memcontrol.c 150.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326
static struct mem_cgroup_per_zone *
327
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328
{
329 330 331
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

332
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

352
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 354 355 356 357
		memcg = root_mem_cgroup;

	return &memcg->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

386
static struct mem_cgroup_per_zone *
387
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388
{
389 390
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
391

392
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

410 411
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
412
					 unsigned long new_usage_in_excess)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

442 443
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
444 445 446 447 448 449 450
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
453
{
454 455 456
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
457
	__mem_cgroup_remove_exceeded(mz, mctz);
458
	spin_unlock_irqrestore(&mctz->lock, flags);
459 460
}

461 462 463
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
464
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 466 467 468 469 470 471
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
472 473 474

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
475
	unsigned long excess;
476 477 478
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

479
	mctz = soft_limit_tree_from_page(page);
480 481 482 483 484
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485
		mz = mem_cgroup_page_zoneinfo(memcg, page);
486
		excess = soft_limit_excess(memcg);
487 488 489 490 491
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
492 493 494
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
495 496
			/* if on-tree, remove it */
			if (mz->on_tree)
497
				__mem_cgroup_remove_exceeded(mz, mctz);
498 499 500 501
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
502
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503
			spin_unlock_irqrestore(&mctz->lock, flags);
504 505 506 507 508 509 510
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
513

514 515 516 517
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
518
			mem_cgroup_remove_exceeded(mz, mctz);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
541
	__mem_cgroup_remove_exceeded(mz, mctz);
542
	if (!soft_limit_excess(mz->memcg) ||
543
	    !css_tryget_online(&mz->memcg->css))
544 545 546 547 548 549 550 551 552 553
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

554
	spin_lock_irq(&mctz->lock);
555
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556
	spin_unlock_irq(&mctz->lock);
557 558 559
	return mz;
}

560
/*
561 562
 * Return page count for single (non recursive) @memcg.
 *
563 564 565 566 567
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
568
 * a periodic synchronization of counter in memcg's counter.
569 570 571 572 573 574 575 576 577
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
578
 * common workload, threshold and synchronization as vmstat[] should be
579 580
 * implemented.
 */
581 582
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583
{
584
	long val = 0;
585 586
	int cpu;

587
	/* Per-cpu values can be negative, use a signed accumulator */
588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->count[idx], cpu);
590 591 592 593 594 595
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
596 597 598
	return val;
}

599
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 601 602 603 604
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

605
	for_each_possible_cpu(cpu)
606
		val += per_cpu(memcg->stat->events[idx], cpu);
607 608 609
	return val;
}

610
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611
					 struct page *page,
612
					 bool compound, int nr_pages)
613
{
614 615 616 617
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
618
	if (PageAnon(page))
619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620
				nr_pages);
621
	else
622
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623
				nr_pages);
624

625 626
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
629
	}
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 641
}

642 643
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027
 * This function must be called when a page is added to or removed from an
 * lru list.
1028
 */
1029 1030
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1031 1032
{
	struct mem_cgroup_per_zone *mz;
1033
	unsigned long *lru_size;
1034 1035 1036 1037

	if (mem_cgroup_disabled())
		return;

1038 1039 1040 1041
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1042
}
1043

1044
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045
{
1046
	struct mem_cgroup *task_memcg;
1047
	struct task_struct *p;
1048
	bool ret;
1049

1050
	p = find_lock_task_mm(task);
1051
	if (p) {
1052
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 1054 1055 1056 1057 1058 1059
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1060
		rcu_read_lock();
1061 1062
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1063
		rcu_read_unlock();
1064
	}
1065 1066
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1067 1068 1069
	return ret;
}

1070
/**
1071
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1072
 * @memcg: the memory cgroup
1073
 *
1074
 * Returns the maximum amount of memory @mem can be charged with, in
1075
 * pages.
1076
 */
1077
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078
{
1079 1080 1081
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1082

1083
	count = page_counter_read(&memcg->memory);
1084
	limit = READ_ONCE(memcg->memory.limit);
1085 1086 1087
	if (count < limit)
		margin = limit - count;

1088
	if (do_memsw_account()) {
1089
		count = page_counter_read(&memcg->memsw);
1090
		limit = READ_ONCE(memcg->memsw.limit);
1091 1092 1093 1094 1095
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1096 1097
}

1098
/*
Q
Qiang Huang 已提交
1099
 * A routine for checking "mem" is under move_account() or not.
1100
 *
Q
Qiang Huang 已提交
1101 1102 1103
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1104
 */
1105
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106
{
1107 1108
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1109
	bool ret = false;
1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1119

1120 1121
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1122 1123
unlock:
	spin_unlock(&mc.lock);
1124 1125 1126
	return ret;
}

1127
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 1129
{
	if (mc.moving_task && current != mc.moving_task) {
1130
		if (mem_cgroup_under_move(memcg)) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1143
#define K(x) ((x) << (PAGE_SHIFT-10))
1144
/**
1145
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 1147 1148 1149 1150 1151 1152 1153
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1154 1155
	struct mem_cgroup *iter;
	unsigned int i;
1156 1157 1158

	rcu_read_lock();

1159 1160 1161 1162 1163 1164 1165 1166
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1167
	pr_cont_cgroup_path(memcg->css.cgroup);
1168
	pr_cont("\n");
1169 1170 1171

	rcu_read_unlock();

1172 1173 1174 1175 1176 1177 1178 1179 1180
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181 1182

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1183 1184
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1185 1186 1187
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189
				continue;
1190
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 1192 1193 1194 1195 1196 1197 1198 1199
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1200 1201
}

1202 1203 1204 1205
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1206
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 1208
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1209 1210
	struct mem_cgroup *iter;

1211
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1212
		num++;
1213 1214 1215
	return num;
}

D
David Rientjes 已提交
1216 1217 1218
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1219
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1220
{
1221
	unsigned long limit;
1222

1223
	limit = memcg->memory.limit;
1224
	if (mem_cgroup_swappiness(memcg)) {
1225
		unsigned long memsw_limit;
1226
		unsigned long swap_limit;
1227

1228
		memsw_limit = memcg->memsw.limit;
1229 1230 1231
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1232 1233
	}
	return limit;
D
David Rientjes 已提交
1234 1235
}

1236
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237
				     int order)
1238
{
1239 1240 1241 1242 1243 1244
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1245 1246 1247 1248 1249 1250
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1251 1252
	mutex_lock(&oom_lock);

1253
	/*
1254 1255 1256
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1257
	 */
1258
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259
		mark_oom_victim(current);
1260
		goto unlock;
1261 1262
	}

1263
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265
	for_each_mem_cgroup_tree(iter, memcg) {
1266
		struct css_task_iter it;
1267 1268
		struct task_struct *task;

1269 1270
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1271
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1282
				css_task_iter_end(&it);
1283 1284 1285
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1286
				goto unlock;
1287 1288 1289 1290
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1303
		}
1304
		css_task_iter_end(&it);
1305 1306
	}

1307 1308
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1309 1310
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1311 1312 1313
	}
unlock:
	mutex_unlock(&oom_lock);
1314
	return chosen;
1315 1316
}

1317 1318
#if MAX_NUMNODES > 1

1319 1320
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1321
 * @memcg: the target memcg
1322 1323 1324 1325 1326 1327 1328
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1329
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 1331
		int nid, bool noswap)
{
1332
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 1334 1335
		return true;
	if (noswap || !total_swap_pages)
		return false;
1336
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 1338 1339 1340
		return true;
	return false;

}
1341 1342 1343 1344 1345 1346 1347

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1348
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349 1350
{
	int nid;
1351 1352 1353 1354
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1355
	if (!atomic_read(&memcg->numainfo_events))
1356
		return;
1357
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 1359 1360
		return;

	/* make a nodemask where this memcg uses memory from */
1361
	memcg->scan_nodes = node_states[N_MEMORY];
1362

1363
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1364

1365 1366
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1367
	}
1368

1369 1370
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1385
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386 1387 1388
{
	int node;

1389 1390
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1391

1392
	node = next_node_in(node, memcg->scan_nodes);
1393 1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1402
	memcg->last_scanned_node = node;
1403 1404 1405
	return node;
}
#else
1406
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1407 1408 1409 1410 1411
{
	return 0;
}
#endif

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1427
	excess = soft_limit_excess(root_memcg);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1456
		if (!soft_limit_excess(root_memcg))
1457
			break;
1458
	}
1459 1460
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1461 1462
}

1463 1464 1465 1466 1467 1468
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1469 1470
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1471 1472 1473 1474
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1475
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1476
{
1477
	struct mem_cgroup *iter, *failed = NULL;
1478

