intel_pstate.c 66.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88 89 90 91
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194
/**
 * struct perf_limits - Store user and policy limits
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 *
195
 * Storage for policy defined limits.
196 197 198 199
 */
struct perf_limits {
	int32_t max_perf;
	int32_t min_perf;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
};

/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
219 220
};

221 222 223
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
224
 * @policy:		CPUFreq policy value
225
 * @update_util:	CPUFreq utility callback information
226
 * @update_util_set:	CPUFreq utility callback is set
227 228
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
229 230 231 232 233 234 235 236 237 238
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
239
 * @perf_limits:	Capacity limits unique to this CPU
240 241
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
242 243 244
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
245
 * @epp_policy:		Last saved policy used to set EPP/EPB
246 247 248 249
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
250 251 252
 *
 * This structure stores per CPU instance data for all CPUs.
 */
253 254 255
struct cpudata {
	int cpu;

256
	unsigned int policy;
257
	struct update_util_data update_util;
258
	bool   update_util_set;
259 260

	struct pstate_data pstate;
261
	struct vid_data vid;
262 263
	struct _pid pid;

264
	u64	last_update;
265
	u64	last_sample_time;
266 267
	u64	prev_aperf;
	u64	prev_mperf;
268
	u64	prev_tsc;
269
	u64	prev_cummulative_iowait;
270
	struct sample sample;
271
	struct perf_limits perf_limits;
272 273 274 275
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
276
	unsigned int iowait_boost;
277
	s16 epp_powersave;
278
	s16 epp_policy;
279 280
	s16 epp_default;
	s16 epp_saved;
281 282 283
};

static struct cpudata **all_cpu_data;
284 285

/**
286
 * struct pstate_adjust_policy - Stores static PID configuration data
287 288 289 290 291 292 293 294 295 296
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
297 298
struct pstate_adjust_policy {
	int sample_rate_ms;
299
	s64 sample_rate_ns;
300 301 302 303 304 305 306
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

307 308 309 310 311 312 313 314 315 316 317 318 319 320
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
321 322
struct pstate_funcs {
	int (*get_max)(void);
323
	int (*get_max_physical)(void);
324 325
	int (*get_min)(void);
	int (*get_turbo)(void);
326
	int (*get_scaling)(void);
327
	u64 (*get_val)(struct cpudata*, int pstate);
328
	void (*get_vid)(struct cpudata *);
329
	int32_t (*get_target_pstate)(struct cpudata *);
330 331
};

332 333 334 335 336
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
337 338 339
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
340 341
};

342
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
343
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
344

345 346 347
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
348
static bool per_cpu_limits __read_mostly;
349

350 351
static bool driver_registered __read_mostly;

352 353 354
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
355

356
static struct global_params global;
357

358
static DEFINE_MUTEX(intel_pstate_driver_lock);
359 360
static DEFINE_MUTEX(intel_pstate_limits_lock);

361
#ifdef CONFIG_ACPI
362 363 364 365 366 367 368 369 370 371

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

423 424 425 426 427 428
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

429 430
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
431
		return;
432
	}
433

434
	if (!intel_pstate_get_ppc_enable_status())
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
477
	 * correct max turbo frequency based on the turbo state.
478 479
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
480
	if (!global.turbo_disabled)
481 482 483
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
484
	pr_debug("_PPC limits will be enforced\n");
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
504
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
505 506 507
{
}

508
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
509 510 511 512
{
}
#endif

513
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
514
			     int deadband, int integral) {
515 516
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
517
	pid->integral  = int_tofp(integral);
518
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
519 520 521 522
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
523
	pid->p_gain = div_fp(percent, 100);
524 525 526 527
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
528
	pid->i_gain = div_fp(percent, 100);
529 530 531 532
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
533
	pid->d_gain = div_fp(percent, 100);
534 535
}

536
static signed int pid_calc(struct _pid *pid, int32_t busy)
537
{
538
	signed int result;
539 540 541
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

542
	fp_error = pid->setpoint - busy;
543

544
	if (abs(fp_error) <= pid->deadband)
545 546 547 548 549 550
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

551 552 553 554 555 556 557 558
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
559 560 561 562 563 564
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

565 566
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
567 568

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
569
	result = result + (1 << (FRAC_BITS-1));
570 571 572 573 574
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
575 576 577
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
578

579
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
580 581 582 583 584
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
585

