669 1670 1671 1672 1673 1674
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1675
	ret = intel_engine_init_common(engine);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1693
int logical_render_ring_init(struct intel_engine_cs *engine)
1694 1695 1696 1697
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1698 1699
	logical_ring_setup(engine);

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1710
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1711
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1712

1713
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1728
	return logical_ring_init(engine);
1729 1730
}

1731
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1732 1733 1734 1735
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1736 1737
}

1738
static u32
1739
make_rpcs(struct drm_i915_private *dev_priv)
1740 1741 1742 1743 1744 1745 1746
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1747
	if (INTEL_GEN(dev_priv) < 9)
1748 1749 1750 1751 1752 1753 1754 1755
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1756
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1757
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1758
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1759 1760 1761 1762
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1763
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1764
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1765
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1766 1767 1768 1769
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1770 1771
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1772
			GEN8_RPCS_EU_MIN_SHIFT;
1773
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1774 1775 1776 1777 1778 1779 1780
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1781
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1782 1783 1784
{
	u32 indirect_ctx_offset;

1785
	switch (INTEL_GEN(engine->i915)) {
1786
	default:
1787
		MISSING_CASE(INTEL_GEN(engine->i915));
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1802
static void execlists_init_reg_state(u32 *regs,
1803 1804 1805
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1806
{
1807 1808
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1843

1844
		if (engine->wa_ctx.vma) {
1845
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1846
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1847

1848
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1849 1850
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1851

1852
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1853
				intel_lr_indirect_ctx_offset(engine) << 6;
1854

1855
			regs[CTX_BB_PER_CTX_PTR + 1] =
1856
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1857
		}
1858
	}
1859 1860 1861 1862

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1863
	/* PDP values well be assigned later if needed */
1864 1865 1866 1867 1868 1869 1870 1871
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1872

1873
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1874 1875 1876 1877
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1878
		ASSIGN_CTX_PML4(ppgtt, regs);
1879 1880
	}

1881 1882 1883 1884
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1885
	}
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1909
	ctx_obj->mm.dirty = true;
1910 1911 1912 1913 1914 1915

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1916

1917
	i915_gem_object_unpin_map(ctx_obj);
1918 1919 1920 1921

	return 0;
}

1922 1923
/**
 * intel_lr_context_size() - return the size of the context for an engine
1924
 * @engine: which engine to find the context size for
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1936
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1937
{
1938 1939
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;
1940

1941
	WARN_ON(INTEL_GEN(dev_priv) < 8);
1942

1943 1944 1945 1946 1947 1948
	switch (engine->class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
		case 9:
1949
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1950 1951
			break;
		case 8:
1952
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1953 1954
			break;
		}
1955
		break;
1956 1957 1958 1959 1960 1961

	default:
		MISSING_CASE(engine->class);
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
1962 1963 1964 1965 1966
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1967 1968
}

1969
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1970
					    struct intel_engine_cs *engine)
1971
{
1972
	struct drm_i915_gem_object *ctx_obj;
1973
	struct intel_context *ce = &ctx->engine[engine->id];
1974
	struct i915_vma *vma;
1975
	uint32_t context_size;
1976
	struct intel_ring *ring;
1977 1978
	int ret;

1979
	WARN_ON(ce->state);
1980

1981 1982
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1983

1984 1985 1986
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1987
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1988
	if (IS_ERR(ctx_obj)) {
1989
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1990
		return PTR_ERR(ctx_obj);
1991 1992
	}

1993
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1994 1995 1996 1997 1998
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1999
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2000 2001
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2002
		goto error_deref_obj;
2003 2004
	}

2005
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2006 2007
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2008
		goto error_ring_free;
2009 2010
	}

2011
	ce->ring = ring;
2012
	ce->state = vma;
2013
	ce->initialised = engine->init_context == NULL;
2014 2015

	return 0;
2016

2017
error_ring_free:
2018
	intel_ring_free(ring);
2019
error_deref_obj:
2020
	i915_gem_object_put(ctx_obj);
2021
	return ret;
2022
}
2023

2024
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2025
{
2026
	struct intel_engine_cs *engine;
2027
	struct i915_gem_context *ctx;
2028
	enum intel_engine_id id;
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2041
		for_each_engine(engine, dev_priv, id) {
2042 2043
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2044

2045 2046
			if (!ce->state)
				continue;
2047

2048 2049 2050 2051
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2052

2053 2054 2055
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2056

C
Chris Wilson 已提交
2057
			ce->state->obj->mm.dirty = true;
2058
			i915_gem_object_unpin_map(ce->state->obj);
2059

2060 2061 2062
			ce->ring->head = ce->ring->tail = 0;
			intel_ring_update_space(ce->ring);
		}
2063 2064
	}
}