1479 1480
	spin_lock(&memcg_oom_lock);

1481
	for_each_mem_cgroup_tree(iter, memcg) {
1482
		if (iter->oom_lock) {
1483 1484 1485 1486 1487
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1488 1489
			mem_cgroup_iter_break(memcg, iter);
			break;
1490 1491
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1492
	}
K
KAMEZAWA Hiroyuki 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1505
		}
1506 1507
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1508 1509 1510 1511

	spin_unlock(&memcg_oom_lock);

	return !failed;
1512
}
1513

1514
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1515
{
K
KAMEZAWA Hiroyuki 已提交
1516 1517
	struct mem_cgroup *iter;

1518
	spin_lock(&memcg_oom_lock);
1519
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1520
	for_each_mem_cgroup_tree(iter, memcg)
1521
		iter->oom_lock = false;
1522
	spin_unlock(&memcg_oom_lock);
1523 1524
}

1525
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1526 1527 1528
{
	struct mem_cgroup *iter;

1529
	spin_lock(&memcg_oom_lock);
1530
	for_each_mem_cgroup_tree(iter, memcg)
1531 1532
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1533 1534
}

1535
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1536 1537 1538
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1539 1540
	/*
	 * When a new child is created while the hierarchy is under oom,
1541
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1542
	 */
1543
	spin_lock(&memcg_oom_lock);
1544
	for_each_mem_cgroup_tree(iter, memcg)
1545 1546 1547
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1548 1549
}

K
KAMEZAWA Hiroyuki 已提交
1550 1551
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1552
struct oom_wait_info {
1553
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1554 1555 1556 1557 1558 1559
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1560 1561
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1562 1563 1564
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1565
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1566

1567 1568
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1569 1570 1571 1572
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1573
static void memcg_oom_recover(struct mem_cgroup *memcg)
1574
{
1575 1576 1577 1578 1579 1580 1581 1582 1583
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1584
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1585 1586
}

1587
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1588
{
T
Tejun Heo 已提交
1589
	if (!current->memcg_may_oom)
1590
		return;
K
KAMEZAWA Hiroyuki 已提交
1591
	/*
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1604
	 */
1605
	css_get(&memcg->css);
T
Tejun Heo 已提交
1606 1607 1608
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1609 1610 1611 1612
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1613
 * @handle: actually kill/wait or just clean up the OOM state
1614
 *
1615 1616
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1617
 *
1618
 * Memcg supports userspace OOM handling where failed allocations must
1619 1620 1621 1622
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1623
 * the end of the page fault to complete the OOM handling.
1624 1625
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1626
 * completed, %false otherwise.
1627
 */
1628
bool mem_cgroup_oom_synchronize(bool handle)
1629
{
T
Tejun Heo 已提交
1630
	struct mem_cgroup *memcg = current->memcg_in_oom;
1631
	struct oom_wait_info owait;
1632
	bool locked;
1633 1634 1635

	/* OOM is global, do not handle */
	if (!memcg)
1636
		return false;
1637

1638
	if (!handle || oom_killer_disabled)
1639
		goto cleanup;
1640 1641 1642 1643 1644 1645

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1646

1647
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1658 1659
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1660
	} else {
1661
		schedule();
1662 1663 1664 1665 1666
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1667 1668 1669 1670 1671 1672 1673 1674
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1675
cleanup:
T
Tejun Heo 已提交
1676
	current->memcg_in_oom = NULL;
1677
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1678
	return true;
1679 1680
}

1681
/**
1682 1683
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1684
 *
1685 1686
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1687
 */
J
Johannes Weiner 已提交
1688
void lock_page_memcg(struct page *page)
1689 1690
{
	struct mem_cgroup *memcg;
1691
	unsigned long flags;
1692

1693 1694 1695 1696 1697
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1698 1699 1700
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1701
		return;
1702
again:
1703
	memcg = page->mem_cgroup;
1704
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1705
		return;
1706

Q
Qiang Huang 已提交
1707
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1708
		return;
1709

1710
	spin_lock_irqsave(&memcg->move_lock, flags);
1711
	if (memcg != page->mem_cgroup) {
1712
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1713 1714
		goto again;
	}
1715 1716 1717 1718

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1719
	 * the task who has the lock for unlock_page_memcg().
1720 1721 1722
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1723

J
Johannes Weiner 已提交
1724
	return;
1725
}
1726
EXPORT_SYMBOL(lock_page_memcg);
1727

1728
/**
1729
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1730
 * @page: the page
1731
 */
J
Johannes Weiner 已提交
1732
void unlock_page_memcg(struct page *page)
1733
{
J
Johannes Weiner 已提交
1734 1735
	struct mem_cgroup *memcg = page->mem_cgroup;

1736 1737 1738 1739 1740 1741 1742 1743
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1744

1745
	rcu_read_unlock();
1746
}
1747
EXPORT_SYMBOL(unlock_page_memcg);
1748

1749 1750 1751 1752
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1753
#define CHARGE_BATCH	32U
1754 1755
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1756
	unsigned int nr_pages;
1757
	struct work_struct work;
1758
	unsigned long flags;
1759
#define FLUSHING_CACHED_CHARGE	0
1760 1761
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1762
static DEFINE_MUTEX(percpu_charge_mutex);
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1774
 */
1775
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1776 1777
{
	struct memcg_stock_pcp *stock;
1778
	bool ret = false;
1779

1780
	if (nr_pages > CHARGE_BATCH)
1781
		return ret;
1782

1783
	stock = &get_cpu_var(memcg_stock);
1784
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1785
		stock->nr_pages -= nr_pages;
1786 1787
		ret = true;
	}
1788 1789 1790 1791 1792
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1793
 * Returns stocks cached in percpu and reset cached information.
1794 1795 1796 1797 1798
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1799
	if (stock->nr_pages) {
1800
		page_counter_uncharge(&old->memory, stock->nr_pages);
1801
		if (do_memsw_account())
1802
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1803
		css_put_many(&old->css, stock->nr_pages);
1804
		stock->nr_pages = 0;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1815
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1816
	drain_stock(stock);
1817
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1818 1819 1820
}

/*
1821
 * Cache charges(val) to local per_cpu area.
1822
 * This will be consumed by consume_stock() function, later.
1823
 */
1824
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1825 1826 1827
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1828
	if (stock->cached != memcg) { /* reset if necessary */
1829
		drain_stock(stock);
1830
		stock->cached = memcg;
1831
	}
1832
	stock->nr_pages += nr_pages;
1833 1834 1835 1836
	put_cpu_var(memcg_stock);
}

/*
1837
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1838
 * of the hierarchy under it.
1839
 */
1840
static void drain_all_stock(struct mem_cgroup *root_memcg)
1841
{
1842
	int cpu, curcpu;
1843

1844 1845 1846
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1847 1848
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1849
	curcpu = get_cpu();
1850 1851
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1852
		struct mem_cgroup *memcg;
1853

1854 1855
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1856
			continue;
1857
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1858
			continue;
1859 1860 1861 1862 1863 1864
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1865
	}
1866
	put_cpu();
A
Andrew Morton 已提交
1867
	put_online_cpus();
1868
	mutex_unlock(&percpu_charge_mutex);
1869 1870
}

1871
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1872 1873 1874 1875 1876 1877
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1878
	if (action == CPU_ONLINE)
1879 1880
		return NOTIFY_OK;

1881
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1882
		return NOTIFY_OK;
1883

1884 1885 1886 1887 1888
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1909 1910 1911 1912 1913 1914 1915
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1916
	struct mem_cgroup *memcg;
1917 1918 1919 1920

	if (likely(!nr_pages))
		return;

1921 1922
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1923 1924 1925 1926
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1927 1928
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1929
{
1930
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1931
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1932
	struct mem_cgroup *mem_over_limit;
1933
	struct page_counter *counter;
1934
	unsigned long nr_reclaimed;
1935 1936
	bool may_swap = true;
	bool drained = false;
1937

1938
	if (mem_cgroup_is_root(memcg))
1939
		return 0;
1940
retry:
1941
	if (consume_stock(memcg, nr_pages))
1942
		return 0;
1943

1944
	if (!do_memsw_account() ||
1945 1946
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1947
			goto done_restock;
1948
		if (do_memsw_account())
1949 1950
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1951
	} else {
1952
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1953
		may_swap = false;
1954
	}
1955

1956 1957 1958 1959
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1970
		goto force;
1971 1972 1973 1974

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1975
	if (!gfpflags_allow_blocking(gfp_mask))
1976
		goto nomem;
1977