586 587 588 589 590 591
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

592 593 594 595 596 597 598
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
599
	global.turbo_disabled =
600 601 602 603
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

604 605 606 607 608 609 610 611
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

631 632 633 634 635 636 637 638 639 640 641
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
642
		epp = (hwp_req_data >> 24) & 0xff;
643
	} else {
644 645
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
646
	}
647 648 649 650

	return epp;
}

651
static int intel_pstate_set_epb(int cpu, s16 pref)
652 653
{
	u64 epb;
654
	int ret;
655 656

	if (!static_cpu_has(X86_FEATURE_EPB))
657
		return -ENXIO;
658

659 660 661
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
662 663 664

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
665 666

	return 0;
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

829
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
830
{
831
	int min, hw_min, max, hw_max, cpu;
832 833
	u64 value, cap;

834
	for_each_cpu(cpu, policy->cpus) {
835
		struct cpudata *cpu_data = all_cpu_data[cpu];
836
		struct perf_limits *perf_limits = &cpu_data->perf_limits;
837
		s16 epp;
838

839 840
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
841
		if (global.no_turbo)
842 843 844
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
845

846 847 848 849 850
		max = fp_ext_toint(hw_max * perf_limits->max_perf);
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
			min = fp_ext_toint(hw_max * perf_limits->min_perf);
851

D
Dirk Brandewie 已提交
852
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
853

D
Dirk Brandewie 已提交
854 855 856 857 858
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
859 860 861 862 863 864

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

865 866 867 868 869 870
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

871 872
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
873
			cpu_data->epp_powersave = epp;
874
			/* If EPP read was failed, then don't try to write */
875
			if (epp < 0)
876 877 878 879 880 881
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
882
			if (cpu_data->epp_powersave < 0)
883 884 885 886 887 888 889 890 891 892 893 894 895
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

896
			epp = cpu_data->epp_powersave;
897
		}
898
update_epp:
899 900 901 902 903 904 905
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
906 907
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
908
}
D
Dirk Brandewie 已提交
909

910 911 912 913 914 915 916 917 918 919 920 921
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

922 923 924 925 926
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

927 928
	mutex_lock(&intel_pstate_limits_lock);

929
	all_cpu_data[policy->cpu]->epp_policy = 0;
930
	intel_pstate_hwp_set(policy);
931 932 933

	mutex_unlock(&intel_pstate_limits_lock);

934
	return 0;
935 936
}

937
static void intel_pstate_update_policies(void)
938
{
939 940 941 942
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
943 944
}

945 946 947 948
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
949
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
950 951 952
	intel_pstate_reset_all_pid();
	return 0;
}
953

954 955 956 957 958
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
959
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
960

961 962
static struct dentry *debugfs_parent;

963 964 965
struct pid_param {
	char *name;
	void *value;
966
	struct dentry *dentry;
967 968 969
};

static struct pid_param pid_files[] = {
970 971 972 973 974 975 976
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
977 978
};

979
static void intel_pstate_debug_expose_params(void)
980
{
981
	int i;
982 983 984 985

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
986 987 988 989 990 991 992 993 994

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
995 996 997
	}
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1008
	}
1009 1010 1011

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1012 1013 1014 1015 1016 1017 1018 1019 1020
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1021
		return sprintf(buf, "%u\n", global.object);		\
1022 1023
	}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1052 1053 1054 1055 1056 1057 1058
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1059 1060 1061 1062 1063 1064 1065
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1066 1067 1068 1069
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1070
	turbo_fp = div_fp(no_turbo, total);
1071
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1072 1073 1074

	mutex_unlock(&intel_pstate_driver_lock);

1075 1076 1077
	return sprintf(buf, "%u\n", turbo_pct);
}

1078 1079 1080 1081 1082 1083
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1084 1085 1086 1087 1088 1089 1090
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1091 1092
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1093 1094 1095

	mutex_unlock(&intel_pstate_driver_lock);

1096 1097 1098
	return sprintf(buf, "%u\n", total);
}

1099 1100 1101 1102 1103
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1104 1105 1106 1107 1108 1109 1110
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1111
	update_turbo_state();
1112 1113
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1114
	else
1115
		ret = sprintf(buf, "%u\n", global.no_turbo);
1116

1117 1118
	mutex_unlock(&intel_pstate_driver_lock);

