intel_lrc.c 66.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212
#define WA_TAIL_DWORDS 2
213
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
214

215
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216
					    struct intel_engine_cs *engine);
217 218 219 220
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
221

222 223
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224
 * @dev_priv: i915 device private
225 226 227
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
228
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 230 231
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
232
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233
{
234 235 236
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
237
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 239
		return 1;

240
	if (INTEL_GEN(dev_priv) >= 9)
241 242
		return 1;

243 244 245
	if (enable_execlists == 0)
		return 0;

246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247
	    USES_PPGTT(dev_priv))
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291 292
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
293
{
294
	struct intel_engine_execlists * const execlists = &engine->execlists;
295 296 297 298
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

299
	if (unlikely(execlists->no_priolist))
300 301 302 303 304
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
305
	parent = &execlists->queue.rb_node;
306 307 308 309 310 311 312 313 314
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
315
			return p;
316 317 318 319
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
320
		p = &execlists->default_priolist;
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
335
			execlists->no_priolist = true;
336 337 338 339 340
			goto find_priolist;
		}
	}

	p->priority = prio;
341
	INIT_LIST_HEAD(&p->requests);
342
	rb_link_node(&p->node, rb, parent);
343
	rb_insert_color(&p->node, &execlists->queue);
344 345

	if (first)
346
		execlists->first = &p->node;
347

348
	return ptr_pack_bits(p, first, 1);
349 350
}

351 352 353 354 355 356 357 358 359
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

static void unwind_incomplete_requests(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *rq, *rn;
360 361
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
362 363 364 365 366 367 368 369 370 371 372 373

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

374 375 376 377 378 379 380 381 382 383 384
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
385 386 387
	}
}

388 389 390
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
391
{
392 393 394 395 396 397
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
398

399 400
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
401 402
}

403 404 405 406 407 408 409 410 411
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

412
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
413
{
414
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
415 416
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
417
	u32 *reg_state = ce->lrc_reg_state;
418

419
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
420

421 422 423 424 425
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
426
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
427
		execlists_update_context_pdps(ppgtt, reg_state);
428 429

	return ce->lrc_desc;
430 431
}

432
static void execlists_submit_ports(struct intel_engine_cs *engine)
433
{
434
	struct execlist_port *port = engine->execlists.port;
435
	u32 __iomem *elsp =
436 437
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
438

439
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
456

457 458 459
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
460 461
}

462
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
463
{
464
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
465
		i915_gem_context_force_single_submission(ctx));
466
}
467

468 469 470 471 472
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
473

474 475
	if (ctx_single_port_submission(prev))
		return false;
476

477
	return true;
478 479
}

480 481 482 483 484 485 486 487 488 489 490
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

491
static void execlists_dequeue(struct intel_engine_cs *engine)
492
{
493
	struct drm_i915_gem_request *last;
494 495
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
496 497
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
498
	struct rb_node *rb;
499 500
	bool submit = false;

501
	last = port_request(port);
502 503 504
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
505
		 * as we resubmit the request. See gen8_emit_breadcrumb()
506 507 508 509
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
530
	 */
531

532
	spin_lock_irq(&engine->timeline->lock);
533 534
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
535
	while (rb) {
536 537 538 539 540 541 542 543 544 545 546 547 548 549
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
550
			 */
551 552 553 554 555 556
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
557
				if (port == last_port) {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
582 583

				GEM_BUG_ON(port_isset(port));
584
			}
585

586 587
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
588

589
			__i915_gem_request_submit(rq);
590
			trace_i915_gem_request_in(rq, port_index(port, execlists));
591 592
			last = rq;
			submit = true;
593
		}
594

595
		rb = rb_next(rb);
596
		rb_erase(&p->node, &execlists->queue);
597 598
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
599
			kmem_cache_free(engine->i915->priorities, p);
600
	}
601
done:
602
	execlists->first = rb;
603
	if (submit)
604
		port_assign(port, last);
605
	spin_unlock_irq(&engine->timeline->lock);
606

607 608
	if (submit)
		execlists_submit_ports(engine);
609 610
}

611 612
static void
execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
613
{
614 615
	struct execlist_port *port = execlists->port;
	unsigned int num_ports = ARRAY_SIZE(execlists->port);
616