1978 1979
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1980 1981
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1982

1983
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1984
		goto retry;
1985

1986
	if (!drained) {
1987
		drain_all_stock(mem_over_limit);
1988 1989 1990 1991
		drained = true;
		goto retry;
	}

1992 1993
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2003
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2004 2005 2006 2007 2008 2009 2010 2011
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2012 2013 2014
	if (nr_retries--)
		goto retry;

2015
	if (gfp_mask & __GFP_NOFAIL)
2016
		goto force;
2017

2018
	if (fatal_signal_pending(current))
2019
		goto force;
2020

2021 2022
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2023 2024
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2025
nomem:
2026
	if (!(gfp_mask & __GFP_NOFAIL))
2027
		return -ENOMEM;
2028 2029 2030 2031 2032 2033 2034
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2035
	if (do_memsw_account())
2036 2037 2038 2039
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2040 2041

done_restock:
2042
	css_get_many(&memcg->css, batch);
2043 2044
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2045

2046
	/*
2047 2048
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2049
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2050 2051 2052 2053
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2054 2055
	 */
	do {
2056
		if (page_counter_read(&memcg->memory) > memcg->high) {
2057 2058 2059 2060 2061
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2062
			current->memcg_nr_pages_over_high += batch;
2063 2064 2065
			set_notify_resume(current);
			break;
		}
2066
	} while ((memcg = parent_mem_cgroup(memcg)));
2067 2068

	return 0;
2069
}
2070

2071
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2072
{
2073 2074 2075
	if (mem_cgroup_is_root(memcg))
		return;

2076
	page_counter_uncharge(&memcg->memory, nr_pages);
2077
	if (do_memsw_account())
2078
		page_counter_uncharge(&memcg->memsw, nr_pages);
2079

2080
	css_put_many(&memcg->css, nr_pages);
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2114
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2115
			  bool lrucare)
2116
{
2117
	int isolated;
2118

2119
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2120 2121 2122 2123 2124

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2125 2126
	if (lrucare)
		lock_page_lru(page, &isolated);
2127

2128 2129
	/*
	 * Nobody should be changing or seriously looking at
2130
	 * page->mem_cgroup at this point:
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2142
	page->mem_cgroup = memcg;
2143

2144 2145
	if (lrucare)
		unlock_page_lru(page, isolated);
2146
}
2147

2148
#ifndef CONFIG_SLOB
2149
static int memcg_alloc_cache_id(void)
2150
{
2151 2152 2153
	int id, size;
	int err;

2154
	id = ida_simple_get(&memcg_cache_ida,
2155 2156 2157
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2158

2159
	if (id < memcg_nr_cache_ids)
2160 2161 2162 2163 2164 2165
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2166
	down_write(&memcg_cache_ids_sem);
2167 2168

	size = 2 * (id + 1);
2169 2170 2171 2172 2173
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2174
	err = memcg_update_all_caches(size);
2175 2176
	if (!err)
		err = memcg_update_all_list_lrus(size);
2177 2178 2179 2180 2181
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2182
	if (err) {
2183
		ida_simple_remove(&memcg_cache_ida, id);
2184 2185 2186 2187 2188 2189 2190
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2191
	ida_simple_remove(&memcg_cache_ida, id);
2192 2193
}

2194
struct memcg_kmem_cache_create_work {
2195 2196 2197 2198 2199
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2200
static void memcg_kmem_cache_create_func(struct work_struct *w)
2201
{
2202 2203
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2204 2205
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2206

2207
	memcg_create_kmem_cache(memcg, cachep);
2208

2209
	css_put(&memcg->css);
2210 2211 2212 2213 2214 2215
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2216 2217
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2218
{
2219
	struct memcg_kmem_cache_create_work *cw;
2220

2221
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2222
	if (!cw)
2223
		return;
2224 2225

	css_get(&memcg->css);
2226 2227 2228

	cw->memcg = memcg;
	cw->cachep = cachep;
2229
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2230 2231 2232 2233

	schedule_work(&cw->work);
}

2234 2235
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2236 2237 2238 2239
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2240
	 * in __memcg_schedule_kmem_cache_create will recurse.
2241 2242 2243 2244 2245 2246 2247
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2248
	current->memcg_kmem_skip_account = 1;
2249
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2250
	current->memcg_kmem_skip_account = 0;
2251
}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2266
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2267 2268
{
	struct mem_cgroup *memcg;
2269
	struct kmem_cache *memcg_cachep;
2270
	int kmemcg_id;
2271

2272
	VM_BUG_ON(!is_root_cache(cachep));
2273

V
Vladimir Davydov 已提交
2274 2275 2276 2277 2278 2279
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2280
	if (current->memcg_kmem_skip_account)
2281 2282
		return cachep;

2283
	memcg = get_mem_cgroup_from_mm(current->mm);
2284
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2285
	if (kmemcg_id < 0)
2286
		goto out;
2287

2288
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2289 2290
	if (likely(memcg_cachep))
		return memcg_cachep;
2291 2292 2293 2294 2295 2296 2297 2298 2299

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2300 2301 2302
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2303
	 */
2304
	memcg_schedule_kmem_cache_create(memcg, cachep);
2305
out:
2306
	css_put(&memcg->css);
2307
	return cachep;
2308 2309
}

2310 2311 2312
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2313
		css_put(&cachep->memcg_params.memcg->css);
2314 2315
}

2316 2317
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2318
{
2319 2320
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2321 2322
	int ret;

2323
	ret = try_charge(memcg, gfp, nr_pages);
2324
	if (ret)
2325
		return ret;
2326 2327 2328 2329 2330

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2331 2332
	}

2333
	page->mem_cgroup = memcg;
2334

2335
	return 0;
2336 2337
}

2338
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2339
{
2340
	struct mem_cgroup *memcg;
2341
	int ret = 0;
2342

2343
	memcg = get_mem_cgroup_from_mm(current->mm);
2344
	if (!mem_cgroup_is_root(memcg))
2345
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2346
	css_put(&memcg->css);
2347
	return ret;
2348 2349
}

2350
void __memcg_kmem_uncharge(struct page *page, int order)
2351
{
2352
	struct mem_cgroup *memcg = page->mem_cgroup;
2353
	unsigned int nr_pages = 1 << order;
2354 2355 2356 2357

	if (!memcg)
		return;

2358
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2359

2360 2361 2362
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2363
	page_counter_uncharge(&memcg->memory, nr_pages);
2364
	if (do_memsw_account())
2365
		page_counter_uncharge(&memcg->memsw, nr_pages);
2366

2367
	page->mem_cgroup = NULL;
2368
	css_put_many(&memcg->css, nr_pages);
2369
}
2370
#endif /* !CONFIG_SLOB */
2371

2372 2373 2374 2375
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2376
 * zone->lru_lock and migration entries setup in all page mappings.
2377
 */
2378
void mem_cgroup_split_huge_fixup(struct page *head)
2379
{
2380
	int i;
2381

2382 2383
	if (mem_cgroup_disabled())
		return;
2384

2385
	for (i = 1; i < HPAGE_PMD_NR; i++)
2386
		head[i].mem_cgroup = head->mem_cgroup;
2387

2388
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2389
		       HPAGE_PMD_NR);
2390
}
2391
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2392

A
Andrew Morton 已提交
2393
#ifdef CONFIG_MEMCG_SWAP
2394 2395
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2396
{
2397 2398
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2399
}
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2412
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2413 2414 2415
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2416
				struct mem_cgroup *from, struct mem_cgroup *to)
2417 2418 2419
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2420 2421
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2422 2423 2424

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2425
		mem_cgroup_swap_statistics(to, true);
2426 2427 2428 2429 2430 2431
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2432
				struct mem_cgroup *from, struct mem_cgroup *to)
2433 2434 2435
{
	return -EINVAL;
}
2436
#endif
K
KAMEZAWA Hiroyuki 已提交
2437

2438
static DEFINE_MUTEX(memcg_limit_mutex);
2439

2440
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2441
				   unsigned long limit)
2442
{
2443 2444 2445
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2446
	int retry_count;
2447
	int ret;
2448 2449 2450 2451 2452 2453

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2454 2455
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2456

2457
	oldusage = page_counter_read(&memcg->memory);
2458

2459
	do {
2460 2461 2462 2463
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2464 2465 2466 2467

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2468
			ret = -EINVAL;
2469 2470
			break;
		}
2471 2472 2473 2474
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2475 2476 2477 2478

		if (!ret)
			break;