1119 1120 1121
	return ret;
}

1122
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1123
			      const char *buf, size_t count)
1124 1125 1126
{
	unsigned int input;
	int ret;
1127

1128 1129 1130
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1131

1132 1133 1134 1135 1136 1137 1138
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1139 1140
	mutex_lock(&intel_pstate_limits_lock);

1141
	update_turbo_state();
1142
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1143
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1144
		mutex_unlock(&intel_pstate_limits_lock);
1145
		mutex_unlock(&intel_pstate_driver_lock);
1146
		return -EPERM;
1147
	}
D
Dirk Brandewie 已提交
1148

1149
	global.no_turbo = clamp_t(int, input, 0, 1);
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1160 1161
	mutex_unlock(&intel_pstate_limits_lock);

1162 1163
	intel_pstate_update_policies();

1164 1165
	mutex_unlock(&intel_pstate_driver_lock);

1166 1167 1168 1169
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1170
				  const char *buf, size_t count)
1171 1172 1173
{
	unsigned int input;
	int ret;
1174

1175 1176 1177 1178
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1179 1180 1181 1182 1183 1184 1185
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1186 1187
	mutex_lock(&intel_pstate_limits_lock);

1188
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1189

1190 1191
	mutex_unlock(&intel_pstate_limits_lock);

1192 1193
	intel_pstate_update_policies();

1194 1195
	mutex_unlock(&intel_pstate_driver_lock);

1196 1197 1198 1199
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1200
				  const char *buf, size_t count)
1201 1202 1203
{
	unsigned int input;
	int ret;
1204

1205 1206 1207
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1208

1209 1210 1211 1212 1213 1214 1215
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1216 1217
	mutex_lock(&intel_pstate_limits_lock);

1218 1219
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1220

1221 1222
	mutex_unlock(&intel_pstate_limits_lock);

1223 1224
	intel_pstate_update_policies();

1225 1226
	mutex_unlock(&intel_pstate_driver_lock);

1227 1228 1229 1230 1231 1232
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1233
define_one_global_rw(status);
1234 1235 1236
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1237
define_one_global_ro(turbo_pct);
1238
define_one_global_ro(num_pstates);
1239 1240

static struct attribute *intel_pstate_attributes[] = {
1241
	&status.attr,
1242
	&no_turbo.attr,
1243
	&turbo_pct.attr,
1244
	&num_pstates.attr,
1245 1246 1247 1248 1249 1250 1251
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1252
static void __init intel_pstate_sysfs_expose_params(void)
1253
{
1254
	struct kobject *intel_pstate_kobject;
1255 1256 1257 1258
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1259 1260 1261
	if (WARN_ON(!intel_pstate_kobject))
		return;

1262
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1279 1280
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1281

1282
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1283
{
1284
	/* First disable HWP notification interrupt as we don't process them */
1285 1286
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1287

1288
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1289
	cpudata->epp_policy = 0;
1290 1291
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1313
static int atom_get_min_pstate(void)
1314 1315
{
	u64 value;
1316

1317
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1318
	return (value >> 8) & 0x7F;
1319 1320
}

1321
static int atom_get_max_pstate(void)
1322 1323
{
	u64 value;
1324

1325
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1326
	return (value >> 16) & 0x7F;
1327
}
1328

1329
static int atom_get_turbo_pstate(void)
1330 1331
{
	u64 value;
1332

1333
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1334
	return value & 0x7F;
1335 1336
}

1337
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1338 1339 1340 1341 1342
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1343
	val = (u64)pstate << 8;
1344
	if (global.no_turbo && !global.turbo_disabled)
1345 1346 1347 1348 1349 1350 1351
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1352
	vid = ceiling_fp(vid_fp);
1353

1354 1355 1356
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1357
	return val | vid;
1358 1359
}

1360
static int silvermont_get_scaling(void)
1361 1362 1363
{
	u64 value;
	int i;
1364 1365 1366
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1367 1368

	rdmsrl(MSR_FSB_FREQ, value);
1369 1370
	i = value & 0x7;
	WARN_ON(i > 4);
1371

1372 1373
	return silvermont_freq_table[i];
}
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1389 1390
}

1391
static void atom_get_vid(struct cpudata *cpudata)
1392 1393 1394
{
	u64 value;

1395
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1396 1397
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1398 1399 1400 1401
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1402