617
	while (num_ports-- && port_isset(port)) {
618 619
		struct drm_i915_gem_request *rq = port_request(port);

620
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
621 622
		i915_gem_request_put(rq);

623 624 625
		memset(port, 0, sizeof(*port));
		port++;
	}
626 627
}

628 629
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
630
	struct intel_engine_execlists * const execlists = &engine->execlists;
631 632 633 634 635 636 637
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
638
	execlist_cancel_port_requests(execlists);
639 640 641 642 643 644 645 646 647

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
648
	rb = execlists->first;
649 650 651 652 653 654 655 656 657 658 659 660
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
661
		rb_erase(&p->node, &execlists->queue);
662 663 664 665 666 667 668
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

669

670 671
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
672
	GEM_BUG_ON(port_isset(execlists->port));
673 674 675 676 677 678 679 680 681 682 683 684

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

685
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
686
{
687
	const struct execlist_port *port = engine->execlists.port;
B
Ben Widawsky 已提交
688

689
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
690 691
}

692
/*
693 694 695
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
696
static void intel_lrc_irq_handler(unsigned long data)
697
{
698 699 700
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
701
	struct drm_i915_private *dev_priv = engine->i915;
702

703 704 705 706 707 708 709 710 711
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

712
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
713

714 715 716 717 718
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
719 720 721
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
722
		unsigned int head, tail;
723

724
		/* However GVT emulation depends upon intercepting CSB mmio */
725
		if (unlikely(execlists->csb_use_mmio)) {
726 727
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
728
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
729 730
		}

731 732 733 734 735 736 737 738 739 740 741
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
742
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
743 744 745
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
746
			execlists->csb_head = head;
747 748 749 750 751
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

752
			head = execlists->csb_head;
753 754
			tail = READ_ONCE(buf[write_idx]);
		}
755

756
		while (head != tail) {
757
			struct drm_i915_gem_request *rq;
758
			unsigned int status;
759
			unsigned int count;
760 761 762

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

781
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
782 783 784
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

785
			/* Check the context/desc id for this event matches */
786
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
787

788 789 790
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
791
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
792 793 794 795 796
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
797

798
				execlists_port_complete(execlists, port);
799 800
			} else {
				port_set(port, port_pack(rq, count));
801
			}
802

803 804
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
805
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
806
		}
807

808 809
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
810 811 812
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
813 814
	}

815 816
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
817

818
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
819 820
}

821 822 823 824 825 826 827 828
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
	if (ptr_unmask_bits(p, 1) && execlists_elsp_ready(engine))
829
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
830 831
}

832
static void execlists_submit_request(struct drm_i915_gem_request *request)
833
{
834
	struct intel_engine_cs *engine = request->engine;
835
	unsigned long flags;
836

837 838
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
839

840
	insert_request(engine, &request->priotree, request->priotree.priority);
841

842
	GEM_BUG_ON(!engine->execlists.first);
843 844
	GEM_BUG_ON(list_empty(&request->priotree.link));

845
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
846 847
}

848 849 850
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
851 852 853 854
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
855 856

	if (engine != locked) {
857 858
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
859 860 861 862 863 864 865
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
866
	struct intel_engine_cs *engine;
867 868 869 870
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

871 872
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

873 874 875
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

876 877
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

902 903 904 905 906 907 908
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
909 910
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
911
		}
912

913
		list_safe_reset_next(dep, p, dfs_link);
914 915
	}

916 917 918 919 920
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
921
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
922 923 924 925 926 927 928
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

929 930 931
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

932 933 934 935 936 937 938 939 940 941 942 943
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
944 945 946
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
947
		}
948 949
	}

950
	spin_unlock_irq(&engine->timeline->lock);
951 952 953 954

	/* XXX Do we need to preempt to make room for us and our deps? */
}

955 956 957
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
958
{
959
	struct intel_context *ce = &ctx->engine[engine->id];
960
	unsigned int flags;
961
	void *vaddr;
962
	int ret;
963