2479 2480
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2481
		curusage = page_counter_read(&memcg->memory);
2482
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2483
		if (curusage >= oldusage)
2484 2485 2486
			retry_count--;
		else
			oldusage = curusage;
2487 2488
	} while (retry_count);

2489 2490
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2491

2492 2493 2494
	return ret;
}

L
Li Zefan 已提交
2495
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2496
					 unsigned long limit)
2497
{
2498 2499 2500
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2501
	int retry_count;
2502
	int ret;
2503

2504
	/* see mem_cgroup_resize_res_limit */
2505 2506 2507 2508 2509 2510
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2511 2512 2513 2514
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2515 2516 2517 2518

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2519 2520 2521
			ret = -EINVAL;
			break;
		}
2522 2523 2524 2525
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2526 2527 2528 2529

		if (!ret)
			break;

2530 2531
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2532
		curusage = page_counter_read(&memcg->memsw);
2533
		/* Usage is reduced ? */
2534
		if (curusage >= oldusage)
2535
			retry_count--;
2536 2537
		else
			oldusage = curusage;
2538 2539
	} while (retry_count);

2540 2541
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2542

2543 2544 2545
	return ret;
}

2546 2547 2548 2549 2550 2551 2552 2553 2554
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2555
	unsigned long excess;
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2580
		spin_lock_irq(&mctz->lock);
2581
		__mem_cgroup_remove_exceeded(mz, mctz);
2582 2583 2584 2585 2586 2587

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2588 2589 2590
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2591
		excess = soft_limit_excess(mz->memcg);
2592 2593 2594 2595 2596 2597 2598 2599 2600
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2601
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2602
		spin_unlock_irq(&mctz->lock);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2620 2621 2622 2623 2624 2625
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2626 2627
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2628 2629 2630 2631 2632 2633
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2634 2635
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2646 2647
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2648
	/* try to free all pages in this cgroup */
2649
	while (nr_retries && page_counter_read(&memcg->memory)) {
2650
		int progress;
2651

2652 2653 2654
		if (signal_pending(current))
			return -EINTR;

2655 2656
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2657
		if (!progress) {
2658
			nr_retries--;
2659
			/* maybe some writeback is necessary */
2660
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2661
		}
2662 2663

	}
2664 2665

	return 0;
2666 2667
}

2668 2669 2670
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2671
{
2672
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2673

2674 2675
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2676
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2677 2678
}

2679 2680
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2681
{
2682
	return mem_cgroup_from_css(css)->use_hierarchy;
2683 2684
}

2685 2686
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2687 2688
{
	int retval = 0;
2689
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2690
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2691

2692
	if (memcg->use_hierarchy == val)
2693
		return 0;
2694

2695
	/*
2696
	 * If parent's use_hierarchy is set, we can't make any modifications
2697 2698 2699 2700 2701 2702
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2703
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2704
				(val == 1 || val == 0)) {
2705
		if (!memcg_has_children(memcg))
2706
			memcg->use_hierarchy = val;
2707 2708 2709 2710
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2711

2712 2713 2714
	return retval;
}

2715
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2716 2717
{
	struct mem_cgroup *iter;
2718
	int i;
2719

2720
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2721

2722 2723 2724 2725
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2726 2727
}

2728
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2729 2730
{
	struct mem_cgroup *iter;
2731
	int i;
2732

2733
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2734

2735 2736 2737 2738
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2739 2740
}

2741
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2742
{
2743
	unsigned long val = 0;
2744

2745
	if (mem_cgroup_is_root(memcg)) {
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2757
	} else {
2758
		if (!swap)
2759
			val = page_counter_read(&memcg->memory);
2760
		else
2761
			val = page_counter_read(&memcg->memsw);
2762
	}
2763
	return val;
2764 2765
}

2766 2767 2768 2769 2770 2771 2772
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2773

2774
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2775
			       struct cftype *cft)
B
Balbir Singh 已提交
2776
{
2777
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2778
	struct page_counter *counter;
2779

2780
	switch (MEMFILE_TYPE(cft->private)) {
2781
	case _MEM:
2782 2783
		counter = &memcg->memory;
		break;
2784
	case _MEMSWAP:
2785 2786
		counter = &memcg->memsw;
		break;
2787
	case _KMEM:
2788
		counter = &memcg->kmem;
2789
		break;
V
Vladimir Davydov 已提交
2790
	case _TCP:
2791
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2792
		break;
2793 2794 2795
	default:
		BUG();
	}
2796 2797 2798 2799

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2800
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2801
		if (counter == &memcg->memsw)
2802
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2815
}
2816

2817
#ifndef CONFIG_SLOB
2818
static int memcg_online_kmem(struct mem_cgroup *memcg)
2819 2820 2821
{
	int memcg_id;

2822 2823 2824
	if (cgroup_memory_nokmem)
		return 0;

2825
	BUG_ON(memcg->kmemcg_id >= 0);
2826
	BUG_ON(memcg->kmem_state);
2827

2828
	memcg_id = memcg_alloc_cache_id();
2829 2830
	if (memcg_id < 0)
		return memcg_id;
2831

2832
	static_branch_inc(&memcg_kmem_enabled_key);
2833
	/*
2834
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2835
	 * kmemcg_id. Setting the id after enabling static branching will
2836 2837 2838
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2839
	memcg->kmemcg_id = memcg_id;
2840
	memcg->kmem_state = KMEM_ONLINE;
2841 2842

	return 0;
2843 2844
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2892 2893 2894 2895
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2896 2897 2898 2899 2900 2901
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2902
#else
2903
static int memcg_online_kmem(struct mem_cgroup *memcg)
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2915
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2916
				   unsigned long limit)
2917
{
2918
	int ret;
2919 2920 2921 2922 2923

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2924
}
2925

V
Vladimir Davydov 已提交
2926 2927 2928 2929 2930 2931
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2932
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2933 2934 2935
	if (ret)
		goto out;

2936
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2954
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2955 2956 2957 2958 2959 2960
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2961 2962 2963 2964
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2965 2966
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2967
{
2968
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969
	unsigned long nr_pages;
2970 2971
	int ret;

2972
	buf = strstrip(buf);
2973
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2974 2975
	if (ret)
		return ret;
2976

2977
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2978
	case RES_LIMIT:
2979 2980 2981 2982
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2983 2984 2985
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2986
			break;
2987 2988
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2989
			break;
2990 2991 2992
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2993 2994 2995
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
2996
		}
2997
		break;
2998 2999 3000
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3001 3002
		break;
	}
3003
	return ret ?: nbytes;
B
Balbir Singh 已提交
3004 3005
}

3006 3007
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3008
{
3009
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3010
	struct page_counter *counter;
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3022
	case _TCP:
3023
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3024
		break;
3025 3026 3027
	default:
		BUG();
	}
3028

3029
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3030
	case RES_MAX_USAGE:
3031
		page_counter_reset_watermark(counter);
3032 3033
		break;
	case RES_FAILCNT:
3034
		counter->failcnt = 0;
3035
		break;
3036 3037
	default:
		BUG();
3038
	}
3039

3040
	return nbytes;
3041 3042
}

3043
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3044 3045
					struct cftype *cft)
{
3046
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3047 3048
}

3049
#ifdef CONFIG_MMU
3050
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3051 3052
					struct cftype *cft, u64 val)
{
3053
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3054

3055
	if (val & ~MOVE_MASK)
3056
		return -EINVAL;
3057

3058
	/*
3059 3060 3061 3062
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3063
	 */
3064
	memcg->move_charge_at_immigrate = val;
3065 3066
	return 0;
}
3067
#else
3068
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3069 3070 3071 3072 3073
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3074

3075
#ifdef CONFIG_NUMA
3076
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3077
{
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3090
	int nid;
3091
	unsigned long nr;
3092
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3093

3094 3095 3096 3097 3098 3099 3100 3101 3102
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3103 3104
	}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3120 3121 3122 3123 3124 3125
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3126
static int memcg_stat_show(struct seq_file *m, void *v)
3127
{
3128
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129
	unsigned long memory, memsw;
3130 3131
	struct mem_cgroup *mi;
	unsigned int i;
3132

3133 3134 3135 3136
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3137 3138
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3139
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3140
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3141
			continue;
3142
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3143
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3144
	}
L
Lee Schermerhorn 已提交
3145

3146 3147 3148 3149 3150 3151 3152 3153
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3154
	/* Hierarchical information */
3155 3156 3157 3158
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3159
	}
3160 3161
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3162
	if (do_memsw_account())
3163 3164
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3165

3166
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3167
		unsigned long long val = 0;
3168

3169
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3170
			continue;
3171 3172
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3173
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3191
	}
K
KAMEZAWA Hiroyuki 已提交
3192