1403
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1404
	cpudata->vid.turbo = value & 0x7f;
1405 1406
}

1407
static int core_get_min_pstate(void)
1408 1409
{
	u64 value;
1410

1411
	rdmsrl(MSR_PLATFORM_INFO, value);
1412 1413 1414
	return (value >> 40) & 0xFF;
}

1415
static int core_get_max_pstate_physical(void)
1416 1417
{
	u64 value;
1418

1419
	rdmsrl(MSR_PLATFORM_INFO, value);
1420 1421 1422
	return (value >> 8) & 0xFF;
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1456
static int core_get_max_pstate(void)
1457
{
1458 1459 1460
	u64 tar;
	u64 plat_info;
	int max_pstate;
1461
	int tdp_ratio;
1462 1463 1464 1465 1466
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1467 1468 1469 1470 1471 1472 1473 1474 1475
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1476 1477
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1478 1479
		int tar_levels;

1480
		/* Do some sanity checking for safety */
1481 1482 1483 1484
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1485 1486
		}
	}
1487

1488
	return max_pstate;
1489 1490
}

1491
static int core_get_turbo_pstate(void)
1492 1493 1494
{
	u64 value;
	int nont, ret;
1495

1496
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1497
	nont = core_get_max_pstate();
1498
	ret = (value) & 255;
1499 1500 1501 1502 1503
	if (ret <= nont)
		ret = nont;
	return ret;
}

1504 1505 1506 1507 1508
static inline int core_get_scaling(void)
{
	return 100000;
}

1509
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1510 1511 1512
{
	u64 val;

1513
	val = (u64)pstate << 8;
1514
	if (global.no_turbo && !global.turbo_disabled)
1515 1516
		val |= (u64)1 << 32;

1517
	return val;
1518 1519
}

1520 1521 1522 1523 1524
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1525
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1526 1527 1528 1529 1530 1531 1532
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1544
		.get_max_physical = core_get_max_pstate_physical,
1545 1546
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1547
		.get_scaling = core_get_scaling,
1548
		.get_val = core_get_val,
1549
		.get_target_pstate = get_target_pstate_use_performance,
1550 1551 1552
	},
};

1553
static const struct cpu_defaults silvermont_params = {
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1567
		.get_val = atom_get_val,
1568 1569
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1570
		.get_target_pstate = get_target_pstate_use_cpu_load,
1571 1572 1573
	},
};

1574
static const struct cpu_defaults airmont_params = {
1575 1576 1577
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1578
		.setpoint = 60,
1579 1580 1581 1582 1583
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1584 1585 1586 1587
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1588
		.get_val = atom_get_val,
1589
		.get_scaling = airmont_get_scaling,
1590
		.get_vid = atom_get_vid,
1591
		.get_target_pstate = get_target_pstate_use_cpu_load,
1592 1593 1594
	},
};

1595
static const struct cpu_defaults knl_params = {
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1606
		.get_max_physical = core_get_max_pstate_physical,
1607 1608
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1609
		.get_scaling = core_get_scaling,
1610
		.get_val = core_get_val,
1611
		.get_target_pstate = get_target_pstate_use_performance,
1612 1613 1614
	},
};

1615
static const struct cpu_defaults bxt_params = {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1635 1636 1637
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1638
	int max_perf_adj;
1639
	int min_perf;
1640
	struct perf_limits *perf_limits = &cpu->perf_limits;
1641

1642
	if (global.no_turbo || global.turbo_disabled)
1643 1644
		max_perf = cpu->pstate.max_pstate;

1645 1646 1647 1648 1649
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1650
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1651 1652
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1653

1654
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1655
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1656 1657
}

1658
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1659
{
1660 1661
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1662 1663 1664 1665 1666 1667 1668
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1669 1670
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1685 1686
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1687 1688
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1689
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1690
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1691
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1692 1693
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1694

1695 1696
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1697 1698

	intel_pstate_set_min_pstate(cpu);
1699 1700
}

1701
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1702
{
1703
	struct sample *sample = &cpu->sample;
1704

1705
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1706 1707
}

1708
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1709 1710
{
	u64 aperf, mperf;
1711
	unsigned long flags;
1712
	u64 tsc;
1713

1714
	local_irq_save(flags);
1715 1716
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1717
	tsc = rdtsc();
1718
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1719
		local_irq_restore(flags);
1720
		return false;
1721
	}
1722
	local_irq_restore(flags);
1723