964
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
965

966 967
	if (likely(ce->pin_count++))
		goto out;
968
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
969

970 971 972 973 974
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
975
	GEM_BUG_ON(!ce->state);
976

977
	flags = PIN_GLOBAL | PIN_HIGH;
978 979
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
980 981

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
982
	if (ret)
983
		goto err;
984

985
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
986 987
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
988
		goto unpin_vma;
989 990
	}

991
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
992
	if (ret)
993
		goto unpin_map;
994

995
	intel_lr_context_descriptor_update(ctx, engine);
996

997 998
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
999
		i915_ggtt_offset(ce->ring->vma);
1000

C
Chris Wilson 已提交
1001
	ce->state->obj->mm.dirty = true;
1002

1003
	i915_gem_context_get(ctx);
1004 1005
out:
	return ce->ring;
1006

1007
unpin_map:
1008 1009 1010
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1011
err:
1012
	ce->pin_count = 0;
1013
	return ERR_PTR(ret);
1014 1015
}

1016 1017
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1018
{
1019
	struct intel_context *ce = &ctx->engine[engine->id];
1020

1021
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1022
	GEM_BUG_ON(ce->pin_count == 0);
1023

1024
	if (--ce->pin_count)
1025
		return;
1026

1027
	intel_ring_unpin(ce->ring);
1028

1029 1030
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1031

1032
	i915_gem_context_put(ctx);
1033 1034
}

1035
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1036 1037 1038
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1039
	u32 *cs;
1040 1041
	int ret;

1042 1043
	GEM_BUG_ON(!ce->pin_count);

1044 1045 1046 1047 1048 1049
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1050
	cs = intel_ring_begin(request, 0);
1051 1052
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1053 1054 1055 1056

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1057
			return ret;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1089 1090
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1091
{
1092 1093 1094 1095 1096 1097 1098 1099 1100
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1101 1102 1103 1104
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1105 1106 1107 1108 1109 1110 1111

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1112 1113
}

1114 1115 1116 1117 1118 1119
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1120
 *
1121 1122
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1123
 *
1124 1125 1126 1127
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1128
 */
1129
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1130
{
1131
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1132
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1133

1134
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1135 1136
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1137

1138 1139
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1140 1141 1142 1143 1144 1145 1146
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1147

1148
	/* Pad to end of cacheline */
1149 1150
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1151 1152 1153 1154 1155 1156 1157

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1158
	return batch;
1159 1160
}

1161 1162 1163
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1164
 *
1165
 *  The number of DWORDS written are returned using this field.
1166 1167 1168 1169
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1170
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1171
{
1172
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1173 1174
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1175

1176
	return batch;
1177 1178
}

1179
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1180
{
1181
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1182
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1183

1184
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1185 1186 1187 1188 1189
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1190

1191 1192
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1193
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1194 1195 1196 1197 1198 1199 1200
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1201
	}
1202

1203
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1218 1219 1220 1221 1222 1223
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1224 1225
	}

1226
	/* Pad to end of cacheline */
1227 1228
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1229

1230
	return batch;
1231 1232
}

1233 1234 1235
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1236
{
1237 1238 1239
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1240

1241
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1242 1243
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1244

1245
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1246 1247 1248
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1249 1250
	}

1251 1252 1253 1254 1255
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1256
	return 0;
1257 1258 1259 1260

err:
	i915_gem_object_put(obj);
	return err;
1261 1262
}

1263
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1264
{
1265
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1266 1267
}

1268 1269
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1270
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1271
{
1272
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1273 1274 1275
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1276
	struct page *page;
1277 1278
	void *batch, *batch_ptr;
	unsigned int i;
1279
	int ret;
1280

1281 1282
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1283

1284
	switch (INTEL_GEN(engine->i915)) {
1285 1286
	case 10:
		return 0;
1287 1288
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1289
		wa_bb_fn[1] = NULL;
1290 1291 1292 1293 1294 1295 1296
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1297
		return 0;
1298
	}
1299

1300
	ret = lrc_setup_wa_ctx(engine);
1301 1302 1303 1304 1305
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1306
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1307
	batch = batch_ptr = kmap_atomic(page);
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1320 1321
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1322
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1323 1324
	}