K
KOSAKI Motohiro 已提交
3193 3194 3195 3196
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3197
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3198 3199 3200 3201 3202
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3203
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3204
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3205

3206 3207 3208 3209
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3210
			}
3211 3212 3213 3214
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3215 3216 3217
	}
#endif

3218 3219 3220
	return 0;
}

3221 3222
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3223
{
3224
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3225

3226
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3227 3228
}

3229 3230
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3231
{
3232
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3233

3234
	if (val > 100)
K
KOSAKI Motohiro 已提交
3235 3236
		return -EINVAL;

3237
	if (css->parent)
3238 3239 3240
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3241

K
KOSAKI Motohiro 已提交
3242 3243 3244
	return 0;
}

3245 3246 3247
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3248
	unsigned long usage;
3249 3250 3251 3252
	int i;

	rcu_read_lock();
	if (!swap)
3253
		t = rcu_dereference(memcg->thresholds.primary);
3254
	else
3255
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3256 3257 3258 3259

	if (!t)
		goto unlock;

3260
	usage = mem_cgroup_usage(memcg, swap);
3261 3262

	/*
3263
	 * current_threshold points to threshold just below or equal to usage.
3264 3265 3266
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3267
	i = t->current_threshold;
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3291
	t->current_threshold = i - 1;
3292 3293 3294 3295 3296 3297
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3298 3299
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3300
		if (do_memsw_account())
3301 3302 3303 3304
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3305 3306 3307 3308 3309 3310 3311
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3312 3313 3314 3315 3316 3317 3318
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3319 3320
}

3321
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3322 3323 3324
{
	struct mem_cgroup_eventfd_list *ev;

3325 3326
	spin_lock(&memcg_oom_lock);

3327
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3328
		eventfd_signal(ev->eventfd, 1);
3329 3330

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3331 3332 3333
	return 0;
}

3334
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3335
{
K
KAMEZAWA Hiroyuki 已提交
3336 3337
	struct mem_cgroup *iter;

3338
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3339
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3340 3341
}

3342
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3343
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3344
{
3345 3346
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3347 3348
	unsigned long threshold;
	unsigned long usage;
3349
	int i, size, ret;
3350

3351
	ret = page_counter_memparse(args, "-1", &threshold);
3352 3353 3354 3355
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3356

3357
	if (type == _MEM) {
3358
		thresholds = &memcg->thresholds;
3359
		usage = mem_cgroup_usage(memcg, false);
3360
	} else if (type == _MEMSWAP) {
3361
		thresholds = &memcg->memsw_thresholds;
3362
		usage = mem_cgroup_usage(memcg, true);
3363
	} else
3364 3365 3366
		BUG();

	/* Check if a threshold crossed before adding a new one */
3367
	if (thresholds->primary)
3368 3369
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3370
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3371 3372

	/* Allocate memory for new array of thresholds */
3373
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3374
			GFP_KERNEL);
3375
	if (!new) {
3376 3377 3378
		ret = -ENOMEM;
		goto unlock;
	}
3379
	new->size = size;
3380 3381

	/* Copy thresholds (if any) to new array */
3382 3383
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3384
				sizeof(struct mem_cgroup_threshold));
3385 3386
	}

3387
	/* Add new threshold */
3388 3389
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3390 3391

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3392
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3393 3394 3395
			compare_thresholds, NULL);

	/* Find current threshold */
3396
	new->current_threshold = -1;
3397
	for (i = 0; i < size; i++) {
3398
		if (new->entries[i].threshold <= usage) {
3399
			/*
3400 3401
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3402 3403
			 * it here.
			 */
3404
			++new->current_threshold;
3405 3406
		} else
			break;
3407 3408
	}

3409 3410 3411 3412 3413
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3414

3415
	/* To be sure that nobody uses thresholds */
3416 3417 3418 3419 3420 3421 3422 3423
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3424
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3425 3426
	struct eventfd_ctx *eventfd, const char *args)
{
3427
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3428 3429
}

3430
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3431 3432
	struct eventfd_ctx *eventfd, const char *args)
{
3433
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3434 3435
}

3436
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3437
	struct eventfd_ctx *eventfd, enum res_type type)
3438
{
3439 3440
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3441
	unsigned long usage;
3442
	int i, j, size;
3443 3444

	mutex_lock(&memcg->thresholds_lock);
3445 3446

	if (type == _MEM) {
3447
		thresholds = &memcg->thresholds;
3448
		usage = mem_cgroup_usage(memcg, false);
3449
	} else if (type == _MEMSWAP) {
3450
		thresholds = &memcg->memsw_thresholds;
3451
		usage = mem_cgroup_usage(memcg, true);
3452
	} else
3453 3454
		BUG();

3455 3456 3457
	if (!thresholds->primary)
		goto unlock;

3458 3459 3460 3461
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3462 3463 3464
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3465 3466 3467
			size++;
	}

3468
	new = thresholds->spare;
3469

3470 3471
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3472 3473
		kfree(new);
		new = NULL;
3474
		goto swap_buffers;
3475 3476
	}

3477
	new->size = size;
3478 3479

	/* Copy thresholds and find current threshold */
3480 3481 3482
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3483 3484
			continue;

3485
		new->entries[j] = thresholds->primary->entries[i];
3486
		if (new->entries[j].threshold <= usage) {
3487
			/*
3488
			 * new->current_threshold will not be used
3489 3490 3491
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3492
			++new->current_threshold;
3493 3494 3495 3496
		}
		j++;
	}

3497
swap_buffers:
3498 3499
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3500

3501
	rcu_assign_pointer(thresholds->primary, new);
3502

3503
	/* To be sure that nobody uses thresholds */
3504
	synchronize_rcu();
3505 3506 3507 3508 3509 3510

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3511
unlock:
3512 3513
	mutex_unlock(&memcg->thresholds_lock);
}
3514

3515
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3516 3517
	struct eventfd_ctx *eventfd)
{
3518
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3519 3520
}

3521
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3522 3523
	struct eventfd_ctx *eventfd)
{
3524
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3525 3526
}

3527
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3528
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3529 3530 3531 3532 3533 3534 3535
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3536
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3537 3538 3539 3540 3541

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3542
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3543
		eventfd_signal(eventfd, 1);
3544
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3545 3546 3547 3548

	return 0;
}

3549
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3550
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3551 3552 3553
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3554
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3555

3556
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3557 3558 3559 3560 3561 3562
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3563
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3564 3565
}

3566
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3567
{
3568
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3569

3570
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3571
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3572 3573 3574
	return 0;
}

3575
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3576 3577
	struct cftype *cft, u64 val)
{
3578
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3579 3580

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3581
	if (!css->parent || !((val == 0) || (val == 1)))
3582 3583
		return -EINVAL;

3584
	memcg->oom_kill_disable = val;
3585
	if (!val)
3586
		memcg_oom_recover(memcg);
3587

3588 3589 3590
	return 0;
}

3591 3592 3593 3594 3595 3596 3597
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3608 3609 3610 3611 3612
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3623 3624 3625
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3626 3627
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3628 3629 3630
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3631 3632 3633
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3634
 *
3635 3636 3637 3638 3639
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3640
 */
3641 3642 3643
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3644 3645 3646 3647 3648 3649 3650 3651
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3652 3653 3654
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3655 3656 3657 3658 3659

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3660
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3661 3662 3663 3664
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3676 3677 3678 3679
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3680 3681
#endif	/* CONFIG_CGROUP_WRITEBACK */

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3695 3696 3697 3698 3699
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3700
static void memcg_event_remove(struct work_struct *work)
3701
{
3702 3703
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3704
	struct mem_cgroup *memcg = event->memcg;
3705 3706 3707

	remove_wait_queue(event->wqh, &event->wait);

3708
	event->unregister_event(memcg, event->eventfd);
3709 3710 3711 3712 3713 3714

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3715
	css_put(&memcg->css);
3716 3717 3718 3719 3720 3721 3722
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3723 3724
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3725
{
3726 3727
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3728
	struct mem_cgroup *memcg = event->memcg;
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3741
		spin_lock(&memcg->event_list_lock);
3742 3743 3744 3745 3746 3747 3748 3749
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3750
		spin_unlock(&memcg->event_list_lock);
3751 3752 3753 3754 3755
	}

	return 0;
}

3756
static void memcg_event_ptable_queue_proc(struct file *file,
3757 3758
		wait_queue_head_t *wqh, poll_table *pt)
{
3759 3760
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3761 3762 3763 3764 3765 3766