1724
	cpu->last_sample_time = cpu->sample.time;
1725
	cpu->sample.time = time;
1726 1727
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1728
	cpu->sample.tsc =  tsc;
1729 1730
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1731
	cpu->sample.tsc -= cpu->prev_tsc;
1732

1733 1734
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1735
	cpu->prev_tsc = tsc;
1736 1737 1738 1739 1740 1741 1742 1743
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1744 1745
}

1746 1747
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1748 1749
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1750 1751
}

1752 1753
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1754 1755
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1756 1757
}

1758 1759 1760
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1761
	int32_t busy_frac, boost;
1762
	int target, avg_pstate;
1763

1764
	busy_frac = div_fp(sample->mperf, sample->tsc);
1765

1766 1767
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1768

1769 1770
	if (busy_frac < boost)
		busy_frac = boost;
1771

1772
	sample->busy_scaled = busy_frac * 100;
1773

1774
	target = global.no_turbo || global.turbo_disabled ?
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1793 1794
}

1795
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1796
{
1797
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1798
	u64 duration_ns;
1799

1800
	/*
1801 1802 1803 1804 1805
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1806
	 */
1807 1808
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1809
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1810
			       div_fp(100 * max_pstate, current_pstate));
1811

1812
	/*
1813 1814 1815
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1816
	 * enough period of time to adjust our performance metric.
1817
	 */
1818
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1819
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1820
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1821
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1822 1823 1824
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1825
			perf_scaled = 0;
1826 1827
	}

1828 1829
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1830 1831
}

1832
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1833 1834 1835 1836 1837
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1838 1839 1840 1841 1842
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1843 1844 1845
	if (pstate == cpu->pstate.current_pstate)
		return;

1846
	cpu->pstate.current_pstate = pstate;
1847 1848 1849
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1850 1851
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1852
	int from, target_pstate;
1853 1854 1855
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1856

1857 1858
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1859

1860 1861
	update_turbo_state();

1862 1863
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1864
	intel_pstate_update_pstate(cpu, target_pstate);
1865 1866

	sample = &cpu->sample;
1867
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1868
		fp_toint(sample->busy_scaled),
1869 1870 1871 1872 1873
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1874 1875
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1876 1877
}

1878
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1879
				     unsigned int flags)
1880
{
1881
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1882 1883
	u64 delta_ns;

1884
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1895

1896
	delta_ns = time - cpu->sample.time;
1897
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1898 1899
		bool sample_taken = intel_pstate_sample(cpu, time);

1900
		if (sample_taken) {
1901
			intel_pstate_calc_avg_perf(cpu);
1902 1903 1904
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1905
	}
1906 1907 1908
}

#define ICPU(model, policy) \
1909 1910
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1911 1912

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1930
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1931
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1932 1933 1934 1935
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1936
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1937
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1938 1939
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1940 1941 1942
	{}
};

1943 1944 1945 1946 1947
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1948 1949 1950 1951
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1952 1953 1954
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1955
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1956 1957 1958 1959 1960
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1961 1962 1963
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1964
	}
1965 1966 1967 1968

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1969

1970
	if (hwp_active) {
1971 1972 1973 1974 1975 1976
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1977
		intel_pstate_hwp_enable(cpu);
1978 1979 1980
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1981

1982
	intel_pstate_get_cpu_pstates(cpu);
1983

1984 1985
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1986
	pr_debug("controlling: cpu %d\n", cpunum);
1987 1988 1989 1990 1991 1992

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1993
	struct cpudata *cpu = all_cpu_data[cpu_num];
1994

1995
	return cpu ? get_avg_frequency(cpu) : 0;
1996 1997
}

1998
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1999
{
2000 2001
	struct cpudata *cpu = all_cpu_data[cpu_num];

2002 2003 2004
	if (cpu->update_util_set)
		return;

2005 2006
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2007 2008
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2009
	cpu->update_util_set = true;
2010 2011 2012 2013
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2014 2015 2016 2017 2018
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2019
	cpufreq_remove_update_util_hook(cpu);
2020
	cpu_data->update_util_set = false;
2021 2022 2023
	synchronize_sched();
}

2024 2025 2026 2027 2028 2029
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2030
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2031
					    struct cpudata *cpu)
2032
{
2033
	struct perf_limits *limits = &cpu->perf_limits;
2034
	int max_freq = intel_pstate_get_max_freq(cpu);
2035
	int32_t max_policy_perf, min_policy_perf;
2036