1325 1326
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1327 1328
	kunmap_atomic(batch);
	if (ret)
1329
		lrc_destroy_wa_ctx(engine);
1330 1331 1332 1333

	return ret;
}

1334 1335 1336 1337 1338 1339 1340 1341
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1342
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1343
{
1344
	struct drm_i915_private *dev_priv = engine->i915;
1345
	struct intel_engine_execlists * const execlists = &engine->execlists;
1346 1347 1348 1349 1350
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1351

1352
	intel_engine_reset_breadcrumbs(engine);
1353
	intel_engine_init_hangcheck(engine);
1354

1355 1356
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1357
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1358 1359 1360
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1361

1362
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1377
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1378
	execlists->csb_head = -1;
1379

1380
	/* After a GPU reset, we may have requests to replay */
1381 1382
	if (!i915_modparams.enable_guc_submission && execlists->first)
		tasklet_schedule(&execlists->irq_tasklet);
1383

1384
	return 0;
1385 1386
}

1387
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1388
{
1389
	struct drm_i915_private *dev_priv = engine->i915;
1390 1391
	int ret;

1392
	ret = gen8_init_common_ring(engine);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1406
	return init_workarounds_ring(engine);
1407 1408
}

1409
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1410 1411 1412
{
	int ret;

1413
	ret = gen8_init_common_ring(engine);
1414 1415 1416
	if (ret)
		return ret;

1417
	return init_workarounds_ring(engine);
1418 1419
}

1420 1421 1422
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1423
	struct intel_engine_execlists * const execlists = &engine->execlists;
1424
	struct intel_context *ce;
1425
	unsigned long flags;
1426

1427 1428
	spin_lock_irqsave(&engine->timeline->lock, flags);

1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1438
	execlist_cancel_port_requests(execlists);
1439

1440
	/* Push back any incomplete requests for replay after the reset. */
1441
	unwind_incomplete_requests(engine);
1442

1443
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1455
	if (!request || request->fence.error != -EIO)
1456
		return;
1457

1458 1459 1460 1461 1462 1463 1464
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1465
	ce = &request->ctx->engine[engine->id];
1466 1467 1468
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1469
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1470 1471
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1472
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1473

1474 1475 1476
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1477
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1478
	unwind_wa_tail(request);
1479 1480
}

1481 1482 1483
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1484
	struct intel_engine_cs *engine = req->engine;
1485
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1486 1487
	u32 *cs;
	int i;
1488

1489 1490 1491
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1492

1493
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1494
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1495 1496
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1497 1498 1499 1500
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1501 1502
	}

1503 1504
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1505 1506 1507 1508

	return 0;
}

1509
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1510
			      u64 offset, u32 len,
1511
			      const unsigned int flags)
1512
{
1513
	u32 *cs;
1514 1515
	int ret;

1516 1517 1518 1519
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1520 1521
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1522
	if (req->ctx->ppgtt &&
1523 1524 1525 1526 1527 1528
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1529

1530
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1531 1532
	}

1533 1534 1535
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1536 1537

	/* FIXME(BDW): Address space and security selectors. */
1538 1539 1540
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1541 1542 1543 1544
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1545 1546 1547 1548

	return 0;
}

1549
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1550
{
1551
	struct drm_i915_private *dev_priv = engine->i915;
1552 1553 1554
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1555 1556
}

1557
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1558
{
1559
	struct drm_i915_private *dev_priv = engine->i915;
1560
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1561 1562
}

1563
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1564
{
1565
	u32 cmd, *cs;
1566

1567 1568 1569
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1570 1571 1572

	cmd = MI_FLUSH_DW + 1;

1573 1574 1575 1576 1577 1578 1579
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1580
	if (mode & EMIT_INVALIDATE) {
1581
		cmd |= MI_INVALIDATE_TLB;
1582
		if (request->engine->id == VCS)
1583
			cmd |= MI_INVALIDATE_BSD;
1584 1585
	}