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3767 3768
 * DO NOT USE IN NEW FILES.
 *
3769 3770 3771 3772 3773
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3774 3775
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3776
{
3777
	struct cgroup_subsys_state *css = of_css(of);
3778
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3779
	struct mem_cgroup_event *event;
3780 3781 3782 3783
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3784
	const char *name;
3785 3786 3787
	char *endp;
	int ret;

3788 3789 3790
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3791 3792
	if (*endp != ' ')
		return -EINVAL;
3793
	buf = endp + 1;
3794

3795
	cfd = simple_strtoul(buf, &endp, 10);
3796 3797
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3798
	buf = endp + 1;
3799 3800 3801 3802 3803

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3804
	event->memcg = memcg;
3805
	INIT_LIST_HEAD(&event->list);
3806 3807 3808
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3834 3835 3836 3837 3838
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3839 3840
	 *
	 * DO NOT ADD NEW FILES.
3841
	 */
A
Al Viro 已提交
3842
	name = cfile.file->f_path.dentry->d_name.name;
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3854 3855
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3856 3857 3858 3859 3860
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3861
	/*
3862 3863 3864
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3865
	 */
A
Al Viro 已提交
3866
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3867
					       &memory_cgrp_subsys);
3868
	ret = -EINVAL;
3869
	if (IS_ERR(cfile_css))
3870
		goto out_put_cfile;
3871 3872
	if (cfile_css != css) {
		css_put(cfile_css);
3873
		goto out_put_cfile;
3874
	}
3875

3876
	ret = event->register_event(memcg, event->eventfd, buf);
3877 3878 3879 3880 3881
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3882 3883 3884
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3885 3886 3887 3888

	fdput(cfile);
	fdput(efile);

3889
	return nbytes;
3890 3891

out_put_css:
3892
	css_put(css);
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3905
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3906
	{
3907
		.name = "usage_in_bytes",
3908
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3909
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3910
	},
3911 3912
	{
		.name = "max_usage_in_bytes",
3913
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3914
		.write = mem_cgroup_reset,
3915
		.read_u64 = mem_cgroup_read_u64,
3916
	},
B
Balbir Singh 已提交
3917
	{
3918
		.name = "limit_in_bytes",
3919
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3920
		.write = mem_cgroup_write,
3921
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3922
	},
3923 3924 3925
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3926
		.write = mem_cgroup_write,
3927
		.read_u64 = mem_cgroup_read_u64,
3928
	},
B
Balbir Singh 已提交
3929 3930
	{
		.name = "failcnt",
3931
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3932
		.write = mem_cgroup_reset,
3933
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3934
	},
3935 3936
	{
		.name = "stat",
3937
		.seq_show = memcg_stat_show,
3938
	},
3939 3940
	{
		.name = "force_empty",
3941
		.write = mem_cgroup_force_empty_write,
3942
	},
3943 3944 3945 3946 3947
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3948
	{
3949
		.name = "cgroup.event_control",		/* XXX: for compat */
3950
		.write = memcg_write_event_control,
3951
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3952
	},
K
KOSAKI Motohiro 已提交
3953 3954 3955 3956 3957
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3958 3959 3960 3961 3962
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3963 3964
	{
		.name = "oom_control",
3965
		.seq_show = mem_cgroup_oom_control_read,
3966
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3967 3968
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3969 3970 3971
	{
		.name = "pressure_level",
	},
3972 3973 3974
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3975
		.seq_show = memcg_numa_stat_show,
3976 3977
	},
#endif
3978 3979 3980
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3981
		.write = mem_cgroup_write,
3982
		.read_u64 = mem_cgroup_read_u64,
3983 3984 3985 3986
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3987
		.read_u64 = mem_cgroup_read_u64,
3988 3989 3990 3991
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3992
		.write = mem_cgroup_reset,
3993
		.read_u64 = mem_cgroup_read_u64,
3994 3995 3996 3997
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3998
		.write = mem_cgroup_reset,
3999
		.read_u64 = mem_cgroup_read_u64,
4000
	},
4001 4002 4003
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4004 4005 4006 4007
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4008 4009
	},
#endif
V
Vladimir Davydov 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4033
	{ },	/* terminate */
4034
};
4035

4036
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4037 4038
{
	struct mem_cgroup_per_node *pn;
4039
	struct mem_cgroup_per_zone *mz;
4040
	int zone, tmp = node;
4041 4042 4043 4044 4045 4046 4047 4048
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4049 4050
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4051
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4052 4053
	if (!pn)
		return 1;
4054 4055 4056

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4057
		lruvec_init(&mz->lruvec);
4058 4059
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4060
		mz->memcg = memcg;
4061
	}
4062
	memcg->nodeinfo[node] = pn;
4063 4064 4065
	return 0;
}

4066
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4067
{
4068
	kfree(memcg->nodeinfo[node]);
4069 4070
}

4071
static void mem_cgroup_free(struct mem_cgroup *memcg)
4072
{
4073
	int node;
4074

4075
	memcg_wb_domain_exit(memcg);
4076 4077 4078
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4079
	kfree(memcg);
4080
}
4081

4082
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4083
{
4084
	struct mem_cgroup *memcg;
4085
	size_t size;
4086
	int node;
B
Balbir Singh 已提交
4087

4088 4089 4090 4091
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4092
	if (!memcg)
4093 4094 4095 4096 4097
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4098

B
Bob Liu 已提交
4099
	for_each_node(node)
4100
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4101
			goto fail;
4102

4103 4104
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4105

4106
	INIT_WORK(&memcg->high_work, high_work_func);
4107 4108 4109 4110
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4111
	vmpressure_init(&memcg->vmpressure);
4112 4113
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4114
	memcg->socket_pressure = jiffies;
4115
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4116 4117
	memcg->kmemcg_id = -1;
#endif
4118 4119 4120
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4121 4122 4123 4124
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4125 4126
}

4127 4128
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4129
{
4130 4131 4132
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4133

4134 4135 4136
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4137

4138 4139 4140 4141 4142 4143 4144 4145
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4146
		page_counter_init(&memcg->memory, &parent->memory);
4147
		page_counter_init(&memcg->swap, &parent->swap);
4148 4149
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4150
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4151
	} else {
4152
		page_counter_init(&memcg->memory, NULL);
4153
		page_counter_init(&memcg->swap, NULL);
4154 4155
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4156
		page_counter_init(&memcg->tcpmem, NULL);
4157 4158 4159 4160 4161
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4162
		if (parent != root_mem_cgroup)
4163
			memory_cgrp_subsys.broken_hierarchy = true;
4164
	}
4165

4166 4167 4168 4169 4170 4171
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4172
	error = memcg_online_kmem(memcg);
4173 4174
	if (error)
		goto fail;
4175

4176
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4177
		static_branch_inc(&memcg_sockets_enabled_key);
4178

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4190 4191

	return 0;
B
Balbir Singh 已提交
4192 4193
}

4194
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4195
{
4196
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4197
	struct mem_cgroup_event *event, *tmp;
4198 4199 4200 4201 4202 4203

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4204 4205
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4206 4207 4208
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4209
	spin_unlock(&memcg->event_list_lock);
4210

4211
	memcg_offline_kmem(memcg);
4212
	wb_memcg_offline(memcg);
4213 4214
}

4215 4216 4217 4218 4219 4220 4221
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4222
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4223
{
4224
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4225

4226
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4227
		static_branch_dec(&memcg_sockets_enabled_key);
4228

4229
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4230
		static_branch_dec(&memcg_sockets_enabled_key);
4231

4232 4233 4234
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4235
	memcg_free_kmem(memcg);
4236
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4237 4238
}

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4256 4257 4258 4259 4260
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4261 4262
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4263
	memcg->soft_limit = PAGE_COUNTER_MAX;
4264
	memcg_wb_domain_size_changed(memcg);
4265 4266
}

4267
#ifdef CONFIG_MMU
4268
/* Handlers for move charge at task migration. */
4269
static int mem_cgroup_do_precharge(unsigned long count)
4270
{
4271
	int ret;
4272

4273 4274
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4275
	if (!ret) {
4276 4277 4278
		mc.precharge += count;
		return ret;
	}
4279 4280

	/* Try charges one by one with reclaim */
4281
	while (count--) {
4282
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4283 4284
		if (ret)
			return ret;
4285
		mc.precharge++;
4286
		cond_resched();
4287
	}
4288
	return 0;
4289 4290 4291
}