2037
	max_policy_perf = div_ext_fp(policy->max, max_freq);
2038
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2039
	if (policy->max == policy->min) {
2040
		min_policy_perf = max_policy_perf;
2041
	} else {
2042
		min_policy_perf = div_ext_fp(policy->min, max_freq);
2043 2044
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2045
	}
2046

2047
	/* Normalize user input to [min_perf, max_perf] */
2048 2049 2050 2051 2052 2053 2054 2055 2056
	if (per_cpu_limits) {
		limits->min_perf = min_policy_perf;
		limits->max_perf = max_policy_perf;
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
2057
		if (max_freq != cpu->pstate.turbo_freq) {
2058 2059 2060 2061 2062 2063 2064 2065
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2066

2067 2068 2069 2070 2071 2072 2073 2074
		limits->min_perf = max(min_policy_perf, global_min);
		limits->min_perf = min(limits->min_perf, max_policy_perf);
		limits->max_perf = min(max_policy_perf, global_max);
		limits->max_perf = max(min_policy_perf, limits->max_perf);

		/* Make sure min_perf <= max_perf */
		limits->min_perf = min(limits->min_perf, limits->max_perf);
	}
2075

2076 2077
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2078 2079

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2080 2081
		 fp_ext_toint(limits->max_perf * 100),
		 fp_ext_toint(limits->min_perf * 100));
2082 2083
}

2084 2085
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2086 2087
	struct cpudata *cpu;

2088 2089 2090
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2091 2092 2093
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2094
	cpu = all_cpu_data[policy->cpu];
2095 2096
	cpu->policy = policy->policy;

2097 2098
	mutex_lock(&intel_pstate_limits_lock);

2099
	intel_pstate_update_perf_limits(policy, cpu);
2100

2101
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2102 2103 2104 2105 2106 2107 2108 2109
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2110 2111
	intel_pstate_set_update_util_hook(policy->cpu);

2112 2113
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2114

2115 2116
	mutex_unlock(&intel_pstate_limits_lock);

2117 2118 2119
	return 0;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2131 2132
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2133 2134 2135
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2136 2137
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2138

2139
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2140
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2141 2142
		return -EINVAL;

2143 2144
	intel_pstate_adjust_policy_max(policy, cpu);

2145 2146 2147
	return 0;
}

2148 2149 2150 2151 2152
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2153
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2154
{
2155
	pr_debug("CPU %d exiting\n", policy->cpu);
2156

2157
	intel_pstate_clear_update_util_hook(policy->cpu);
2158 2159 2160
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2161 2162
		intel_cpufreq_stop_cpu(policy);
}
2163

2164 2165 2166
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2167

2168
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2169

2170
	return 0;
2171 2172
}

2173
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2174 2175
{
	struct cpudata *cpu;
2176
	int rc;
2177 2178 2179 2180 2181 2182 2183

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2184 2185
	cpu->perf_limits.max_perf = int_ext_tofp(1);
	cpu->perf_limits.min_perf = 0;
2186

2187 2188
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2189 2190

	/* cpuinfo and default policy values */
2191
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2192
	update_turbo_state();
2193
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2194 2195 2196
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2197
	intel_pstate_init_acpi_perf_limits(policy);
2198 2199
	cpumask_set_cpu(policy->cpu, policy->cpus);

2200 2201
	policy->fast_switch_possible = true;

2202 2203 2204
	return 0;
}

2205
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2206
{
2207 2208 2209 2210 2211 2212
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2213
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2214 2215 2216
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2217 2218 2219 2220

	return 0;
}

2221
static struct cpufreq_driver intel_pstate = {
2222 2223 2224
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2225
	.suspend	= intel_pstate_hwp_save_state,
2226
	.resume		= intel_pstate_resume,
2227 2228
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2229
	.exit		= intel_pstate_cpu_exit,
2230
	.stop_cpu	= intel_pstate_stop_cpu,
2231 2232 2233
	.name		= "intel_pstate",
};

2234 2235 2236 2237 2238
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2239 2240
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2241

2242
	intel_pstate_adjust_policy_max(policy, cpu);
2243

2244 2245
	intel_pstate_update_perf_limits(policy, cpu);

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2257 2258
	update_turbo_state();

2259
	freqs.old = policy->cur;
2260
	freqs.new = target_freq;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2280
	freqs.new = target_pstate * cpu->pstate.scaling;
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2292 2293
	update_turbo_state();

2294
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2295
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2296
	intel_pstate_update_pstate(cpu, target_pstate);
2297
	return target_pstate * cpu->pstate.scaling;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2348 2349
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2350

2351 2352 2353 2354 2355 2356
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2357 2358
	global.min_perf_pct = min_perf_pct_min();

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2437 2438 2439
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2440
static unsigned int force_load __initdata;
2441

2442
static int __init intel_pstate_msrs_not_valid(void)
2443
{
2444
	if (!pstate_funcs.get_max() ||
2445 2446
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2447 2448 2449 2450
		return -ENODEV;

	return 0;
}
2451

2452
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2453 2454
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2455
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2456 2457 2458 2459 2460 2461 2462
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2463 2464 2465
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2466 2467 2468 2469 2470 2471
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2472 2473
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
2474
	}
2475 2476 2477 2478 2479 2480 2481
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2482
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2483 2484
{
	pstate_funcs.get_max   = funcs->get_max;
2485
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2486 2487
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2488
	pstate_funcs.get_scaling = funcs->get_scaling;
2489
	pstate_funcs.get_val   = funcs->get_val;
2490
	pstate_funcs.get_vid   = funcs->get_vid;
2491 2492
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2493
	intel_pstate_use_acpi_profile();
2494 2495
}

2496
#ifdef CONFIG_ACPI
2497

2498
static bool __init intel_pstate_no_acpi_pss(void)
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2527
static bool __init intel_pstate_has_acpi_ppc(void)
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2547 2548 2549 2550
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2551
	int  oem_pwr_table;
2552 2553 2554
};

/* Hardware vendor-specific info that has its own power management modes */
2555
static struct hw_vendor_info vendor_info[] __initdata = {
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2567 2568 2569 2570
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2571 2572 2573
	{0, "", ""},
};

2574
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2575 2576 2577
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2587

2588 2589
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2590 2591 2592
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2593
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2594 2595 2596 2597 2598 2599
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2600 2601
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2602
			}
2603 2604 2605 2606
	}

	return false;
}
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2617 2618
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2619
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2620
static inline void intel_pstate_request_control_from_smm(void) {}
2621 2622
#endif /* CONFIG_ACPI */

2623 2624 2625 2626 2627
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2628 2629
static int __init intel_pstate_init(void)
{
2630
	int rc;
2631

2632 2633 2634
	if (no_load)
		return -ENODEV;

2635
	if (x86_match_cpu(hwp_support_ids)) {
2636
		copy_cpu_funcs(&core_params.funcs);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		if (no_hwp) {
			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2647

2648 2649 2650
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2651

2652
		cpu_def = (struct cpu_defaults *)id->driver_data;
2653

2654 2655 2656
		copy_pid_params(&cpu_def->pid_policy);
		copy_cpu_funcs(&cpu_def->funcs);
	}
2657

2658 2659 2660
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2661 2662 2663 2664 2665 2666 2667 2668
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2669 2670 2671
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2672
	pr_info("Intel P-state driver initializing\n");
2673

2674
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2675 2676 2677
	if (!all_cpu_data)
		return -ENOMEM;

2678 2679
	intel_pstate_request_control_from_smm();

2680
	intel_pstate_sysfs_expose_params();
2681

2682
	mutex_lock(&intel_pstate_driver_lock);
2683
	rc = intel_pstate_register_driver();
2684
	mutex_unlock(&intel_pstate_driver_lock);
2685 2686
	if (rc)
		return rc;
2687

2688
	if (hwp_active)
J
Joe Perches 已提交
2689
		pr_info("HWP enabled\n");
2690

2691
	return 0;
2692 2693 2694
}
device_initcall(intel_pstate_init);

2695 2696 2697 2698 2699
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2700
	if (!strcmp(str, "disable")) {
2701
		no_load = 1;
2702 2703 2704 2705 2706
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2707
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2708
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2709
		no_hwp = 1;
2710
	}
2711 2712
	if (!strcmp(str, "force"))
		force_load = 1;
2713 2714
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2715 2716
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2717 2718 2719 2720 2721 2722

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2723 2724 2725 2726
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2727 2728 2729
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");