1586 1587 1588 1589 1590
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1591 1592 1593 1594

	return 0;
}

1595
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1596
				  u32 mode)
1597
{
1598
	struct intel_engine_cs *engine = request->engine;
1599 1600
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1601
	bool vf_flush_wa = false, dc_flush_wa = false;
1602
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1603
	int len;
1604 1605 1606

	flags |= PIPE_CONTROL_CS_STALL;

1607
	if (mode & EMIT_FLUSH) {
1608 1609
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1610
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1611
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1612 1613
	}

1614
	if (mode & EMIT_INVALIDATE) {
1615 1616 1617 1618 1619 1620 1621 1622 1623
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1624 1625 1626 1627
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1628
		if (IS_GEN9(request->i915))
1629
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1630 1631 1632 1633

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1634
	}
1635

M
Mika Kuoppala 已提交
1636 1637 1638 1639 1640 1641 1642 1643
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1644 1645 1646
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1647

1648 1649
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1650

1651 1652 1653
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1654

1655
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1656

1657 1658
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1659

1660
	intel_ring_advance(request, cs);
1661 1662 1663 1664

	return 0;
}

1665 1666 1667 1668 1669
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1670
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1671
{
1672 1673 1674
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1675
}
1676

1677
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1678
{
1679 1680
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1681

1682 1683 1684 1685 1686 1687 1688
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1689
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1690

1691
	gen8_emit_wa_tail(request, cs);
1692
}
1693

1694 1695
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1696
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1697
					u32 *cs)
1698
{
1699 1700 1701
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1702 1703 1704 1705
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1706 1707 1708 1709 1710 1711
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1712
	/* We're thrashing one dword of HWS. */
1713 1714 1715 1716
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1717
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1718

1719
	gen8_emit_wa_tail(request, cs);
1720 1721
}

1722 1723
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1724
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1725 1726 1727
{
	int ret;

1728
	ret = intel_ring_workarounds_emit(req);
1729 1730 1731
	if (ret)
		return ret;

1732 1733 1734 1735 1736 1737 1738 1739
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1740
	return i915_gem_render_state_emit(req);
1741 1742
}

1743 1744
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1745
 * @engine: Engine Command Streamer.
1746
 */
1747
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1748
{
1749
	struct drm_i915_private *dev_priv;
1750

1751 1752 1753 1754
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1755 1756
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1757

1758
	dev_priv = engine->i915;
1759

1760 1761
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1762
	}
1763

1764 1765
	if (engine->cleanup)
		engine->cleanup(engine);
1766

1767
	intel_engine_cleanup_common(engine);
1768

1769
	lrc_destroy_wa_ctx(engine);
1770
	engine->i915 = NULL;
1771 1772
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1773 1774
}

1775
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1776
{
1777
	engine->submit_request = execlists_submit_request;
1778
	engine->cancel_requests = execlists_cancel_requests;
1779
	engine->schedule = execlists_schedule;
1780
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1781 1782
}

1783
static void
1784
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1785 1786
{
	/* Default vfuncs which can be overriden by each engine. */
1787
	engine->init_hw = gen8_init_common_ring;
1788
	engine->reset_hw = reset_common_ring;
1789 1790 1791 1792

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1793 1794
	engine->request_alloc = execlists_request_alloc;

1795
	engine->emit_flush = gen8_emit_flush;
1796
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1797
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1798 1799

	engine->set_default_submission = execlists_set_default_submission;
1800

1801 1802
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1803
	engine->emit_bb_start = gen8_emit_bb_start;
1804 1805
}

1806
static inline void
1807
logical_ring_default_irqs(struct intel_engine_cs *engine)
1808
{
1809
	unsigned shift = engine->irq_shift;
1810 1811
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1812 1813
}

1814 1815 1816 1817 1818 1819
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1820 1821
	intel_engine_setup_common(engine);

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1837
	engine->execlists.fw_domains = fw_domains;
1838

1839
	tasklet_init(&engine->execlists.irq_tasklet,
1840 1841 1842 1843 1844 1845
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1846
static int logical_ring_init(struct intel_engine_cs *engine)
1847 1848 1849
{
	int ret;

1850
	ret = intel_engine_init_common(engine);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1861
int logical_render_ring_init(struct intel_engine_cs *engine)
1862 1863 1864 1865
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1866 1867
	logical_ring_setup(engine);