/**
4292
 * get_mctgt_type - get target type of moving charge
4293 4294 4295
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4296
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4297 4298 4299 4300 4301 4302
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4303 4304 4305
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4306 4307 4308 4309 4310
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4311
	swp_entry_t	ent;
4312 4313 4314
};

enum mc_target_type {
4315
	MC_TARGET_NONE = 0,
4316
	MC_TARGET_PAGE,
4317
	MC_TARGET_SWAP,
4318 4319
};

D
Daisuke Nishimura 已提交
4320 4321
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4322
{
D
Daisuke Nishimura 已提交
4323
	struct page *page = vm_normal_page(vma, addr, ptent);
4324

D
Daisuke Nishimura 已提交
4325 4326 4327
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4328
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4329
			return NULL;
4330 4331 4332 4333
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4334 4335 4336 4337 4338 4339
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4340
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4341 4342 4343 4344 4345 4346
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4347
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4348
		return NULL;
4349 4350 4351 4352
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4353
	page = find_get_page(swap_address_space(ent), ent.val);
4354
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4355 4356 4357 4358
		entry->val = ent.val;

	return page;
}
4359 4360 4361 4362 4363 4364 4365
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4376
	if (!(mc.flags & MOVE_FILE))
4377 4378 4379
		return NULL;

	mapping = vma->vm_file->f_mapping;
4380
	pgoff = linear_page_index(vma, addr);
4381 4382

	/* page is moved even if it's not RSS of this task(page-faulted). */
4383 4384
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4385 4386 4387 4388
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4389
			if (do_memsw_account())
4390 4391 4392 4393 4394 4395 4396
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4397
#endif
4398 4399 4400
	return page;
}

4401 4402 4403 4404 4405 4406 4407
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4408
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4409 4410 4411 4412 4413
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4414
				   bool compound,
4415 4416 4417 4418
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4419
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4420
	int ret;
4421
	bool anon;
4422 4423 4424

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4425
	VM_BUG_ON(compound && !PageTransHuge(page));
4426 4427

	/*
4428
	 * Prevent mem_cgroup_migrate() from looking at
4429
	 * page->mem_cgroup of its source page while we change it.
4430
	 */
4431
	ret = -EBUSY;
4432 4433 4434 4435 4436 4437 4438
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4439 4440
	anon = PageAnon(page);

4441 4442
	spin_lock_irqsave(&from->move_lock, flags);

4443
	if (!anon && page_mapped(page)) {
4444 4445 4446 4447 4448 4449
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4486
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4487
	memcg_check_events(to, page);
4488
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4489 4490 4491 4492 4493 4494 4495 4496
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4497
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4498 4499 4500
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4501
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4502 4503 4504 4505 4506 4507
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4508
	else if (pte_none(ptent))
4509
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4510 4511

	if (!page && !ent.val)
4512
		return ret;
4513 4514
	if (page) {
		/*
4515
		 * Do only loose check w/o serialization.
4516
		 * mem_cgroup_move_account() checks the page is valid or
4517
		 * not under LRU exclusion.
4518
		 */
4519
		if (page->mem_cgroup == mc.from) {
4520 4521 4522 4523 4524 4525 4526
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4527 4528
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4529
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4530 4531 4532
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4533 4534 4535 4536
	}
	return ret;
}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4550
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4551
	if (!(mc.flags & MOVE_ANON))
4552
		return ret;
4553
	if (page->mem_cgroup == mc.from) {
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4570 4571 4572 4573
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4574
	struct vm_area_struct *vma = walk->vma;
4575 4576 4577
	pte_t *pte;
	spinlock_t *ptl;

4578 4579
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4580 4581
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4582
		spin_unlock(ptl);
4583
		return 0;
4584
	}
4585

4586 4587
	if (pmd_trans_unstable(pmd))
		return 0;
4588 4589
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4590
		if (get_mctgt_type(vma, addr, *pte, NULL))
4591 4592 4593 4594
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4595 4596 4597
	return 0;
}

4598 4599 4600 4601
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4602 4603 4604 4605
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4606
	down_read(&mm->mmap_sem);
4607
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4608
	up_read(&mm->mmap_sem);
4609 4610 4611 4612 4613 4614 4615 4616 4617

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4618 4619 4620 4621 4622
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4623 4624
}

4625 4626
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4627
{
4628 4629 4630
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4631
	/* we must uncharge all the leftover precharges from mc.to */
4632
	if (mc.precharge) {
4633
		cancel_charge(mc.to, mc.precharge);
4634 4635 4636 4637 4638 4639 4640
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4641
		cancel_charge(mc.from, mc.moved_charge);
4642
		mc.moved_charge = 0;
4643
	}
4644 4645 4646
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4647
		if (!mem_cgroup_is_root(mc.from))
4648
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4649

4650
		/*
4651 4652
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4653
		 */
4654
		if (!mem_cgroup_is_root(mc.to))
4655 4656
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4657
		css_put_many(&mc.from->css, mc.moved_swap);
4658

L
Li Zefan 已提交
4659
		/* we've already done css_get(mc.to) */
4660 4661
		mc.moved_swap = 0;
	}
4662 4663 4664 4665 4666 4667 4668
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4669 4670
	struct mm_struct *mm = mc.mm;

4671 4672 4673 4674 4675 4676
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4677
	spin_lock(&mc.lock);
4678 4679
	mc.from = NULL;
	mc.to = NULL;
4680
	mc.mm = NULL;
4681
	spin_unlock(&mc.lock);
4682 4683

	mmput(mm);
4684 4685
}

4686
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4687
{
4688
	struct cgroup_subsys_state *css;
4689
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4690
	struct mem_cgroup *from;
4691
	struct task_struct *leader, *p;
4692
	struct mm_struct *mm;
4693
	unsigned long move_flags;
4694
	int ret = 0;
4695

4696 4697
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4698 4699
		return 0;

4700 4701 4702 4703 4704 4705 4706
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4707
	cgroup_taskset_for_each_leader(leader, css, tset) {
4708 4709
		WARN_ON_ONCE(p);
		p = leader;
4710
		memcg = mem_cgroup_from_css(css);
4711 4712 4713 4714
	}
	if (!p)
		return 0;

4715 4716 4717 4718 4719 4720 4721 4722 4723
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4740
		mc.mm = mm;
4741 4742 4743 4744 4745 4746 4747 4748 4749
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4750 4751
	} else {
		mmput(mm);
4752 4753 4754 4755
	}
	return ret;
}

4756
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4757
{
4758 4759
	if (mc.to)
		mem_cgroup_clear_mc();
4760 4761
}

4762 4763 4764
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4765
{
4766
	int ret = 0;
4767
	struct vm_area_struct *vma = walk->vma;
4768 4769
	pte_t *pte;
	spinlock_t *ptl;
4770 4771 4772
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4773

4774 4775
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4776
		if (mc.precharge < HPAGE_PMD_NR) {
4777
			spin_unlock(ptl);
4778 4779 4780 4781 4782 4783
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4784
				if (!mem_cgroup_move_account(page, true,
4785
							     mc.from, mc.to)) {
4786 4787 4788 4789 4790 4791 4792
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4793
		spin_unlock(ptl);
4794
		return 0;
4795 4796
	}

4797 4798
	if (pmd_trans_unstable(pmd))
		return 0;
4799 4800 4801 4802
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4803
		swp_entry_t ent;
4804 4805 4806 4807

		if (!mc.precharge)
			break;

4808
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4809 4810
		case MC_TARGET_PAGE:
			page = target.page;
4811 4812 4813 4814 4815 4816 4817 4818
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4819 4820
			if (isolate_lru_page(page))
				goto put;
4821 4822
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4823
				mc.precharge--;
4824 4825
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4826 4827
			}
			putback_lru_page(page);
4828
put:			/* get_mctgt_type() gets the page */
4829 4830
			put_page(page);
			break;
4831 4832
		case MC_TARGET_SWAP:
			ent = target.ent;
4833
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4834
				mc.precharge--;
4835 4836 4837
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4838
			break;
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4853
		ret = mem_cgroup_do_precharge(1);
4854 4855 4856 4857 4858 4859 4860
		if (!ret)
			goto retry;
	}

	return ret;
}

4861
static void mem_cgroup_move_charge(void)
4862
{
4863 4864
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4865
		.mm = mc.mm,
4866
	};
4867 4868

	lru_add_drain_all();
4869
	/*
4870 4871 4872
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4873 4874 4875
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4876
retry:
4877
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4889 4890 4891 4892 4893
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4894
	up_read(&mc.mm->mmap_sem);
4895
	atomic_dec(&mc.from->moving_account);
4896 4897
}