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1878
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1879
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1880

1881
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1896
	return logical_ring_init(engine);
1897 1898
}

1899
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1900 1901 1902 1903
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1904 1905
}

1906
static u32
1907
make_rpcs(struct drm_i915_private *dev_priv)
1908 1909 1910 1911 1912 1913 1914
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1915
	if (INTEL_GEN(dev_priv) < 9)
1916 1917 1918 1919 1920 1921 1922 1923
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1924
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1925
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1926
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1927 1928 1929 1930
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1931
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1932
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1933
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1934 1935 1936 1937
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1938 1939
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1940
			GEN8_RPCS_EU_MIN_SHIFT;
1941
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1942 1943 1944 1945 1946 1947 1948
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1949
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1950 1951 1952
{
	u32 indirect_ctx_offset;

1953
	switch (INTEL_GEN(engine->i915)) {
1954
	default:
1955
		MISSING_CASE(INTEL_GEN(engine->i915));
1956
		/* fall through */
1957 1958 1959 1960
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1974
static void execlists_init_reg_state(u32 *regs,
1975 1976 1977
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1978
{
1979 1980
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2011 2012
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2013 2014 2015
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2016
		if (wa_ctx->indirect_ctx.size) {
2017
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2018

2019
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2020 2021
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2022

2023
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2024
				intel_lr_indirect_ctx_offset(engine) << 6;
2025 2026 2027 2028 2029
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2030

2031
			regs[CTX_BB_PER_CTX_PTR + 1] =
2032
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2033
		}
2034
	}
2035 2036 2037 2038

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2039
	/* PDP values well be assigned later if needed */
2040 2041 2042 2043 2044 2045 2046 2047
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2048

2049
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2050 2051 2052 2053
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2054
		ASSIGN_CTX_PML4(ppgtt, regs);
2055 2056
	}

2057 2058 2059 2060
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2061 2062

		i915_oa_init_reg_state(engine, ctx, regs);
2063
	}
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2087
	ctx_obj->mm.dirty = true;
2088 2089 2090 2091 2092 2093

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2094

2095
	i915_gem_object_unpin_map(ctx_obj);
2096 2097 2098 2099

	return 0;
}

2100
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2101
					    struct intel_engine_cs *engine)
2102
{
2103
	struct drm_i915_gem_object *ctx_obj;
2104
	struct intel_context *ce = &ctx->engine[engine->id];
2105
	struct i915_vma *vma;
2106
	uint32_t context_size;
2107
	struct intel_ring *ring;
2108 2109
	int ret;

2110
	WARN_ON(ce->state);
2111

2112
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2113

2114 2115 2116 2117 2118
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2119

2120
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2121
	if (IS_ERR(ctx_obj)) {
2122
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2123
		return PTR_ERR(ctx_obj);
2124 2125
	}

2126
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2127 2128 2129 2130 2131
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2132
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2133 2134
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2135
		goto error_deref_obj;
2136 2137
	}

2138
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2139 2140
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2141
		goto error_ring_free;
2142 2143
	}

2144
	ce->ring = ring;
2145
	ce->state = vma;
2146
	ce->initialised |= engine->init_context == NULL;
2147 2148

	return 0;
2149

2150
error_ring_free:
2151
	intel_ring_free(ring);
2152
error_deref_obj:
2153
	i915_gem_object_put(ctx_obj);
2154
	return ret;
2155
}
2156

2157
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2158
{
2159
	struct intel_engine_cs *engine;
2160
	struct i915_gem_context *ctx;
2161
	enum intel_engine_id id;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2173
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2174
		for_each_engine(engine, dev_priv, id) {
2175 2176
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2177

2178 2179
			if (!ce->state)
				continue;
2180

2181 2182 2183 2184
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2185

2186 2187 2188
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2189

C
Chris Wilson 已提交
2190
			ce->state->obj->mm.dirty = true;
2191
			i915_gem_object_unpin_map(ce->state->obj);
2192

2193
			intel_ring_reset(ce->ring, 0);
2194
		}
2195 2196
	}
}