4898
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4899
{
4900 4901
	if (mc.to) {
		mem_cgroup_move_charge();
4902
		mem_cgroup_clear_mc();
4903
	}
B
Balbir Singh 已提交
4904
}
4905
#else	/* !CONFIG_MMU */
4906
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4907 4908 4909
{
	return 0;
}
4910
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4911 4912
{
}
4913
static void mem_cgroup_move_task(void)
4914 4915 4916
{
}
#endif
B
Balbir Singh 已提交
4917

4918 4919
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4920 4921
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4922
 */
4923
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4924 4925
{
	/*
4926
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4927 4928 4929
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4930
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4931 4932 4933
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4934 4935
}

4936 4937 4938
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4939 4940 4941
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4942 4943 4944 4945 4946
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4947
	unsigned long low = READ_ONCE(memcg->low);
4948 4949

	if (low == PAGE_COUNTER_MAX)
4950
		seq_puts(m, "max\n");
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4965
	err = page_counter_memparse(buf, "max", &low);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4977
	unsigned long high = READ_ONCE(memcg->high);
4978 4979

	if (high == PAGE_COUNTER_MAX)
4980
		seq_puts(m, "max\n");
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4991
	unsigned long nr_pages;
4992 4993 4994 4995
	unsigned long high;
	int err;

	buf = strstrip(buf);
4996
	err = page_counter_memparse(buf, "max", &high);
4997 4998 4999 5000 5001
	if (err)
		return err;

	memcg->high = high;

5002 5003 5004 5005 5006
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5007
	memcg_wb_domain_size_changed(memcg);
5008 5009 5010 5011 5012 5013
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5014
	unsigned long max = READ_ONCE(memcg->memory.limit);
5015 5016

	if (max == PAGE_COUNTER_MAX)
5017
		seq_puts(m, "max\n");
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5028 5029
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5030 5031 5032 5033
	unsigned long max;
	int err;

	buf = strstrip(buf);
5034
	err = page_counter_memparse(buf, "max", &max);
5035 5036 5037
	if (err)
		return err;

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5068

5069
	memcg_wb_domain_size_changed(memcg);
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5085 5086 5087
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5088 5089
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5103 5104 5105
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5106
	seq_printf(m, "anon %llu\n",
5107
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5108
	seq_printf(m, "file %llu\n",
5109
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5110 5111
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5112 5113 5114
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5115
	seq_printf(m, "sock %llu\n",
5116
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5117 5118

	seq_printf(m, "file_mapped %llu\n",
5119
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5120
	seq_printf(m, "file_dirty %llu\n",
5121
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5122
	seq_printf(m, "file_writeback %llu\n",
5123
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5135 5136 5137 5138 5139
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5140 5141 5142
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5143
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5144
	seq_printf(m, "pgmajfault %lu\n",
5145
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5146 5147 5148 5149

	return 0;
}

5150 5151 5152
static struct cftype memory_files[] = {
	{
		.name = "current",
5153
		.flags = CFTYPE_NOT_ON_ROOT,
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5177
		.file_offset = offsetof(struct mem_cgroup, events_file),
5178 5179
		.seq_show = memory_events_show,
	},
5180 5181 5182 5183 5184
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5185 5186 5187
	{ }	/* terminate */
};

5188
struct cgroup_subsys memory_cgrp_subsys = {
5189
	.css_alloc = mem_cgroup_css_alloc,
5190
	.css_online = mem_cgroup_css_online,
5191
	.css_offline = mem_cgroup_css_offline,
5192
	.css_released = mem_cgroup_css_released,
5193
	.css_free = mem_cgroup_css_free,
5194
	.css_reset = mem_cgroup_css_reset,
5195 5196
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5197
	.post_attach = mem_cgroup_move_task,
5198
	.bind = mem_cgroup_bind,
5199 5200
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5201
	.early_init = 0,
B
Balbir Singh 已提交
5202
};
5203

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5226
	if (page_counter_read(&memcg->memory) >= memcg->low)
5227 5228 5229 5230 5231 5232 5233 5234
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5235
		if (page_counter_read(&memcg->memory) >= memcg->low)
5236 5237 5238 5239 5240
			return false;
	}
	return true;
}

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5259 5260
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5261 5262
{
	struct mem_cgroup *memcg = NULL;
5263
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5277
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5278
		if (page->mem_cgroup)
5279
			goto out;
5280

5281
		if (do_swap_account) {
5282 5283 5284 5285 5286 5287 5288 5289 5290
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5321
			      bool lrucare, bool compound)
5322
{
5323
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5338 5339 5340
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5341
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5342 5343
	memcg_check_events(memcg, page);
	local_irq_enable();
5344

5345
	if (do_memsw_account() && PageSwapCache(page)) {
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5363 5364
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5365
{
5366
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5381 5382 5383 5384
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5385
	unsigned long nr_pages = nr_anon + nr_file;
5386 5387
	unsigned long flags;

5388
	if (!mem_cgroup_is_root(memcg)) {
5389
		page_counter_uncharge(&memcg->memory, nr_pages);
5390
		if (do_memsw_account())
5391
			page_counter_uncharge(&memcg->memsw, nr_pages);
5392 5393
		memcg_oom_recover(memcg);
	}
5394 5395 5396 5397 5398 5399

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5400
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5401 5402
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5403 5404

	if (!mem_cgroup_is_root(memcg))
5405
		css_put_many(&memcg->css, nr_pages);
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5418 5419 5420 5421
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5432
		if (!page->mem_cgroup)
5433 5434 5435 5436
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5437
		 * page->mem_cgroup at this point, we have fully
5438
		 * exclusive access to the page.
5439 5440
		 */

5441
		if (memcg != page->mem_cgroup) {
5442
			if (memcg) {
5443 5444 5445
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5446
			}
5447
			memcg = page->mem_cgroup;
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5461
		page->mem_cgroup = NULL;
5462 5463 5464 5465 5466

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5467 5468
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5469 5470
}

5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5483
	/* Don't touch page->lru of any random page, pre-check: */
5484
	if (!page->mem_cgroup)
5485 5486
		return;

5487 5488 5489
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5490

5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5502

5503 5504
	if (!list_empty(page_list))
		uncharge_list(page_list);
5505 5506 5507
}

/**
5508 5509 5510
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5511
 *
5512 5513
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5514 5515 5516
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5517
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5518
{
5519
	struct mem_cgroup *memcg;
5520 5521
	unsigned int nr_pages;
	bool compound;
5522 5523 5524 5525

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5526 5527
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5528 5529 5530 5531 5532

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5533
	if (newpage->mem_cgroup)
5534 5535
		return;

5536
	/* Swapcache readahead pages can get replaced before being charged */
5537
	memcg = oldpage->mem_cgroup;
5538
	if (!memcg)
5539 5540
		return;

5541 5542 5543 5544 5545 5546 5547 5548
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5549

5550
	commit_charge(newpage, memcg, false);
5551 5552 5553 5554 5555

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5556 5557
}

5558
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5581 5582
	if (memcg == root_mem_cgroup)
		goto out;
5583
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5584 5585
		goto out;
	if (css_tryget_online(&memcg->css))
5586
		sk->sk_memcg = memcg;
5587
out:
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5608
	gfp_t gfp_mask = GFP_KERNEL;
5609

5610
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5611
		struct page_counter *fail;
5612

5613 5614
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5615 5616
			return true;
		}
5617 5618
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5619
		return false;
5620
	}
5621

5622 5623 5624 5625
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5626 5627
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5628 5629 5630 5631
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5642
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5643
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5644 5645
		return;
	}
5646

5647 5648
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5649 5650
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5651 5652
}

5653 5654 5655 5656 5657 5658 5659 5660 5661
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5662 5663
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5664 5665 5666 5667
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5668

5669
/*
5670 5671 5672 5673 5674 5675
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5676 5677 5678
 */
static int __init mem_cgroup_init(void)
{
5679 5680
	int cpu, node;

5681
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5704 5705 5706
	return 0;
}
subsys_initcall(mem_cgroup_init);
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5724
	if (!do_memsw_account())
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5742 5743 5744 5745 5746 5747 5748
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5749
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5750 5751 5752
	memcg_check_events(memcg, page);
}

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5789 5790 5791 5792
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5793
 * Drop the swap charge associated with @entry.
5794 5795 5796 5797 5798 5799
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5800
	if (!do_swap_account)
5801 5802 5803 5804
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5805
	memcg = mem_cgroup_from_id(id);
5806
	if (memcg) {
5807 5808 5809 5810 5811 5812
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5813 5814 5815 5816 5817 5818
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5959 5960
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5961 5962 5963 5964 5965 5966 5967 5968
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */