sched.c 218.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 495 496
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
497 498
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
499 500 501 502
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
503 504
	struct rt_rq rt;

I
Ingo Molnar 已提交
505
#ifdef CONFIG_FAIR_GROUP_SCHED
506 507
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
508 509
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
510
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

521
	struct task_struct *curr, *idle;
522
	unsigned long next_balance;
L
Linus Torvalds 已提交
523
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
524

525
	u64 clock;
I
Ingo Molnar 已提交
526

L
Linus Torvalds 已提交
527 528 529
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
530
	struct root_domain *rd;
L
Linus Torvalds 已提交
531 532
	struct sched_domain *sd;

533
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
534
	/* For active balancing */
535
	int post_schedule;
L
Linus Torvalds 已提交
536 537
	int active_balance;
	int push_cpu;
538 539
	/* cpu of this runqueue: */
	int cpu;
540
	int online;
L
Linus Torvalds 已提交
541

542
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
543

544
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
545
	struct list_head migration_queue;
546 547 548

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
549 550
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
551 552
#endif

553 554 555 556
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
557
#ifdef CONFIG_SCHED_HRTICK
558 559 560 561
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
562 563 564
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
565 566 567
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
568 569
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
570 571

	/* sys_sched_yield() stats */
572
	unsigned int yld_count;
L
Linus Torvalds 已提交
573 574

	/* schedule() stats */
575 576 577
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
578 579

	/* try_to_wake_up() stats */
580 581
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
582 583

	/* BKL stats */
584
	unsigned int bkl_count;
L
Linus Torvalds 已提交
585 586 587
#endif
};

588
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
589

P
Peter Zijlstra 已提交
590 591
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
592
{
P
Peter Zijlstra 已提交
593
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
594 595
}

596 597 598 599 600 601 602 603 604
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

605
#define rcu_dereference_check_sched_domain(p) \
606 607 608 609
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
610 611
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
613 614 615 616
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
617
#define for_each_domain(cpu, __sd) \
618
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
619 620 621 622 623

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
624
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
625

I
Ingo Molnar 已提交
626
inline void update_rq_clock(struct rq *rq)
627 628 629 630
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
631 632 633 634 635 636 637 638 639
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
640 641
/**
 * runqueue_is_locked
642
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
643 644 645 646 647
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
648
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
649
{
650
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
651 652
}

I
Ingo Molnar 已提交
653 654 655
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
656 657 658 659

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
660
enum {
P
Peter Zijlstra 已提交
661
#include "sched_features.h"
I
Ingo Molnar 已提交
662 663
};

P
Peter Zijlstra 已提交
664 665 666 667 668
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
669
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
670 671 672 673 674 675 676 677 678
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

679
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
680 681 682 683 684 685
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
686
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
687 688 689 690
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
691 692 693
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
694
	}
L
Li Zefan 已提交
695
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
696

L
Li Zefan 已提交
697
	return 0;
P
Peter Zijlstra 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
717
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

737
	*ppos += cnt;
P
Peter Zijlstra 已提交
738 739 740 741

	return cnt;
}

L
Li Zefan 已提交
742 743 744 745 746
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

747
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
748 749 750 751 752
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
767

768 769 770 771 772 773
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
774 775
/*
 * ratelimit for updating the group shares.
776
 * default: 0.25ms
P
Peter Zijlstra 已提交
777
 */
778
unsigned int sysctl_sched_shares_ratelimit = 250000;
779
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
780

781 782 783 784 785 786 787
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

788 789 790 791 792 793 794 795
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
796
/*
P
Peter Zijlstra 已提交
797
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
798 799
 * default: 1s
 */
P
Peter Zijlstra 已提交
800
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
801

802 803
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
804 805 806 807 808
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
809

810 811 812 813 814 815 816
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
817
	if (sysctl_sched_rt_runtime < 0)
818 819 820 821
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
822

L
Linus Torvalds 已提交
823
#ifndef prepare_arch_switch
824 825 826 827 828 829
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

830 831 832 833 834
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

835
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
836
static inline int task_running(struct rq *rq, struct task_struct *p)
837
{
838
	return task_current(rq, p);
839 840
}

841
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
842 843 844
{
}

845
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
846
{
847 848 849 850
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
851 852 853 854 855 856 857
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

858
	raw_spin_unlock_irq(&rq->lock);
859 860 861
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
862
static inline int task_running(struct rq *rq, struct task_struct *p)
863 864 865 866
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
867
	return task_current(rq, p);
868 869 870
#endif
}

871
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872 873 874 875 876 877 878 879 880 881
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882
	raw_spin_unlock_irq(&rq->lock);
883
#else
884
	raw_spin_unlock(&rq->lock);
885 886 887
#endif
}

888
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
889 890 891 892 893 894 895 896 897 898 899 900
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
901
#endif
902 903
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
904

905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

918 919 920 921
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
922
static inline struct rq *__task_rq_lock(struct task_struct *p)
923 924
	__acquires(rq->lock)
{
925 926
	struct rq *rq;

927
	for (;;) {
928 929 930
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
931
		raw_spin_lock(&rq->lock);
932
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
933
			return rq;
934
		raw_spin_unlock(&rq->lock);
935 936 937
	}
}

L
Linus Torvalds 已提交
938 939
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
940
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
941 942
 * explicitly disabling preemption.
 */
943
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
944 945
	__acquires(rq->lock)
{
946
	struct rq *rq;
L
Linus Torvalds 已提交
947

948
	for (;;) {
949 950
		while (task_is_waking(p))
			cpu_relax();
951 952
		local_irq_save(*flags);
		rq = task_rq(p);
953
		raw_spin_lock(&rq->lock);
954
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
955
			return rq;
956
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
957 958 959
	}
}

960 961 962 963 964
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
965
	raw_spin_unlock_wait(&rq->lock);
966 967
}

A
Alexey Dobriyan 已提交
968
static void __task_rq_unlock(struct rq *rq)
969 970
	__releases(rq->lock)
{
971
	raw_spin_unlock(&rq->lock);
972 973
}

974
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
975 976
	__releases(rq->lock)
{
977
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
978 979 980
}

/*
981
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
982
 */
A
Alexey Dobriyan 已提交
983
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
984 985
	__acquires(rq->lock)
{
986
	struct rq *rq;
L
Linus Torvalds 已提交
987 988 989

	local_irq_disable();
	rq = this_rq();
990
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
991 992 993 994

	return rq;
}

P
Peter Zijlstra 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1016
	if (!cpu_active(cpu_of(rq)))
1017
		return 0;
P
Peter Zijlstra 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1037
	raw_spin_lock(&rq->lock);
1038
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1039
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1040
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1041 1042 1043 1044

	return HRTIMER_NORESTART;
}

1045
#ifdef CONFIG_SMP
1046 1047 1048 1049
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1050
{
1051
	struct rq *rq = arg;
1052

1053
	raw_spin_lock(&rq->lock);
1054 1055
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1056
	raw_spin_unlock(&rq->lock);
1057 1058
}

1059 1060 1061 1062 1063 1064
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1065
{
1066 1067
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1068

1069
	hrtimer_set_expires(timer, time);
1070 1071 1072 1073

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1074
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1075 1076
		rq->hrtick_csd_pending = 1;
	}
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1091
		hrtick_clear(cpu_rq(cpu));
1092 1093 1094 1095 1096 1097
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1098
static __init void init_hrtick(void)
1099 1100 1101
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1102 1103 1104 1105 1106 1107 1108 1109
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1110
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1111
			HRTIMER_MODE_REL_PINNED, 0);
1112
}
1113

A
Andrew Morton 已提交
1114
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1115 1116
{
}
1117
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1118

1119
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1120
{
1121 1122
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1123

1124 1125 1126 1127
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1128

1129 1130
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1131
}
A
Andrew Morton 已提交
1132
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1133 1134 1135 1136 1137 1138 1139 1140
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1141 1142 1143
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1144
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1145

I
Ingo Molnar 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1159
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1160 1161 1162
{
	int cpu;

1163
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1164

1165
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1166 1167
		return;

1168
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1185
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1186 1187
		return;
	resched_task(cpu_curr(cpu));
1188
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1189
}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1224
	set_tsk_need_resched(rq->idle);
1225 1226 1227 1228 1229 1230

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1231
#endif /* CONFIG_NO_HZ */
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1254
#else /* !CONFIG_SMP */
1255
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1256
{
1257
	assert_raw_spin_locked(&task_rq(p)->lock);
1258
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1259
}
1260 1261 1262 1263

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1264
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1265

1266 1267 1268 1269 1270 1271 1272 1273
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1274 1275 1276
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1277
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1278

1279 1280 1281
/*
 * delta *= weight / lw
 */
1282
static unsigned long
1283 1284 1285 1286 1287
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1288 1289 1290 1291 1292 1293 1294
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1295 1296 1297 1298 1299

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1300
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1301
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1302 1303
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1304
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1305

1306
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1307 1308
}

1309
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1310 1311
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1312
	lw->inv_weight = 0;
1313 1314
}

1315
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1316 1317
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1318
	lw->inv_weight = 0;
1319 1320
}

1321 1322 1323 1324
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1325
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1326 1327 1328 1329
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1330 1331
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1341 1342 1343
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1344 1345
 */
static const int prio_to_weight[40] = {
1346 1347 1348 1349 1350 1351 1352 1353
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1354 1355
};

1356 1357 1358 1359 1360 1361 1362
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1363
static const u32 prio_to_wmult[40] = {
1364 1365 1366 1367 1368 1369 1370 1371
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1372
};
1373

1374 1375 1376 1377 1378 1379 1380 1381
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1382 1383
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1384 1385
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1386 1387
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1388 1389
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1390 1391
#endif

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1402
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1403
typedef int (*tg_visitor)(struct task_group *, void *);
1404 1405 1406 1407 1408

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1409
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1410 1411
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1412
	int ret;
1413 1414 1415 1416

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1417 1418 1419
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1420 1421 1422 1423 1424 1425 1426
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1427 1428 1429
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1430 1431 1432 1433 1434

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1435
out_unlock:
1436
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1437 1438

	return ret;
1439 1440
}

P
Peter Zijlstra 已提交
1441 1442 1443
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1444
}
P
Peter Zijlstra 已提交
1445 1446 1447
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1487 1488
static struct sched_group *group_of(int cpu)
{
1489
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1507 1508 1509 1510 1511
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1512
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1513

1514 1515
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1516 1517
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1518 1519 1520 1521 1522

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1523

1524
static __read_mostly unsigned long *update_shares_data;
1525

1526 1527 1528 1529 1530
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1531 1532 1533
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1534
				    unsigned long *usd_rq_weight)
1535
{
1536
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1537
	int boost = 0;
1538

1539
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1540 1541 1542 1543
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1544

1545
	/*
P
Peter Zijlstra 已提交
1546 1547 1548
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1549
	 */
1550
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1551
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1552

1553 1554 1555 1556
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1557

1558
		raw_spin_lock_irqsave(&rq->lock, flags);
1559
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1560
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1561
		__set_se_shares(tg->se[cpu], shares);
1562
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1563
	}
1564
}
1565 1566

/*
1567 1568 1569
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1570
 */
P
Peter Zijlstra 已提交
1571
static int tg_shares_up(struct task_group *tg, void *data)
1572
{
1573
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1574
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1575
	struct sched_domain *sd = data;
1576
	unsigned long flags;
1577
	int i;
1578

1579 1580 1581 1582
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1583
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1584

1585
	for_each_cpu(i, sched_domain_span(sd)) {
1586
		weight = tg->cfs_rq[i]->load.weight;
1587
		usd_rq_weight[i] = weight;
1588

1589
		rq_weight += weight;
1590 1591 1592 1593 1594 1595 1596 1597
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1598
		sum_weight += weight;
1599
		shares += tg->cfs_rq[i]->shares;
1600 1601
	}

1602 1603 1604
	if (!rq_weight)
		rq_weight = sum_weight;

1605 1606 1607 1608 1609
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1610

1611
	for_each_cpu(i, sched_domain_span(sd))
1612
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1613 1614

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1615 1616

	return 0;
1617 1618 1619
}

/*
1620 1621 1622
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1623
 */
P
Peter Zijlstra 已提交
1624
static int tg_load_down(struct task_group *tg, void *data)
1625
{
1626
	unsigned long load;
P
Peter Zijlstra 已提交
1627
	long cpu = (long)data;
1628

1629 1630 1631 1632 1633 1634 1635
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1636

1637
	tg->cfs_rq[cpu]->h_load = load;
1638

P
Peter Zijlstra 已提交
1639
	return 0;
1640 1641
}

1642
static void update_shares(struct sched_domain *sd)
1643
{
1644 1645 1646 1647 1648 1649 1650 1651
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1652 1653 1654

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1655
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1656
	}
1657 1658
}

P
Peter Zijlstra 已提交
1659
static void update_h_load(long cpu)
1660
{
1661 1662 1663
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1664
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1665 1666 1667 1668
}

#else

1669
static inline void update_shares(struct sched_domain *sd)
1670 1671 1672
{
}

1673 1674
#endif

1675 1676
#ifdef CONFIG_PREEMPT

1677 1678
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1679
/*
1680 1681 1682 1683 1684 1685
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1686
 */
1687 1688 1689 1690 1691
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1692
	raw_spin_unlock(&this_rq->lock);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 1708 1709 1710 1711 1712
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1713
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1714
		if (busiest < this_rq) {
1715 1716 1717 1718
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1719 1720
			ret = 1;
		} else
1721 1722
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1723 1724 1725 1726
	}
	return ret;
}

1727 1728 1729 1730 1731 1732 1733 1734 1735
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1736
		raw_spin_unlock(&this_rq->lock);
1737 1738 1739 1740 1741 1742
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1743 1744 1745
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1746
	raw_spin_unlock(&busiest->lock);
1747 1748
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
	update_rq_clock(rq1);
	update_rq_clock(rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1794 1795
#endif

V
Vegard Nossum 已提交
1796
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1797 1798
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1799
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1800 1801 1802
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1803
#endif
1804

1805
static void calc_load_account_active(struct rq *this_rq);
1806
static void update_sysctl(void);
1807
static int get_update_sysctl_factor(void);
1808

P
Peter Zijlstra 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1822

1823
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1824 1825

#define sched_class_highest (&rt_sched_class)
1826 1827
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1828

1829 1830
#include "sched_stats.h"

1831
static void inc_nr_running(struct rq *rq)
1832 1833 1834 1835
{
	rq->nr_running++;
}

1836
static void dec_nr_running(struct rq *rq)
1837 1838 1839 1840
{
	rq->nr_running--;
}

1841 1842 1843
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1844 1845 1846 1847
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1848

I
Ingo Molnar 已提交
1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1857

I
Ingo Molnar 已提交
1858 1859
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 1861
}

1862 1863 1864 1865 1866 1867
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1868 1869
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1870
{
P
Peter Zijlstra 已提交
1871 1872 1873
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1874
	sched_info_queued(p);
1875
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1876
	p->se.on_rq = 1;
1877 1878
}

1879
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1880
{
P
Peter Zijlstra 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1890 1891
	}

1892
	sched_info_dequeued(p);
1893
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 0;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1905
	enqueue_task(rq, p, wakeup, false);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1928
/*
I
Ingo Molnar 已提交
1929
 * __normal_prio - return the priority that is based on the static prio
1930 1931 1932
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1933
	return p->static_prio;
1934 1935
}

1936 1937 1938 1939 1940 1941 1942
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1943
static inline int normal_prio(struct task_struct *p)
1944 1945 1946
{
	int prio;

1947
	if (task_has_rt_policy(p))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1961
static int effective_prio(struct task_struct *p)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1974 1975 1976 1977
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1978
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1979 1980 1981 1982
{
	return cpu_curr(task_cpu(p)) == p;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1995
#ifdef CONFIG_SMP
1996 1997 1998
/*
 * Is this task likely cache-hot:
 */
1999
static int
2000 2001 2002 2003
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2004 2005 2006
	if (p->sched_class != &fair_sched_class)
		return 0;

2007 2008 2009
	/*
	 * Buddy candidates are cache hot:
	 */
2010
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2011 2012
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2013 2014
		return 1;

2015 2016 2017 2018 2019
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2020 2021 2022 2023 2024
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2025
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2026
{
2027 2028 2029 2030 2031
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2032 2033
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 2035
#endif

2036
	trace_sched_migrate_task(p, new_cpu);
2037

2038 2039 2040 2041
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2042 2043

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2044 2045
}

2046
struct migration_req {
L
Linus Torvalds 已提交
2047 2048
	struct list_head list;

2049
	struct task_struct *task;
L
Linus Torvalds 已提交
2050 2051 2052
	int dest_cpu;

	struct completion done;
2053
};
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2059
static int
2060
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2061
{
2062
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2063 2064 2065

	/*
	 * If the task is not on a runqueue (and not running), then
2066
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2067
	 */
2068
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2075

L
Linus Torvalds 已提交
2076 2077 2078
	return 1;
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2122 2123 2124
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2125 2126 2127 2128 2129 2130 2131
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2138
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2139 2140
{
	unsigned long flags;
I
Ingo Molnar 已提交
2141
	int running, on_rq;
R
Roland McGrath 已提交
2142
	unsigned long ncsw;
2143
	struct rq *rq;
L
Linus Torvalds 已提交
2144

2145 2146 2147 2148 2149 2150 2151 2152
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2165 2166 2167
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2168
			cpu_relax();
R
Roland McGrath 已提交
2169
		}
2170

2171 2172 2173 2174 2175 2176
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2177
		trace_sched_wait_task(rq, p);
2178 2179
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2180
		ncsw = 0;
2181
		if (!match_state || p->state == match_state)
2182
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183
		task_rq_unlock(rq, &flags);
2184

R
Roland McGrath 已提交
2185 2186 2187 2188 2189 2190
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2201

2202 2203 2204 2205 2206
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2207
		 * So if it was still runnable (but just not actively
2208 2209 2210 2211 2212 2213 2214
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2215

2216 2217 2218 2219 2220 2221 2222
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2223 2224

	return ncsw;
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2240
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2250
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2251
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2252

T
Thomas Gleixner 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2274
#ifdef CONFIG_SMP
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2312
/*
2313 2314 2315
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2316
 *
2317 2318
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2319
 */
2320 2321 2322
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2336
		     !cpu_online(cpu)))
2337
		cpu = select_fallback_rq(task_cpu(p), p);
2338 2339

	return cpu;
2340 2341 2342
}
#endif

L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2357 2358
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2359
{
2360
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2361
	unsigned long flags;
2362
	struct rq *rq;
L
Linus Torvalds 已提交
2363

2364
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2365
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2366

P
Peter Zijlstra 已提交
2367
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2368

2369
	smp_wmb();
2370
	rq = task_rq_lock(p, &flags);
2371
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2372
	if (!(p->state & state))
L
Linus Torvalds 已提交
2373 2374
		goto out;

I
Ingo Molnar 已提交
2375
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2376 2377 2378
		goto out_running;

	cpu = task_cpu(p);
2379
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2380 2381 2382 2383 2384

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2385 2386 2387
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2388 2389
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2390
	 */
2391 2392
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2393
	p->state = TASK_WAKING;
2394 2395 2396 2397

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2398
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2399

2400
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2401 2402 2403 2404 2405 2406
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2407
		set_task_cpu(p, cpu);
2408
	}
P
Peter Zijlstra 已提交
2409

2410 2411
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
2412
	update_rq_clock(rq);
2413

2414 2415 2416 2417 2418 2419 2420
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2421
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2422

2423 2424 2425 2426 2427 2428 2429
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2430
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 2432 2433 2434 2435
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2436
#endif /* CONFIG_SCHEDSTATS */
2437

L
Linus Torvalds 已提交
2438 2439
out_activate:
#endif /* CONFIG_SMP */
2440
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2441
	if (wake_flags & WF_SYNC)
2442 2443 2444 2445 2446 2447 2448
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2449
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2450 2451
	success = 1;

P
Peter Zijlstra 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2468
out_running:
2469
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2470
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2471

L
Linus Torvalds 已提交
2472
	p->state = TASK_RUNNING;
2473
#ifdef CONFIG_SMP
2474 2475
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2487
#endif
L
Linus Torvalds 已提交
2488 2489
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2490
	put_cpu();
L
Linus Torvalds 已提交
2491 2492 2493 2494

	return success;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2506
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2507
{
2508
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2509 2510 2511
}
EXPORT_SYMBOL(wake_up_process);

2512
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2520 2521 2522 2523 2524 2525 2526
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2527
	p->se.prev_sum_exec_runtime	= 0;
2528
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2529 2530
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2531 2532
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2533 2534

#ifdef CONFIG_SCHEDSTATS
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2565
#endif
N
Nick Piggin 已提交
2566

P
Peter Zijlstra 已提交
2567
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2568
	p->se.on_rq = 0;
2569
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2570

2571 2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2584 2585 2586 2587 2588 2589
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2590

2591 2592 2593 2594
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2595
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2596
			p->policy = SCHED_NORMAL;
2597 2598
			p->normal_prio = p->static_prio;
		}
2599

2600 2601
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2602
			p->normal_prio = p->static_prio;
2603 2604 2605
			set_load_weight(p);
		}

2606 2607 2608 2609 2610 2611
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2612

2613 2614 2615 2616 2617
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2618 2619
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2620

P
Peter Zijlstra 已提交
2621 2622 2623
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2624 2625
	set_task_cpu(p, cpu);

2626
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2627
	if (likely(sched_info_on()))
2628
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2629
#endif
2630
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2631 2632
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2633
#ifdef CONFIG_PREEMPT
2634
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2635
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2636
#endif
2637 2638
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2639
	put_cpu();
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2649
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2650 2651
{
	unsigned long flags;
I
Ingo Molnar 已提交
2652
	struct rq *rq;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2668

2669 2670 2671 2672 2673 2674 2675
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2676 2677
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2678
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2679
	activate_task(rq, p, 0);
2680
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2681
	check_preempt_curr(rq, p, WF_FORK);
2682
#ifdef CONFIG_SMP
2683 2684
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2685
#endif
I
Ingo Molnar 已提交
2686
	task_rq_unlock(rq, &flags);
2687
	put_cpu();
L
Linus Torvalds 已提交
2688 2689
}

2690 2691 2692
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2693
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2694
 * @notifier: notifier struct to register
2695 2696 2697 2698 2699 2700 2701 2702 2703
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2704
 * @notifier: notifier struct to unregister
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2734
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2746
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2747

2748 2749 2750
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2751
 * @prev: the current task that is being switched out
2752 2753 2754 2755 2756 2757 2758 2759 2760
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2761 2762 2763
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2764
{
2765
	fire_sched_out_preempt_notifiers(prev, next);
2766 2767 2768 2769
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2770 2771
/**
 * finish_task_switch - clean up after a task-switch
2772
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2773 2774
 * @prev: the thread we just switched away from.
 *
2775 2776 2777 2778
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2779 2780
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2781
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2782 2783 2784
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2785
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2786 2787 2788
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2789
	long prev_state;
L
Linus Torvalds 已提交
2790 2791 2792 2793 2794

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2795
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2796 2797
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2798
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2799 2800 2801 2802 2803
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2804
	prev_state = prev->state;
2805
	finish_arch_switch(prev);
2806 2807 2808
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2809
	perf_event_task_sched_in(current);
2810 2811 2812
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2813
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2814

2815
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2816 2817
	if (mm)
		mmdrop(mm);
2818
	if (unlikely(prev_state == TASK_DEAD)) {
2819 2820 2821
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2822
		 */
2823
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2824
		put_task_struct(prev);
2825
	}
L
Linus Torvalds 已提交
2826 2827
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2843
		raw_spin_lock_irqsave(&rq->lock, flags);
2844 2845
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2846
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2847 2848 2849 2850 2851 2852

		rq->post_schedule = 0;
	}
}

#else
2853

2854 2855 2856 2857 2858 2859
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2860 2861
}

2862 2863
#endif

L
Linus Torvalds 已提交
2864 2865 2866 2867
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2868
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2869 2870
	__releases(rq->lock)
{
2871 2872
	struct rq *rq = this_rq();

2873
	finish_task_switch(rq, prev);
2874

2875 2876 2877 2878 2879
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2880

2881 2882 2883 2884
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2885
	if (current->set_child_tid)
2886
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2893
static inline void
2894
context_switch(struct rq *rq, struct task_struct *prev,
2895
	       struct task_struct *next)
L
Linus Torvalds 已提交
2896
{
I
Ingo Molnar 已提交
2897
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2898

2899
	prepare_task_switch(rq, prev, next);
2900
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2901 2902
	mm = next->mm;
	oldmm = prev->active_mm;
2903 2904 2905 2906 2907
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2908
	arch_start_context_switch(prev);
2909

2910
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2917
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2918 2919 2920
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2921 2922 2923 2924 2925 2926 2927
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2928
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2929
#endif
L
Linus Torvalds 已提交
2930 2931 2932 2933

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2934 2935 2936 2937 2938 2939 2940
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2958
}
L
Linus Torvalds 已提交
2959 2960

unsigned long nr_uninterruptible(void)
2961
{
L
Linus Torvalds 已提交
2962
	unsigned long i, sum = 0;
2963

2964
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2965
		sum += cpu_rq(i)->nr_uninterruptible;
2966 2967

	/*
L
Linus Torvalds 已提交
2968 2969
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2970
	 */
L
Linus Torvalds 已提交
2971 2972
	if (unlikely((long)sum < 0))
		sum = 0;
2973

L
Linus Torvalds 已提交
2974
	return sum;
2975 2976
}

L
Linus Torvalds 已提交
2977
unsigned long long nr_context_switches(void)
2978
{
2979 2980
	int i;
	unsigned long long sum = 0;
2981

2982
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2983
		sum += cpu_rq(i)->nr_switches;
2984

L
Linus Torvalds 已提交
2985 2986
	return sum;
}
2987

L
Linus Torvalds 已提交
2988 2989 2990
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2991

2992
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2993
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2994

L
Linus Torvalds 已提交
2995 2996
	return sum;
}
2997

2998 2999 3000 3001 3002
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
3003

3004 3005 3006 3007 3008
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3009

3010

3011 3012 3013 3014 3015
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3030 3031
}

3032 3033
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3034
{
3035 3036 3037 3038
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3039 3040

/*
3041 3042
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3043
 */
3044
void calc_global_load(void)
3045
{
3046 3047
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3048

3049 3050
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3051

3052 3053
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3054

3055 3056 3057
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3058

3059 3060
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3061

3062 3063 3064 3065 3066 3067
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3068

3069 3070
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3071

3072 3073 3074 3075
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3076
	}
3077 3078 3079
}

/*
I
Ingo Molnar 已提交
3080 3081
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3082
 */
I
Ingo Molnar 已提交
3083
static void update_cpu_load(struct rq *this_rq)
3084
{
3085
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3086
	int i, scale;
3087

I
Ingo Molnar 已提交
3088
	this_rq->nr_load_updates++;
3089

I
Ingo Molnar 已提交
3090 3091 3092
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3093

I
Ingo Molnar 已提交
3094
		/* scale is effectively 1 << i now, and >> i divides by scale */
3095

I
Ingo Molnar 已提交
3096 3097
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3098 3099 3100 3101 3102 3103 3104
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3105 3106
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3107

3108 3109 3110
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3111 3112 3113
	}
}

I
Ingo Molnar 已提交
3114
#ifdef CONFIG_SMP
3115

3116
/*
P
Peter Zijlstra 已提交
3117 3118
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3119
 */
P
Peter Zijlstra 已提交
3120
void sched_exec(void)
3121
{
P
Peter Zijlstra 已提交
3122
	struct task_struct *p = current;
3123
	struct migration_req req;
P
Peter Zijlstra 已提交
3124
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3125
	unsigned long flags;
3126
	struct rq *rq;
3127

P
Peter Zijlstra 已提交
3128 3129 3130 3131 3132 3133
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3134 3135
	}

L
Linus Torvalds 已提交
3136
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3137 3138
	put_cpu();

3139
	/*
P
Peter Zijlstra 已提交
3140
	 * select_task_rq() can race against ->cpus_allowed
3141
	 */
3142
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3143 3144 3145
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
3146 3147
	}

L
Linus Torvalds 已提交
3148 3149 3150 3151
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3152

L
Linus Torvalds 已提交
3153 3154 3155 3156 3157
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3158

L
Linus Torvalds 已提交
3159 3160 3161 3162
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3163

L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169 3170
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3171
 * Return any ns on the sched_clock that have not yet been accounted in
3172
 * @p in case that task is currently running.
3173 3174
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3175
 */
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3190
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3191 3192
{
	unsigned long flags;
3193
	struct rq *rq;
3194
	u64 ns = 0;
3195

3196
	rq = task_rq_lock(p, &flags);
3197 3198
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3199

3200 3201
	return ns;
}
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3220

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3240
	task_rq_unlock(rq, &flags);
3241

L
Linus Torvalds 已提交
3242 3243 3244 3245 3246 3247 3248
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3249
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3250
 */
3251 3252
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3253 3254 3255 3256
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3257
	/* Add user time to process. */
L
Linus Torvalds 已提交
3258
	p->utime = cputime_add(p->utime, cputime);
3259
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3260
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3261 3262 3263 3264 3265 3266 3267

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3268 3269

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3270 3271
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3272 3273
}

3274 3275 3276 3277
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3278
 * @cputime_scaled: cputime scaled by cpu frequency
3279
 */
3280 3281
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3282 3283 3284 3285 3286 3287
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3288
	/* Add guest time to process. */
3289
	p->utime = cputime_add(p->utime, cputime);
3290
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3291
	account_group_user_time(p, cputime);
3292 3293
	p->gtime = cputime_add(p->gtime, cputime);

3294
	/* Add guest time to cpustat. */
3295 3296 3297 3298 3299 3300 3301
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3302 3303
}

L
Linus Torvalds 已提交
3304 3305 3306 3307 3308
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3309
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3310 3311
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3312
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3313 3314 3315 3316
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3317
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3318
		account_guest_time(p, cputime, cputime_scaled);
3319 3320
		return;
	}
3321

3322
	/* Add system time to process. */
L
Linus Torvalds 已提交
3323
	p->stime = cputime_add(p->stime, cputime);
3324
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3325
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3326 3327 3328 3329 3330 3331 3332 3333

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3334 3335
		cpustat->system = cputime64_add(cpustat->system, tmp);

3336 3337
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3338 3339 3340 3341
	/* Account for system time used */
	acct_update_integrals(p);
}

3342
/*
L
Linus Torvalds 已提交
3343 3344
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3345
 */
3346
void account_steal_time(cputime_t cputime)
3347
{
3348 3349 3350 3351
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3352 3353
}

L
Linus Torvalds 已提交
3354
/*
3355 3356
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3357
 */
3358
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3359 3360
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3361
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3362
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3363

3364 3365 3366 3367
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3368 3369
}

3370 3371 3372 3373 3374 3375 3376 3377 3378
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3379
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3380 3381 3382
	struct rq *rq = this_rq();

	if (user_tick)
3383
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3384
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3385
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3386 3387
				    one_jiffy_scaled);
	else
3388
		account_idle_time(cputime_one_jiffy);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3408 3409
}

3410 3411
#endif

3412 3413 3414 3415
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3416
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3417
{
3418 3419
	*ut = p->utime;
	*st = p->stime;
3420 3421
}

3422
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3423
{
3424 3425 3426 3427 3428 3429
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3430 3431
}
#else
3432 3433

#ifndef nsecs_to_cputime
3434
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3435 3436
#endif

3437
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3438
{
3439
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3440 3441 3442 3443

	/*
	 * Use CFS's precise accounting:
	 */
3444
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3445 3446

	if (total) {
3447 3448 3449
		u64 temp;

		temp = (u64)(rtime * utime);
3450
		do_div(temp, total);
3451 3452 3453
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3454

3455 3456 3457
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3458
	p->prev_utime = max(p->prev_utime, utime);
3459
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3460

3461 3462
	*ut = p->prev_utime;
	*st = p->prev_stime;
3463 3464
}

3465 3466 3467 3468
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3469
{
3470 3471 3472
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3473

3474
	thread_group_cputime(p, &cputime);
3475

3476 3477
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3478

3479 3480
	if (total) {
		u64 temp;
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3494 3495 3496
}
#endif

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3508
	struct task_struct *curr = rq->curr;
3509 3510

	sched_clock_tick();
I
Ingo Molnar 已提交
3511

3512
	raw_spin_lock(&rq->lock);
3513
	update_rq_clock(rq);
3514
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3515
	curr->sched_class->task_tick(rq, curr, 0);
3516
	raw_spin_unlock(&rq->lock);
3517

3518
	perf_event_task_tick(curr);
3519

3520
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3521 3522
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3523
#endif
L
Linus Torvalds 已提交
3524 3525
}

3526
notrace unsigned long get_parent_ip(unsigned long addr)
3527 3528 3529 3530 3531 3532 3533 3534
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3535

3536 3537 3538
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3539
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3540
{
3541
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3542 3543 3544
	/*
	 * Underflow?
	 */
3545 3546
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3547
#endif
L
Linus Torvalds 已提交
3548
	preempt_count() += val;
3549
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3550 3551 3552
	/*
	 * Spinlock count overflowing soon?
	 */
3553 3554
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3555 3556 3557
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3558 3559 3560
}
EXPORT_SYMBOL(add_preempt_count);

3561
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3562
{
3563
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3564 3565 3566
	/*
	 * Underflow?
	 */
3567
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3568
		return;
L
Linus Torvalds 已提交
3569 3570 3571
	/*
	 * Is the spinlock portion underflowing?
	 */
3572 3573 3574
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3575
#endif
3576

3577 3578
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3579 3580 3581 3582 3583 3584 3585
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3586
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3587
 */
I
Ingo Molnar 已提交
3588
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3589
{
3590 3591
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3592 3593
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3594

I
Ingo Molnar 已提交
3595
	debug_show_held_locks(prev);
3596
	print_modules();
I
Ingo Molnar 已提交
3597 3598
	if (irqs_disabled())
		print_irqtrace_events(prev);
3599 3600 3601 3602 3603

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3604
}
L
Linus Torvalds 已提交
3605

I
Ingo Molnar 已提交
3606 3607 3608 3609 3610
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3611
	/*
I
Ingo Molnar 已提交
3612
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3613 3614 3615
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3616
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3617 3618
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3619 3620
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3621
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3622 3623
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3624 3625
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3626 3627
	}
#endif
I
Ingo Molnar 已提交
3628 3629
}

P
Peter Zijlstra 已提交
3630
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3631
{
P
Peter Zijlstra 已提交
3632 3633
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
3634

P
Peter Zijlstra 已提交
3635 3636
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
3647
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
3648
	}
P
Peter Zijlstra 已提交
3649
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3650 3651
}

I
Ingo Molnar 已提交
3652 3653 3654 3655
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3656
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3657
{
3658
	const struct sched_class *class;
I
Ingo Molnar 已提交
3659
	struct task_struct *p;
L
Linus Torvalds 已提交
3660 3661

	/*
I
Ingo Molnar 已提交
3662 3663
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3664
	 */
I
Ingo Molnar 已提交
3665
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3666
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3667 3668
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3669 3670
	}

I
Ingo Molnar 已提交
3671 3672
	class = sched_class_highest;
	for ( ; ; ) {
3673
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3683

I
Ingo Molnar 已提交
3684 3685 3686
/*
 * schedule() is the main scheduler function.
 */
3687
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3688 3689
{
	struct task_struct *prev, *next;
3690
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3691
	struct rq *rq;
3692
	int cpu;
I
Ingo Molnar 已提交
3693

3694 3695
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3696 3697
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3698
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3699 3700 3701 3702 3703 3704 3705
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3706

3707
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3708
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3709

3710
	raw_spin_lock_irq(&rq->lock);
3711
	update_rq_clock(rq);
3712
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3713 3714

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3715
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3716
			prev->state = TASK_RUNNING;
3717
		else
3718
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3719
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3720 3721
	}

3722
	pre_schedule(rq, prev);
3723

I
Ingo Molnar 已提交
3724
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3725 3726
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3727
	put_prev_task(rq, prev);
3728
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3729 3730

	if (likely(prev != next)) {
3731
		sched_info_switch(prev, next);
3732
		perf_event_task_sched_out(prev, next);
3733

L
Linus Torvalds 已提交
3734 3735 3736 3737
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3738
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3739 3740 3741 3742 3743 3744
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3745
	} else
3746
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3747

3748
	post_schedule(rq);
L
Linus Torvalds 已提交
3749

3750 3751 3752
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3753
		goto need_resched_nonpreemptible;
3754
	}
P
Peter Zijlstra 已提交
3755

L
Linus Torvalds 已提交
3756
	preempt_enable_no_resched();
3757
	if (need_resched())
L
Linus Torvalds 已提交
3758 3759 3760 3761
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3762
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3823 3824
#ifdef CONFIG_PREEMPT
/*
3825
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3826
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3827 3828 3829 3830 3831
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3832

L
Linus Torvalds 已提交
3833 3834
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3835
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3836
	 */
N
Nick Piggin 已提交
3837
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3838 3839
		return;

3840 3841 3842 3843
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3844

3845 3846 3847 3848 3849
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3850
	} while (need_resched());
L
Linus Torvalds 已提交
3851 3852 3853 3854
}
EXPORT_SYMBOL(preempt_schedule);

/*
3855
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860 3861 3862
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3863

3864
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3865 3866
	BUG_ON(ti->preempt_count || !irqs_disabled());

3867 3868 3869 3870 3871 3872
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3873

3874 3875 3876 3877 3878
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3879
	} while (need_resched());
L
Linus Torvalds 已提交
3880 3881 3882 3883
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3884
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3885
			  void *key)
L
Linus Torvalds 已提交
3886
{
P
Peter Zijlstra 已提交
3887
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3888 3889 3890 3891
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3892 3893
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3894 3895 3896
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3897
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3898 3899
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3900
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3901
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3902
{
3903
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3904

3905
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3906 3907
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3908
		if (curr->func(curr, mode, wake_flags, key) &&
3909
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3919
 * @key: is directly passed to the wakeup function
3920 3921 3922
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3923
 */
3924
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3925
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3938
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3939 3940 3941 3942
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3943 3944 3945 3946 3947
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3948
/**
3949
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3950 3951 3952
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3953
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3954 3955 3956 3957 3958 3959 3960
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3961 3962 3963
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3964
 */
3965 3966
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3967 3968
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3969
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3975
		wake_flags = 0;
L
Linus Torvalds 已提交
3976 3977

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3978
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3979 3980
	spin_unlock_irqrestore(&q->lock, flags);
}
3981 3982 3983 3984 3985 3986 3987 3988 3989
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3990 3991
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3992 3993 3994 3995 3996 3997 3998 3999
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4000 4001 4002
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4003
 */
4004
void complete(struct completion *x)
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4010
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4011 4012 4013 4014
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4015 4016 4017 4018 4019
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4020 4021 4022
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4023
 */
4024
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4025 4026 4027 4028 4029
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4030
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4031 4032 4033 4034
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4035 4036
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4044
			if (signal_pending_state(state, current)) {
4045 4046
				timeout = -ERESTARTSYS;
				break;
4047 4048
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4049 4050 4051
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4052
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4053
		__remove_wait_queue(&x->wait, &wait);
4054 4055
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4056 4057
	}
	x->done--;
4058
	return timeout ?: 1;
L
Linus Torvalds 已提交
4059 4060
}

4061 4062
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4063 4064 4065 4066
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4067
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4068
	spin_unlock_irq(&x->wait.lock);
4069 4070
	return timeout;
}
L
Linus Torvalds 已提交
4071

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4082
void __sched wait_for_completion(struct completion *x)
4083 4084
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4085
}
4086
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4087

4088 4089 4090 4091 4092 4093 4094 4095 4096
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4097
unsigned long __sched
4098
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4099
{
4100
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4101
}
4102
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4103

4104 4105 4106 4107 4108 4109 4110
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4111
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4112
{
4113 4114 4115 4116
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4117
}
4118
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4119

4120 4121 4122 4123 4124 4125 4126 4127
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4128
unsigned long __sched
4129 4130
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4131
{
4132
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4133
}
4134
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4135

4136 4137 4138 4139 4140 4141 4142
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4166
	unsigned long flags;
4167 4168
	int ret = 1;

4169
	spin_lock_irqsave(&x->wait.lock, flags);
4170 4171 4172 4173
	if (!x->done)
		ret = 0;
	else
		x->done--;
4174
	spin_unlock_irqrestore(&x->wait.lock, flags);
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4189
	unsigned long flags;
4190 4191
	int ret = 1;

4192
	spin_lock_irqsave(&x->wait.lock, flags);
4193 4194
	if (!x->done)
		ret = 0;
4195
	spin_unlock_irqrestore(&x->wait.lock, flags);
4196 4197 4198 4199
	return ret;
}
EXPORT_SYMBOL(completion_done);

4200 4201
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4202
{
I
Ingo Molnar 已提交
4203 4204 4205 4206
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4207

4208
	__set_current_state(state);
L
Linus Torvalds 已提交
4209

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4224 4225 4226
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4227
long __sched
I
Ingo Molnar 已提交
4228
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4229
{
4230
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4231 4232 4233
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4234
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4235
{
4236
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4237 4238 4239
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4240
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4241
{
4242
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4243 4244 4245
}
EXPORT_SYMBOL(sleep_on_timeout);

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4258
void rt_mutex_setprio(struct task_struct *p, int prio)
4259 4260
{
	unsigned long flags;
4261
	int oldprio, on_rq, running;
4262
	struct rq *rq;
4263
	const struct sched_class *prev_class;
4264 4265 4266 4267

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4268
	update_rq_clock(rq);
4269

4270
	oldprio = p->prio;
4271
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4272
	on_rq = p->se.on_rq;
4273
	running = task_current(rq, p);
4274
	if (on_rq)
4275
		dequeue_task(rq, p, 0);
4276 4277
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4278 4279 4280 4281 4282 4283

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4284 4285
	p->prio = prio;

4286 4287
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4288
	if (on_rq) {
4289
		enqueue_task(rq, p, 0, oldprio < prio);
4290 4291

		check_class_changed(rq, p, prev_class, oldprio, running);
4292 4293 4294 4295 4296 4297
	}
	task_rq_unlock(rq, &flags);
}

#endif

4298
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4299
{
I
Ingo Molnar 已提交
4300
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4301
	unsigned long flags;
4302
	struct rq *rq;
L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308 4309 4310

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4311
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4312 4313 4314 4315
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4316
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4317
	 */
4318
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4319 4320 4321
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4322
	on_rq = p->se.on_rq;
4323
	if (on_rq)
4324
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4325 4326

	p->static_prio = NICE_TO_PRIO(nice);
4327
	set_load_weight(p);
4328 4329 4330
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4331

I
Ingo Molnar 已提交
4332
	if (on_rq) {
4333
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4334
		/*
4335 4336
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4337
		 */
4338
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4339 4340 4341 4342 4343 4344 4345
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4346 4347 4348 4349 4350
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4351
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4352
{
4353 4354
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4355

M
Matt Mackall 已提交
4356 4357 4358 4359
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4369
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4370
{
4371
	long nice, retval;
L
Linus Torvalds 已提交
4372 4373 4374 4375 4376 4377

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4378 4379
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4380 4381 4382
	if (increment > 40)
		increment = 40;

4383
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4384 4385 4386 4387 4388
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4389 4390 4391
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4410
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4419
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4420 4421 4422
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4423
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4438
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4439 4440 4441 4442 4443 4444 4445 4446
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4447
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4448
{
4449
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4450 4451 4452
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4453 4454
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4455
{
I
Ingo Molnar 已提交
4456
	BUG_ON(p->se.on_rq);
4457

L
Linus Torvalds 已提交
4458 4459
	p->policy = policy;
	p->rt_priority = prio;
4460 4461 4462
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4463 4464 4465 4466
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4467
	set_load_weight(p);
L
Linus Torvalds 已提交
4468 4469
}

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4486 4487
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4488
{
4489
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4490
	unsigned long flags;
4491
	const struct sched_class *prev_class;
4492
	struct rq *rq;
4493
	int reset_on_fork;
L
Linus Torvalds 已提交
4494

4495 4496
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4497 4498
recheck:
	/* double check policy once rq lock held */
4499 4500
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4501
		policy = oldpolicy = p->policy;
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4512 4513
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4514 4515
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4516 4517
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4518
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4519
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4520
		return -EINVAL;
4521
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4522 4523
		return -EINVAL;

4524 4525 4526
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4527
	if (user && !capable(CAP_SYS_NICE)) {
4528
		if (rt_policy(policy)) {
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4545 4546 4547 4548 4549 4550
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4551

4552
		/* can't change other user's priorities */
4553
		if (!check_same_owner(p))
4554
			return -EPERM;
4555 4556 4557 4558

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4559
	}
L
Linus Torvalds 已提交
4560

4561
	if (user) {
4562
#ifdef CONFIG_RT_GROUP_SCHED
4563 4564 4565 4566
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4567 4568
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4569
			return -EPERM;
4570 4571
#endif

4572 4573 4574 4575 4576
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4577 4578 4579 4580
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4581
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4582 4583 4584 4585
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4586
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4587 4588 4589
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4590
		__task_rq_unlock(rq);
4591
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4592 4593
		goto recheck;
	}
I
Ingo Molnar 已提交
4594
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4595
	on_rq = p->se.on_rq;
4596
	running = task_current(rq, p);
4597
	if (on_rq)
4598
		deactivate_task(rq, p, 0);
4599 4600
	if (running)
		p->sched_class->put_prev_task(rq, p);
4601

4602 4603
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4604
	oldprio = p->prio;
4605
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4606
	__setscheduler(rq, p, policy, param->sched_priority);
4607

4608 4609
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4610 4611
	if (on_rq) {
		activate_task(rq, p, 0);
4612 4613

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4614
	}
4615
	__task_rq_unlock(rq);
4616
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4617

4618 4619
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4620 4621
	return 0;
}
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4636 4637
EXPORT_SYMBOL_GPL(sched_setscheduler);

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4655 4656
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4657 4658 4659
{
	struct sched_param lparam;
	struct task_struct *p;
4660
	int retval;
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4666 4667 4668

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4669
	p = find_process_by_pid(pid);
4670 4671 4672
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4673

L
Linus Torvalds 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4683 4684
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4685
{
4686 4687 4688 4689
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4690 4691 4692 4693 4694 4695 4696 4697
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4698
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705 4706
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4707
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4708
{
4709
	struct task_struct *p;
4710
	int retval;
L
Linus Torvalds 已提交
4711 4712

	if (pid < 0)
4713
		return -EINVAL;
L
Linus Torvalds 已提交
4714 4715

	retval = -ESRCH;
4716
	rcu_read_lock();
L
Linus Torvalds 已提交
4717 4718 4719 4720
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4721 4722
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4723
	}
4724
	rcu_read_unlock();
L
Linus Torvalds 已提交
4725 4726 4727 4728
	return retval;
}

/**
4729
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4730 4731 4732
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4733
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4734 4735
{
	struct sched_param lp;
4736
	struct task_struct *p;
4737
	int retval;
L
Linus Torvalds 已提交
4738 4739

	if (!param || pid < 0)
4740
		return -EINVAL;
L
Linus Torvalds 已提交
4741

4742
	rcu_read_lock();
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4753
	rcu_read_unlock();
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4763
	rcu_read_unlock();
L
Linus Torvalds 已提交
4764 4765 4766
	return retval;
}

4767
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4768
{
4769
	cpumask_var_t cpus_allowed, new_mask;
4770 4771
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4772

4773
	get_online_cpus();
4774
	rcu_read_lock();
L
Linus Torvalds 已提交
4775 4776 4777

	p = find_process_by_pid(pid);
	if (!p) {
4778
		rcu_read_unlock();
4779
		put_online_cpus();
L
Linus Torvalds 已提交
4780 4781 4782
		return -ESRCH;
	}

4783
	/* Prevent p going away */
L
Linus Torvalds 已提交
4784
	get_task_struct(p);
4785
	rcu_read_unlock();
L
Linus Torvalds 已提交
4786

4787 4788 4789 4790 4791 4792 4793 4794
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4795
	retval = -EPERM;
4796
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4797 4798
		goto out_unlock;

4799 4800 4801 4802
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4803 4804
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4805
 again:
4806
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4807

P
Paul Menage 已提交
4808
	if (!retval) {
4809 4810
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4811 4812 4813 4814 4815
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4816
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4817 4818 4819
			goto again;
		}
	}
L
Linus Torvalds 已提交
4820
out_unlock:
4821 4822 4823 4824
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4825
	put_task_struct(p);
4826
	put_online_cpus();
L
Linus Torvalds 已提交
4827 4828 4829 4830
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4831
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4832
{
4833 4834 4835 4836 4837
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4847 4848
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4849
{
4850
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4851 4852
	int retval;

4853 4854
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4855

4856 4857 4858 4859 4860
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4861 4862
}

4863
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4864
{
4865
	struct task_struct *p;
4866 4867
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4868 4869
	int retval;

4870
	get_online_cpus();
4871
	rcu_read_lock();
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4878 4879 4880 4881
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4882
	rq = task_rq_lock(p, &flags);
4883
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4884
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4885 4886

out_unlock:
4887
	rcu_read_unlock();
4888
	put_online_cpus();
L
Linus Torvalds 已提交
4889

4890
	return retval;
L
Linus Torvalds 已提交
4891 4892 4893 4894 4895 4896 4897 4898
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4899 4900
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4901 4902
{
	int ret;
4903
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4904

4905
	if (len < cpumask_size())
L
Linus Torvalds 已提交
4906 4907
		return -EINVAL;

4908 4909
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4910

4911 4912 4913 4914 4915 4916 4917 4918
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4919

4920
	return ret;
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4926 4927
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4928
 */
4929
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4930
{
4931
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4932

4933
	schedstat_inc(rq, yld_count);
4934
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4941
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4942
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948 4949
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4950 4951 4952 4953 4954
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4955
static void __cond_resched(void)
L
Linus Torvalds 已提交
4956
{
4957 4958 4959
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4960 4961
}

4962
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4963
{
P
Peter Zijlstra 已提交
4964
	if (should_resched()) {
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969
		__cond_resched();
		return 1;
	}
	return 0;
}
4970
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4971 4972

/*
4973
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4974 4975
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4976
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4977 4978 4979
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4980
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4981
{
P
Peter Zijlstra 已提交
4982
	int resched = should_resched();
J
Jan Kara 已提交
4983 4984
	int ret = 0;

4985 4986
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4987
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4988
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4989
		if (resched)
N
Nick Piggin 已提交
4990 4991 4992
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4993
		ret = 1;
L
Linus Torvalds 已提交
4994 4995
		spin_lock(lock);
	}
J
Jan Kara 已提交
4996
	return ret;
L
Linus Torvalds 已提交
4997
}
4998
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4999

5000
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5001 5002 5003
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5004
	if (should_resched()) {
5005
		local_bh_enable();
L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5012
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5013 5014 5015 5016

/**
 * yield - yield the current processor to other threads.
 *
5017
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5028
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5029 5030 5031 5032
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5033
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5034

5035
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5036
	atomic_inc(&rq->nr_iowait);
5037
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5038
	schedule();
5039
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5040
	atomic_dec(&rq->nr_iowait);
5041
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5047
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5048 5049
	long ret;

5050
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5051
	atomic_inc(&rq->nr_iowait);
5052
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5053
	ret = schedule_timeout(timeout);
5054
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5055
	atomic_dec(&rq->nr_iowait);
5056
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5067
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5077
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5078
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5092
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5102
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5103
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5117
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5118
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5119
{
5120
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5121
	unsigned int time_slice;
5122 5123
	unsigned long flags;
	struct rq *rq;
5124
	int retval;
L
Linus Torvalds 已提交
5125 5126 5127
	struct timespec t;

	if (pid < 0)
5128
		return -EINVAL;
L
Linus Torvalds 已提交
5129 5130

	retval = -ESRCH;
5131
	rcu_read_lock();
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5140 5141 5142
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5143

5144
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5145
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5146 5147
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5148

L
Linus Torvalds 已提交
5149
out_unlock:
5150
	rcu_read_unlock();
L
Linus Torvalds 已提交
5151 5152 5153
	return retval;
}

5154
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5155

5156
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5157 5158
{
	unsigned long free = 0;
5159
	unsigned state;
L
Linus Torvalds 已提交
5160 5161

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5162
	printk(KERN_INFO "%-13.13s %c", p->comm,
5163
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5164
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5165
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5166
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5167
	else
P
Peter Zijlstra 已提交
5168
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5169 5170
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5171
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5172
	else
P
Peter Zijlstra 已提交
5173
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5174 5175
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5176
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5177
#endif
P
Peter Zijlstra 已提交
5178
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5179 5180
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5181

5182
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5183 5184
}

I
Ingo Molnar 已提交
5185
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5186
{
5187
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5188

5189
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5190 5191
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5192
#else
P
Peter Zijlstra 已提交
5193 5194
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201 5202
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5203
		if (!state_filter || (p->state & state_filter))
5204
			sched_show_task(p);
L
Linus Torvalds 已提交
5205 5206
	} while_each_thread(g, p);

5207 5208
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5209 5210 5211
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5212
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5213 5214 5215
	/*
	 * Only show locks if all tasks are dumped:
	 */
5216
	if (!state_filter)
I
Ingo Molnar 已提交
5217
		debug_show_all_locks();
L
Linus Torvalds 已提交
5218 5219
}

I
Ingo Molnar 已提交
5220 5221
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5222
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5223 5224
}

5225 5226 5227 5228 5229 5230 5231 5232
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5233
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5234
{
5235
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5236 5237
	unsigned long flags;

5238
	raw_spin_lock_irqsave(&rq->lock, flags);
5239

I
Ingo Molnar 已提交
5240
	__sched_fork(idle);
5241
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5242 5243
	idle->se.exec_start = sched_clock();

5244
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5245
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5246 5247

	rq->curr = rq->idle = idle;
5248 5249 5250
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5251
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5252 5253

	/* Set the preempt count _outside_ the spinlocks! */
5254 5255 5256
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5257
	task_thread_info(idle)->preempt_count = 0;
5258
#endif
I
Ingo Molnar 已提交
5259 5260 5261 5262
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5263
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268 5269 5270
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5271
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5272
 */
5273
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5274

I
Ingo Molnar 已提交
5275 5276 5277 5278 5279 5280 5281 5282 5283
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5284
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5285
{
5286
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5301

5302 5303
	return factor;
}
I
Ingo Molnar 已提交
5304

5305 5306 5307
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5308

5309 5310 5311 5312 5313 5314 5315 5316
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5317

5318 5319 5320
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5321 5322
}

L
Linus Torvalds 已提交
5323 5324 5325 5326
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5327
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5346
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5347 5348
 * call is not atomic; no spinlocks may be held.
 */
5349
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5350
{
5351
	struct migration_req req;
L
Linus Torvalds 已提交
5352
	unsigned long flags;
5353
	struct rq *rq;
5354
	int ret = 0;
L
Linus Torvalds 已提交
5355 5356

	rq = task_rq_lock(p, &flags);
5357

5358
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5359 5360 5361 5362
		ret = -EINVAL;
		goto out;
	}

5363
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5364
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5365 5366 5367 5368
		ret = -EINVAL;
		goto out;
	}

5369
	if (p->sched_class->set_cpus_allowed)
5370
		p->sched_class->set_cpus_allowed(p, new_mask);
5371
	else {
5372 5373
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5374 5375
	}

L
Linus Torvalds 已提交
5376
	/* Can the task run on the task's current CPU? If so, we're done */
5377
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5378 5379
		goto out;

5380
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5381
		/* Need help from migration thread: drop lock and wait. */
5382 5383 5384
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5385 5386
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5387
		put_task_struct(mt);
L
Linus Torvalds 已提交
5388 5389 5390 5391 5392 5393
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5394

L
Linus Torvalds 已提交
5395 5396
	return ret;
}
5397
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5398 5399

/*
I
Ingo Molnar 已提交
5400
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405 5406
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5407 5408
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5409
 */
5410
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5411
{
5412
	struct rq *rq_dest, *rq_src;
5413
	int ret = 0;
L
Linus Torvalds 已提交
5414

5415
	if (unlikely(!cpu_active(dest_cpu)))
5416
		return ret;
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421 5422 5423

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5424
		goto done;
L
Linus Torvalds 已提交
5425
	/* Affinity changed (again). */
5426
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5427
		goto fail;
L
Linus Torvalds 已提交
5428

5429 5430 5431 5432 5433
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5434
		deactivate_task(rq_src, p, 0);
5435
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5436
		activate_task(rq_dest, p, 0);
5437
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5438
	}
L
Linus Torvalds 已提交
5439
done:
5440
	ret = 1;
L
Linus Torvalds 已提交
5441
fail:
L
Linus Torvalds 已提交
5442
	double_rq_unlock(rq_src, rq_dest);
5443
	return ret;
L
Linus Torvalds 已提交
5444 5445
}

5446 5447 5448 5449 5450
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5451 5452 5453 5454 5455
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5456
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5457
{
5458
	int badcpu;
L
Linus Torvalds 已提交
5459
	int cpu = (long)data;
5460
	struct rq *rq;
L
Linus Torvalds 已提交
5461 5462 5463 5464 5465 5466

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5467
		struct migration_req *req;
L
Linus Torvalds 已提交
5468 5469
		struct list_head *head;

5470
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5471 5472

		if (cpu_is_offline(cpu)) {
5473
			raw_spin_unlock_irq(&rq->lock);
5474
			break;
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5485
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5486 5487 5488 5489
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5490
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5491 5492
		list_del_init(head->next);

5493
		if (req->task != NULL) {
5494
			raw_spin_unlock(&rq->lock);
5495 5496 5497
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5498
			raw_spin_unlock(&rq->lock);
5499 5500
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5501
			raw_spin_unlock(&rq->lock);
5502 5503
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5504
		local_irq_enable();
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5525
/*
5526
 * Figure out where task on dead CPU should go, use force if necessary.
5527
 */
5528
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5529
{
5530
	int dest_cpu;
5531 5532

again:
5533
	dest_cpu = select_fallback_rq(dead_cpu, p);
5534 5535 5536 5537

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5547
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5548
{
5549
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5563
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5564

5565
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5566

5567 5568
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5569 5570
			continue;

5571 5572 5573
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5574

5575
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5576 5577
}

I
Ingo Molnar 已提交
5578 5579
/*
 * Schedules idle task to be the next runnable task on current CPU.
5580 5581
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5582 5583 5584
 */
void sched_idle_next(void)
{
5585
	int this_cpu = smp_processor_id();
5586
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5587 5588 5589 5590
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5591
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5592

5593 5594 5595
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5596
	 */
5597
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5598

I
Ingo Molnar 已提交
5599
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5600

5601 5602
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5603

5604
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5605 5606
}

5607 5608
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5622
/* called under rq->lock with disabled interrupts */
5623
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5624
{
5625
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5626 5627

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5628
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5629 5630

	/* Cannot have done final schedule yet: would have vanished. */
5631
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5632

5633
	get_task_struct(p);
L
Linus Torvalds 已提交
5634 5635 5636

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5637
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5638 5639
	 * fine.
	 */
5640
	raw_spin_unlock_irq(&rq->lock);
5641
	move_task_off_dead_cpu(dead_cpu, p);
5642
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5643

5644
	put_task_struct(p);
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5650
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5651
	struct task_struct *next;
5652

I
Ingo Molnar 已提交
5653 5654 5655
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5656
		update_rq_clock(rq);
5657
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5658 5659
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5660
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5661
		migrate_dead(dead_cpu, next);
5662

L
Linus Torvalds 已提交
5663 5664
	}
}
5665 5666 5667 5668 5669 5670 5671

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5672
	rq->calc_load_active = 0;
5673
}
L
Linus Torvalds 已提交
5674 5675
#endif /* CONFIG_HOTPLUG_CPU */

5676 5677 5678
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5679 5680
	{
		.procname	= "sched_domain",
5681
		.mode		= 0555,
5682
	},
5683
	{}
5684 5685 5686
};

static struct ctl_table sd_ctl_root[] = {
5687 5688
	{
		.procname	= "kernel",
5689
		.mode		= 0555,
5690 5691
		.child		= sd_ctl_dir,
	},
5692
	{}
5693 5694 5695 5696 5697
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5698
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5699 5700 5701 5702

	return entry;
}

5703 5704
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5705
	struct ctl_table *entry;
5706

5707 5708 5709
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5710
	 * will always be set. In the lowest directory the names are
5711 5712 5713
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5714 5715
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5716 5717 5718
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5719 5720 5721 5722 5723

	kfree(*tablep);
	*tablep = NULL;
}

5724
static void
5725
set_table_entry(struct ctl_table *entry,
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5739
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5740

5741 5742 5743
	if (table == NULL)
		return NULL;

5744
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5745
		sizeof(long), 0644, proc_doulongvec_minmax);
5746
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5747
		sizeof(long), 0644, proc_doulongvec_minmax);
5748
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5749
		sizeof(int), 0644, proc_dointvec_minmax);
5750
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5751
		sizeof(int), 0644, proc_dointvec_minmax);
5752
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5753
		sizeof(int), 0644, proc_dointvec_minmax);
5754
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5755
		sizeof(int), 0644, proc_dointvec_minmax);
5756
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5757
		sizeof(int), 0644, proc_dointvec_minmax);
5758
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5759
		sizeof(int), 0644, proc_dointvec_minmax);
5760
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5761
		sizeof(int), 0644, proc_dointvec_minmax);
5762
	set_table_entry(&table[9], "cache_nice_tries",
5763 5764
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5765
	set_table_entry(&table[10], "flags", &sd->flags,
5766
		sizeof(int), 0644, proc_dointvec_minmax);
5767 5768 5769
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5770 5771 5772 5773

	return table;
}

5774
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5775 5776 5777 5778 5779 5780 5781 5782 5783
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5784 5785
	if (table == NULL)
		return NULL;
5786 5787 5788 5789 5790

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5791
		entry->mode = 0555;
5792 5793 5794 5795 5796 5797 5798 5799
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5800
static void register_sched_domain_sysctl(void)
5801
{
5802
	int i, cpu_num = num_possible_cpus();
5803 5804 5805
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5806 5807 5808
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5809 5810 5811
	if (entry == NULL)
		return;

5812
	for_each_possible_cpu(i) {
5813 5814
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5815
		entry->mode = 0555;
5816
		entry->child = sd_alloc_ctl_cpu_table(i);
5817
		entry++;
5818
	}
5819 5820

	WARN_ON(sd_sysctl_header);
5821 5822
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5823

5824
/* may be called multiple times per register */
5825 5826
static void unregister_sched_domain_sysctl(void)
{
5827 5828
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5829
	sd_sysctl_header = NULL;
5830 5831
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5832
}
5833
#else
5834 5835 5836 5837
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5838 5839 5840 5841
{
}
#endif

5842 5843 5844 5845 5846
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5847
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5867
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5868 5869 5870 5871
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5872 5873 5874 5875
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5876 5877
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5878 5879
{
	struct task_struct *p;
5880
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5881
	unsigned long flags;
5882
	struct rq *rq;
L
Linus Torvalds 已提交
5883 5884

	switch (action) {
5885

L
Linus Torvalds 已提交
5886
	case CPU_UP_PREPARE:
5887
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5888
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5889 5890 5891 5892 5893
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5894
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5895
		task_rq_unlock(rq, &flags);
5896
		get_task_struct(p);
L
Linus Torvalds 已提交
5897
		cpu_rq(cpu)->migration_thread = p;
5898
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5899
		break;
5900

L
Linus Torvalds 已提交
5901
	case CPU_ONLINE:
5902
	case CPU_ONLINE_FROZEN:
5903
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5904
		wake_up_process(cpu_rq(cpu)->migration_thread);
5905 5906 5907

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5908
		raw_spin_lock_irqsave(&rq->lock, flags);
5909
		if (rq->rd) {
5910
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5911 5912

			set_rq_online(rq);
5913
		}
5914
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5915
		break;
5916

L
Linus Torvalds 已提交
5917 5918
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5919
	case CPU_UP_CANCELED_FROZEN:
5920 5921
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5922
		/* Unbind it from offline cpu so it can run. Fall thru. */
5923
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5924
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5925
		kthread_stop(cpu_rq(cpu)->migration_thread);
5926
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5927 5928
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5929

L
Linus Torvalds 已提交
5930
	case CPU_DEAD:
5931
	case CPU_DEAD_FROZEN:
5932
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5933 5934 5935
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5936
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5937 5938
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5939
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5940
		update_rq_clock(rq);
5941
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5942 5943
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5944
		migrate_dead_tasks(cpu);
5945
		raw_spin_unlock_irq(&rq->lock);
5946
		cpuset_unlock();
L
Linus Torvalds 已提交
5947 5948
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5949
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5950 5951 5952 5953 5954
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5955
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5956
		while (!list_empty(&rq->migration_queue)) {
5957 5958
			struct migration_req *req;

L
Linus Torvalds 已提交
5959
			req = list_entry(rq->migration_queue.next,
5960
					 struct migration_req, list);
L
Linus Torvalds 已提交
5961
			list_del_init(&req->list);
5962
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5963
			complete(&req->done);
5964
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5965
		}
5966
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5967
		break;
G
Gregory Haskins 已提交
5968

5969 5970
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5971 5972
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5973
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5974
		if (rq->rd) {
5975
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5976
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5977
		}
5978
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5979
		break;
L
Linus Torvalds 已提交
5980 5981 5982 5983 5984
#endif
	}
	return NOTIFY_OK;
}

5985 5986 5987
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5988
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5989
 */
5990
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5991 5992 5993 5994
	.notifier_call = migration_call,
	.priority = 10
};

5995
static int __init migration_init(void)
L
Linus Torvalds 已提交
5996 5997
{
	void *cpu = (void *)(long)smp_processor_id();
5998
	int err;
5999 6000

	/* Start one for the boot CPU: */
6001 6002
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6003 6004
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6005

6006
	return 0;
L
Linus Torvalds 已提交
6007
}
6008
early_initcall(migration_init);
L
Linus Torvalds 已提交
6009 6010 6011
#endif

#ifdef CONFIG_SMP
6012

6013
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6014

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6025
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6026
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6027
{
I
Ingo Molnar 已提交
6028
	struct sched_group *group = sd->groups;
6029
	char str[256];
L
Linus Torvalds 已提交
6030

R
Rusty Russell 已提交
6031
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6032
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6033 6034 6035 6036

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6037
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6038
		if (sd->parent)
P
Peter Zijlstra 已提交
6039 6040
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6041
		return -1;
N
Nick Piggin 已提交
6042 6043
	}

P
Peter Zijlstra 已提交
6044
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6045

6046
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6047 6048
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6049
	}
6050
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6051 6052
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6053
	}
L
Linus Torvalds 已提交
6054

I
Ingo Molnar 已提交
6055
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6056
	do {
I
Ingo Molnar 已提交
6057
		if (!group) {
P
Peter Zijlstra 已提交
6058 6059
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6060 6061 6062
			break;
		}

6063
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6064 6065 6066
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6067 6068
			break;
		}
L
Linus Torvalds 已提交
6069

6070
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6071 6072
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6073 6074
			break;
		}
L
Linus Torvalds 已提交
6075

6076
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6077 6078
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6079 6080
			break;
		}
L
Linus Torvalds 已提交
6081

6082
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6083

R
Rusty Russell 已提交
6084
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6085

P
Peter Zijlstra 已提交
6086
		printk(KERN_CONT " %s", str);
6087
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6088 6089
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6090
		}
L
Linus Torvalds 已提交
6091

I
Ingo Molnar 已提交
6092 6093
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6094
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6095

6096
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6097
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6098

6099 6100
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6101 6102
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6103 6104
	return 0;
}
L
Linus Torvalds 已提交
6105

I
Ingo Molnar 已提交
6106 6107
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6108
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6109
	int level = 0;
L
Linus Torvalds 已提交
6110

6111 6112 6113
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6114 6115 6116 6117
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6118

I
Ingo Molnar 已提交
6119 6120
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6121
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6122 6123 6124 6125
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6126
	for (;;) {
6127
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6128
			break;
L
Linus Torvalds 已提交
6129 6130
		level++;
		sd = sd->parent;
6131
		if (!sd)
I
Ingo Molnar 已提交
6132 6133
			break;
	}
6134
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6135
}
6136
#else /* !CONFIG_SCHED_DEBUG */
6137
# define sched_domain_debug(sd, cpu) do { } while (0)
6138
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6139

6140
static int sd_degenerate(struct sched_domain *sd)
6141
{
6142
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6143 6144 6145 6146 6147 6148
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6149 6150 6151
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6152 6153 6154 6155 6156
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6157
	if (sd->flags & (SD_WAKE_AFFINE))
6158 6159 6160 6161 6162
		return 0;

	return 1;
}

6163 6164
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6165 6166 6167 6168 6169 6170
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6171
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6172 6173 6174 6175 6176 6177 6178
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6179 6180 6181
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6182 6183
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6184 6185 6186 6187 6188 6189 6190
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6191 6192
static void free_rootdomain(struct root_domain *rd)
{
6193 6194
	synchronize_sched();

6195 6196
	cpupri_cleanup(&rd->cpupri);

6197 6198 6199 6200 6201 6202
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6203 6204
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6205
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6206 6207
	unsigned long flags;

6208
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6209 6210

	if (rq->rd) {
I
Ingo Molnar 已提交
6211
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6212

6213
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6214
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6215

6216
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6217

I
Ingo Molnar 已提交
6218 6219 6220 6221 6222 6223 6224
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6225 6226 6227 6228 6229
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6230
	cpumask_set_cpu(rq->cpu, rd->span);
6231
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6232
		set_rq_online(rq);
G
Gregory Haskins 已提交
6233

6234
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6235 6236 6237

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6238 6239
}

L
Li Zefan 已提交
6240
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6241
{
6242 6243
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6244 6245
	memset(rd, 0, sizeof(*rd));

6246 6247
	if (bootmem)
		gfp = GFP_NOWAIT;
6248

6249
	if (!alloc_cpumask_var(&rd->span, gfp))
6250
		goto out;
6251
	if (!alloc_cpumask_var(&rd->online, gfp))
6252
		goto free_span;
6253
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6254
		goto free_online;
6255

P
Pekka Enberg 已提交
6256
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6257
		goto free_rto_mask;
6258
	return 0;
6259

6260 6261
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6262 6263 6264 6265
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6266
out:
6267
	return -ENOMEM;
G
Gregory Haskins 已提交
6268 6269 6270 6271
}

static void init_defrootdomain(void)
{
6272 6273
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6274 6275 6276
	atomic_set(&def_root_domain.refcount, 1);
}

6277
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6278 6279 6280 6281 6282 6283 6284
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6285 6286 6287 6288
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6289 6290 6291 6292

	return rd;
}

L
Linus Torvalds 已提交
6293
/*
I
Ingo Molnar 已提交
6294
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6295 6296
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6297 6298
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6299
{
6300
	struct rq *rq = cpu_rq(cpu);
6301 6302 6303
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6304
	for (tmp = sd; tmp; ) {
6305 6306 6307
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6308

6309
		if (sd_parent_degenerate(tmp, parent)) {
6310
			tmp->parent = parent->parent;
6311 6312
			if (parent->parent)
				parent->parent->child = tmp;
6313 6314
		} else
			tmp = tmp->parent;
6315 6316
	}

6317
	if (sd && sd_degenerate(sd)) {
6318
		sd = sd->parent;
6319 6320 6321
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6322 6323 6324

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6325
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6326
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6327 6328 6329
}

/* cpus with isolated domains */
6330
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6331 6332 6333 6334

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6335
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6336
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6337 6338 6339
	return 1;
}

I
Ingo Molnar 已提交
6340
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6341 6342

/*
6343 6344
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6345 6346
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6347 6348 6349 6350 6351
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6352
static void
6353 6354 6355
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6356
					struct sched_group **sg,
6357 6358
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6359 6360 6361 6362
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6363
	cpumask_clear(covered);
6364

6365
	for_each_cpu(i, span) {
6366
		struct sched_group *sg;
6367
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6368 6369
		int j;

6370
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6371 6372
			continue;

6373
		cpumask_clear(sched_group_cpus(sg));
6374
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6375

6376
		for_each_cpu(j, span) {
6377
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6378 6379
				continue;

6380
			cpumask_set_cpu(j, covered);
6381
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6392
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6393

6394
#ifdef CONFIG_NUMA
6395

6396 6397 6398 6399 6400
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6401
 * Find the next node to include in a given scheduling domain. Simply
6402 6403 6404 6405
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6406
static int find_next_best_node(int node, nodemask_t *used_nodes)
6407 6408 6409 6410 6411
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6412
	for (i = 0; i < nr_node_ids; i++) {
6413
		/* Start at @node */
6414
		n = (node + i) % nr_node_ids;
6415 6416 6417 6418 6419

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6420
		if (node_isset(n, *used_nodes))
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6432
	node_set(best_node, *used_nodes);
6433 6434 6435 6436 6437 6438
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6439
 * @span: resulting cpumask
6440
 *
I
Ingo Molnar 已提交
6441
 * Given a node, construct a good cpumask for its sched_domain to span. It
6442 6443 6444
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6445
static void sched_domain_node_span(int node, struct cpumask *span)
6446
{
6447
	nodemask_t used_nodes;
6448
	int i;
6449

6450
	cpumask_clear(span);
6451
	nodes_clear(used_nodes);
6452

6453
	cpumask_or(span, span, cpumask_of_node(node));
6454
	node_set(node, used_nodes);
6455 6456

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6457
		int next_node = find_next_best_node(node, &used_nodes);
6458

6459
		cpumask_or(span, span, cpumask_of_node(next_node));
6460 6461
	}
}
6462
#endif /* CONFIG_NUMA */
6463

6464
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6465

6466 6467
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6468 6469 6470
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6515
/*
6516
 * SMT sched-domains:
6517
 */
L
Linus Torvalds 已提交
6518
#ifdef CONFIG_SCHED_SMT
6519
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6520
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6521

I
Ingo Molnar 已提交
6522
static int
6523 6524
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6525
{
6526
	if (sg)
6527
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6528 6529
	return cpu;
}
6530
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6531

6532 6533 6534
/*
 * multi-core sched-domains:
 */
6535
#ifdef CONFIG_SCHED_MC
6536 6537
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6538
#endif /* CONFIG_SCHED_MC */
6539 6540

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6541
static int
6542 6543
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6544
{
6545
	int group;
6546

6547
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6548
	group = cpumask_first(mask);
6549
	if (sg)
6550
		*sg = &per_cpu(sched_group_core, group).sg;
6551
	return group;
6552 6553
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6554
static int
6555 6556
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6557
{
6558
	if (sg)
6559
		*sg = &per_cpu(sched_group_core, cpu).sg;
6560 6561 6562 6563
	return cpu;
}
#endif

6564 6565
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6566

I
Ingo Molnar 已提交
6567
static int
6568 6569
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6570
{
6571
	int group;
6572
#ifdef CONFIG_SCHED_MC
6573
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6574
	group = cpumask_first(mask);
6575
#elif defined(CONFIG_SCHED_SMT)
6576
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6577
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6578
#else
6579
	group = cpu;
L
Linus Torvalds 已提交
6580
#endif
6581
	if (sg)
6582
		*sg = &per_cpu(sched_group_phys, group).sg;
6583
	return group;
L
Linus Torvalds 已提交
6584 6585 6586 6587
}

#ifdef CONFIG_NUMA
/*
6588 6589 6590
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6591
 */
6592
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6593
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6594

6595
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6596
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6597

6598 6599 6600
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6601
{
6602 6603
	int group;

6604
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6605
	group = cpumask_first(nodemask);
6606 6607

	if (sg)
6608
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6609
	return group;
L
Linus Torvalds 已提交
6610
}
6611

6612 6613 6614 6615 6616 6617 6618
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6619
	do {
6620
		for_each_cpu(j, sched_group_cpus(sg)) {
6621
			struct sched_domain *sd;
6622

6623
			sd = &per_cpu(phys_domains, j).sd;
6624
			if (j != group_first_cpu(sd->groups)) {
6625 6626 6627 6628 6629 6630
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6631

6632
			sg->cpu_power += sd->groups->cpu_power;
6633 6634 6635
		}
		sg = sg->next;
	} while (sg != group_head);
6636
}
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6658 6659
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6660 6661 6662 6663 6664 6665 6666 6667 6668
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6669
	sg->cpu_power = 0;
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6688 6689
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6690 6691
			return -ENOMEM;
		}
6692
		sg->cpu_power = 0;
6693 6694 6695 6696 6697 6698 6699 6700 6701
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6702
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6703

6704
#ifdef CONFIG_NUMA
6705
/* Free memory allocated for various sched_group structures */
6706 6707
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6708
{
6709
	int cpu, i;
6710

6711
	for_each_cpu(cpu, cpu_map) {
6712 6713 6714 6715 6716 6717
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6718
		for (i = 0; i < nr_node_ids; i++) {
6719 6720
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6721
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6722
			if (cpumask_empty(nodemask))
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6739
#else /* !CONFIG_NUMA */
6740 6741
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6742 6743
{
}
6744
#endif /* CONFIG_NUMA */
6745

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6760 6761
	long power;
	int weight;
6762 6763 6764

	WARN_ON(!sd || !sd->groups);

6765
	if (cpu != group_first_cpu(sd->groups))
6766 6767 6768 6769
		return;

	child = sd->child;

6770
	sd->groups->cpu_power = 0;
6771

6772 6773 6774 6775 6776
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6777 6778 6779
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6780
		 */
P
Peter Zijlstra 已提交
6781 6782
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6783
			power /= weight;
P
Peter Zijlstra 已提交
6784 6785
			power >>= SCHED_LOAD_SHIFT;
		}
6786
		sd->groups->cpu_power += power;
6787 6788 6789 6790
		return;
	}

	/*
6791
	 * Add cpu_power of each child group to this groups cpu_power.
6792 6793 6794
	 */
	group = child->groups;
	do {
6795
		sd->groups->cpu_power += group->cpu_power;
6796 6797 6798 6799
		group = group->next;
	} while (group != child->groups);
}

6800 6801 6802 6803 6804
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6805 6806 6807 6808 6809 6810
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6811
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6812

6813 6814 6815 6816 6817
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6818
	sd->level = SD_LV_##type;				\
6819
	SD_INIT_NAME(sd, type);					\
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6834 6835 6836 6837
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6838 6839 6840 6841 6842 6843
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6862
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6863 6864
	} else {
		/* turn on idle balance on this domain */
6865
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6866 6867 6868
	}
}

6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6889
#ifdef CONFIG_NUMA
6890 6891 6892 6893 6894 6895 6896
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6897
#endif
6898 6899 6900 6901
	case sa_none:
		break;
	}
}
6902

6903 6904 6905
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6906
#ifdef CONFIG_NUMA
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6917
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6918
		return sa_notcovered;
6919
	}
6920
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6921
#endif
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6934
		printk(KERN_WARNING "Cannot alloc root domain\n");
6935
		return sa_tmpmask;
G
Gregory Haskins 已提交
6936
	}
6937 6938
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6939

6940 6941 6942 6943
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6944
#ifdef CONFIG_NUMA
6945
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6946

6947 6948 6949 6950 6951
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6952
		set_domain_attribute(sd, attr);
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6967
#endif
6968 6969
	return sd;
}
L
Linus Torvalds 已提交
6970

6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6986

6987 6988 6989 6990 6991
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6992
#ifdef CONFIG_SCHED_MC
6993 6994 6995 6996 6997 6998 6999
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7000
#endif
7001 7002
	return sd;
}
7003

7004 7005 7006 7007 7008
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7009
#ifdef CONFIG_SCHED_SMT
7010 7011 7012 7013 7014 7015 7016
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7017
#endif
7018 7019
	return sd;
}
L
Linus Torvalds 已提交
7020

7021 7022 7023 7024
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7025
#ifdef CONFIG_SCHED_SMT
7026 7027 7028 7029 7030 7031 7032 7033
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7034
#endif
7035
#ifdef CONFIG_SCHED_MC
7036 7037 7038 7039 7040 7041 7042
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7043
#endif
7044 7045 7046 7047 7048 7049 7050
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7051
#ifdef CONFIG_NUMA
7052 7053 7054 7055 7056
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7057 7058
	default:
		break;
7059
	}
7060
}
7061

7062 7063 7064 7065 7066 7067 7068 7069 7070
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7071
	struct sched_domain *sd;
7072
	int i;
7073
#ifdef CONFIG_NUMA
7074
	d.sd_allnodes = 0;
7075
#endif
7076

7077 7078 7079 7080
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7081

L
Linus Torvalds 已提交
7082
	/*
7083
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7084
	 */
7085
	for_each_cpu(i, cpu_map) {
7086 7087
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7088

7089
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7090
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7091
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7092
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7093
	}
7094

7095
	for_each_cpu(i, cpu_map) {
7096
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7097
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7098
	}
7099

L
Linus Torvalds 已提交
7100
	/* Set up physical groups */
7101 7102
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7103

L
Linus Torvalds 已提交
7104 7105
#ifdef CONFIG_NUMA
	/* Set up node groups */
7106 7107
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7108

7109 7110
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7111
			goto error;
L
Linus Torvalds 已提交
7112 7113 7114
#endif

	/* Calculate CPU power for physical packages and nodes */
7115
#ifdef CONFIG_SCHED_SMT
7116
	for_each_cpu(i, cpu_map) {
7117
		sd = &per_cpu(cpu_domains, i).sd;
7118
		init_sched_groups_power(i, sd);
7119
	}
L
Linus Torvalds 已提交
7120
#endif
7121
#ifdef CONFIG_SCHED_MC
7122
	for_each_cpu(i, cpu_map) {
7123
		sd = &per_cpu(core_domains, i).sd;
7124
		init_sched_groups_power(i, sd);
7125 7126
	}
#endif
7127

7128
	for_each_cpu(i, cpu_map) {
7129
		sd = &per_cpu(phys_domains, i).sd;
7130
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7131 7132
	}

7133
#ifdef CONFIG_NUMA
7134
	for (i = 0; i < nr_node_ids; i++)
7135
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7136

7137
	if (d.sd_allnodes) {
7138
		struct sched_group *sg;
7139

7140
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7141
								d.tmpmask);
7142 7143
		init_numa_sched_groups_power(sg);
	}
7144 7145
#endif

L
Linus Torvalds 已提交
7146
	/* Attach the domains */
7147
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7148
#ifdef CONFIG_SCHED_SMT
7149
		sd = &per_cpu(cpu_domains, i).sd;
7150
#elif defined(CONFIG_SCHED_MC)
7151
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7152
#else
7153
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7154
#endif
7155
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7156
	}
7157

7158 7159 7160
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7161 7162

error:
7163 7164
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7165
}
P
Paul Jackson 已提交
7166

7167
static int build_sched_domains(const struct cpumask *cpu_map)
7168 7169 7170 7171
{
	return __build_sched_domains(cpu_map, NULL);
}

7172
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7173
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7174 7175
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7176 7177 7178

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7179 7180
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7181
 */
7182
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7183

7184 7185 7186 7187 7188 7189
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7190
{
7191
	return 0;
7192 7193
}

7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7219
/*
I
Ingo Molnar 已提交
7220
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7221 7222
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7223
 */
7224
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7225
{
7226 7227
	int err;

7228
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7229
	ndoms_cur = 1;
7230
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7231
	if (!doms_cur)
7232 7233
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7234
	dattr_cur = NULL;
7235
	err = build_sched_domains(doms_cur[0]);
7236
	register_sched_domain_sysctl();
7237 7238

	return err;
7239 7240
}

7241 7242
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7243
{
7244
	free_sched_groups(cpu_map, tmpmask);
7245
}
L
Linus Torvalds 已提交
7246

7247 7248 7249 7250
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7251
static void detach_destroy_domains(const struct cpumask *cpu_map)
7252
{
7253 7254
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7255 7256
	int i;

7257
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7258
		cpu_attach_domain(NULL, &def_root_domain, i);
7259
	synchronize_sched();
7260
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7261 7262
}

7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7279 7280
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7281
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7282 7283 7284
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7285
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7286 7287 7288
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7289 7290 7291
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7292 7293 7294 7295 7296 7297
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7298
 *
7299
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7300 7301
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7302
 *
P
Paul Jackson 已提交
7303 7304
 * Call with hotplug lock held
 */
7305
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7306
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7307
{
7308
	int i, j, n;
7309
	int new_topology;
P
Paul Jackson 已提交
7310

7311
	mutex_lock(&sched_domains_mutex);
7312

7313 7314 7315
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7316 7317 7318
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7319
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7320 7321 7322

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7323
		for (j = 0; j < n && !new_topology; j++) {
7324
			if (cpumask_equal(doms_cur[i], doms_new[j])
7325
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7326 7327 7328
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7329
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7330 7331 7332 7333
match1:
		;
	}

7334 7335
	if (doms_new == NULL) {
		ndoms_cur = 0;
7336
		doms_new = &fallback_doms;
7337
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7338
		WARN_ON_ONCE(dattr_new);
7339 7340
	}

P
Paul Jackson 已提交
7341 7342
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7343
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7344
			if (cpumask_equal(doms_new[i], doms_cur[j])
7345
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7346 7347 7348
				goto match2;
		}
		/* no match - add a new doms_new */
7349
		__build_sched_domains(doms_new[i],
7350
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7351 7352 7353 7354 7355
match2:
		;
	}

	/* Remember the new sched domains */
7356 7357
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7358
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7359
	doms_cur = doms_new;
7360
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7361
	ndoms_cur = ndoms_new;
7362 7363

	register_sched_domain_sysctl();
7364

7365
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7366 7367
}

7368
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7369
static void arch_reinit_sched_domains(void)
7370
{
7371
	get_online_cpus();
7372 7373 7374 7375

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7376
	rebuild_sched_domains();
7377
	put_online_cpus();
7378 7379 7380 7381
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7382
	unsigned int level = 0;
7383

7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7395 7396 7397
		return -EINVAL;

	if (smt)
7398
		sched_smt_power_savings = level;
7399
	else
7400
		sched_mc_power_savings = level;
7401

7402
	arch_reinit_sched_domains();
7403

7404
	return count;
7405 7406 7407
}

#ifdef CONFIG_SCHED_MC
7408 7409
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7410 7411 7412
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7413
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7414
					    const char *buf, size_t count)
7415 7416 7417
{
	return sched_power_savings_store(buf, count, 0);
}
7418 7419 7420
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7421 7422 7423
#endif

#ifdef CONFIG_SCHED_SMT
7424 7425
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7426 7427 7428
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7429
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7430
					     const char *buf, size_t count)
7431 7432 7433
{
	return sched_power_savings_store(buf, count, 1);
}
7434 7435
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7436 7437 7438
		   sched_smt_power_savings_store);
#endif

7439
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7455
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7456

7457
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7458
/*
7459 7460
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7461 7462 7463
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7464 7465 7466 7467
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7468 7469 7470 7471
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7472
		partition_sched_domains(1, NULL, NULL);
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7483
{
P
Peter Zijlstra 已提交
7484 7485
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7486 7487
	switch (action) {
	case CPU_DOWN_PREPARE:
7488
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7489
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7490 7491 7492
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7493
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7494
	case CPU_ONLINE:
7495
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7496
		enable_runtime(cpu_rq(cpu));
7497 7498
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7499 7500 7501 7502 7503 7504 7505
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7506 7507 7508
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7509
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7510

7511 7512 7513 7514 7515
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7516
	get_online_cpus();
7517
	mutex_lock(&sched_domains_mutex);
7518
	arch_init_sched_domains(cpu_active_mask);
7519 7520 7521
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7522
	mutex_unlock(&sched_domains_mutex);
7523
	put_online_cpus();
7524 7525

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7526 7527
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7528 7529 7530 7531 7532
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7533
	init_hrtick();
7534 7535

	/* Move init over to a non-isolated CPU */
7536
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7537
		BUG();
I
Ingo Molnar 已提交
7538
	sched_init_granularity();
7539
	free_cpumask_var(non_isolated_cpus);
7540

7541
	init_sched_rt_class();
L
Linus Torvalds 已提交
7542 7543 7544 7545
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7546
	sched_init_granularity();
L
Linus Torvalds 已提交
7547 7548 7549
}
#endif /* CONFIG_SMP */

7550 7551
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7552 7553 7554 7555 7556 7557 7558
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7559
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7560 7561
{
	cfs_rq->tasks_timeline = RB_ROOT;
7562
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7563 7564 7565
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7566
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7567 7568
}

P
Peter Zijlstra 已提交
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7582
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7583
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7584
#ifdef CONFIG_SMP
7585
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7586 7587
#endif
#endif
P
Peter Zijlstra 已提交
7588 7589 7590
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7591
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7592 7593 7594 7595
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7596
	rt_rq->rt_runtime = 0;
7597
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7598

7599
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7600
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7601 7602
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7603 7604
}

P
Peter Zijlstra 已提交
7605
#ifdef CONFIG_FAIR_GROUP_SCHED
7606 7607 7608
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7609
{
7610
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7611 7612 7613 7614 7615 7616 7617
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7618 7619 7620 7621
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7622 7623 7624 7625 7626
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7627 7628
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7629
	se->load.inv_weight = 0;
7630
	se->parent = parent;
P
Peter Zijlstra 已提交
7631
}
7632
#endif
P
Peter Zijlstra 已提交
7633

7634
#ifdef CONFIG_RT_GROUP_SCHED
7635 7636 7637
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7638
{
7639 7640
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7641 7642 7643
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7644
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7645 7646 7647 7648
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7649 7650 7651
	if (!rt_se)
		return;

7652 7653 7654 7655 7656
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7657
	rt_se->my_q = rt_rq;
7658
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7659 7660 7661 7662
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7663 7664
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7665
	int i, j;
7666 7667 7668 7669 7670 7671 7672
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7673
#endif
7674
#ifdef CONFIG_CPUMASK_OFFSTACK
7675
	alloc_size += num_possible_cpus() * cpumask_size();
7676 7677
#endif
	if (alloc_size) {
7678
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7679 7680 7681 7682 7683 7684 7685

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7686

7687
#endif /* CONFIG_FAIR_GROUP_SCHED */
7688 7689 7690 7691 7692
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7693 7694
		ptr += nr_cpu_ids * sizeof(void **);

7695
#endif /* CONFIG_RT_GROUP_SCHED */
7696 7697 7698 7699 7700 7701
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7702
	}
I
Ingo Molnar 已提交
7703

G
Gregory Haskins 已提交
7704 7705 7706 7707
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7708 7709 7710 7711 7712 7713
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7714
#endif /* CONFIG_RT_GROUP_SCHED */
7715

D
Dhaval Giani 已提交
7716
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7717
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7718 7719
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7720
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7721

7722 7723 7724 7725
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7726
	for_each_possible_cpu(i) {
7727
		struct rq *rq;
L
Linus Torvalds 已提交
7728 7729

		rq = cpu_rq(i);
7730
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7731
		rq->nr_running = 0;
7732 7733
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7734
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7735
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7736
#ifdef CONFIG_FAIR_GROUP_SCHED
7737
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7738
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7754
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7755 7756 7757 7758
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7759
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7760
#endif
D
Dhaval Giani 已提交
7761 7762 7763
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7764
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7765
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7766
#ifdef CONFIG_CGROUP_SCHED
7767
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7768
#endif
I
Ingo Molnar 已提交
7769
#endif
L
Linus Torvalds 已提交
7770

I
Ingo Molnar 已提交
7771 7772
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7773
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7774
		rq->sd = NULL;
G
Gregory Haskins 已提交
7775
		rq->rd = NULL;
7776
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7777
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7778
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7779
		rq->push_cpu = 0;
7780
		rq->cpu = i;
7781
		rq->online = 0;
L
Linus Torvalds 已提交
7782
		rq->migration_thread = NULL;
7783 7784
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7785
		INIT_LIST_HEAD(&rq->migration_queue);
7786
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7787
#endif
P
Peter Zijlstra 已提交
7788
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7789 7790 7791
		atomic_set(&rq->nr_iowait, 0);
	}

7792
	set_load_weight(&init_task);
7793

7794 7795 7796 7797
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7798
#ifdef CONFIG_SMP
7799
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7800 7801
#endif

7802
#ifdef CONFIG_RT_MUTEXES
7803
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7804 7805
#endif

L
Linus Torvalds 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7819 7820 7821

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7822 7823 7824 7825
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7826

7827
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7828
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7829
#ifdef CONFIG_SMP
7830
#ifdef CONFIG_NO_HZ
7831
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7832
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7833
#endif
R
Rusty Russell 已提交
7834 7835 7836
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7837
#endif /* SMP */
7838

7839
	perf_event_init();
7840

7841
	scheduler_running = 1;
L
Linus Torvalds 已提交
7842 7843 7844
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7845 7846
static inline int preempt_count_equals(int preempt_offset)
{
7847
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7848 7849 7850 7851

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7852
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7853
{
7854
#ifdef in_atomic
L
Linus Torvalds 已提交
7855 7856
	static unsigned long prev_jiffy;	/* ratelimiting */

7857 7858
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7859 7860 7861 7862 7863
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7864 7865 7866 7867 7868 7869 7870
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7871 7872 7873 7874 7875

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7876 7877 7878 7879 7880 7881
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7882 7883 7884
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7885

7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7897 7898
void normalize_rt_tasks(void)
{
7899
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7900
	unsigned long flags;
7901
	struct rq *rq;
L
Linus Torvalds 已提交
7902

7903
	read_lock_irqsave(&tasklist_lock, flags);
7904
	do_each_thread(g, p) {
7905 7906 7907 7908 7909 7910
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7911 7912
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7913 7914 7915
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7916
#endif
I
Ingo Molnar 已提交
7917 7918 7919 7920 7921 7922 7923 7924

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7925
			continue;
I
Ingo Molnar 已提交
7926
		}
L
Linus Torvalds 已提交
7927

7928
		raw_spin_lock(&p->pi_lock);
7929
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7930

7931
		normalize_task(rq, p);
7932

7933
		__task_rq_unlock(rq);
7934
		raw_spin_unlock(&p->pi_lock);
7935 7936
	} while_each_thread(g, p);

7937
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7938 7939 7940
}

#endif /* CONFIG_MAGIC_SYSRQ */
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7959
struct task_struct *curr_task(int cpu)
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7970 7971
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7972 7973 7974 7975 7976 7977 7978
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7979
void set_curr_task(int cpu, struct task_struct *p)
7980 7981 7982 7983 7984
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7985

7986 7987
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8002 8003
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8004 8005
{
	struct cfs_rq *cfs_rq;
8006
	struct sched_entity *se;
8007
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8008 8009
	int i;

8010
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8011 8012
	if (!tg->cfs_rq)
		goto err;
8013
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8014 8015
	if (!tg->se)
		goto err;
8016 8017

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8018 8019

	for_each_possible_cpu(i) {
8020
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8021

8022 8023
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8024 8025 8026
		if (!cfs_rq)
			goto err;

8027 8028
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8029
		if (!se)
8030
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8031

8032
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8033 8034 8035 8036
	}

	return 1;

8037 8038
 err_free_rq:
	kfree(cfs_rq);
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8053
#else /* !CONFG_FAIR_GROUP_SCHED */
8054 8055 8056 8057
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8058 8059
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8071
#endif /* CONFIG_FAIR_GROUP_SCHED */
8072 8073

#ifdef CONFIG_RT_GROUP_SCHED
8074 8075 8076 8077
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8078 8079
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8091 8092
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8093 8094
{
	struct rt_rq *rt_rq;
8095
	struct sched_rt_entity *rt_se;
8096 8097 8098
	struct rq *rq;
	int i;

8099
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8100 8101
	if (!tg->rt_rq)
		goto err;
8102
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8103 8104 8105
	if (!tg->rt_se)
		goto err;

8106 8107
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8108 8109 8110 8111

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8112 8113
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8114 8115
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8116

8117 8118
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8119
		if (!rt_se)
8120
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8121

8122
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8123 8124
	}

8125 8126
	return 1;

8127 8128
 err_free_rq:
	kfree(rt_rq);
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8143
#else /* !CONFIG_RT_GROUP_SCHED */
8144 8145 8146 8147
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8148 8149
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8161
#endif /* CONFIG_RT_GROUP_SCHED */
8162

D
Dhaval Giani 已提交
8163
#ifdef CONFIG_CGROUP_SCHED
8164 8165 8166 8167 8168 8169 8170 8171
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8172
struct task_group *sched_create_group(struct task_group *parent)
8173 8174 8175 8176 8177 8178 8179 8180 8181
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8182
	if (!alloc_fair_sched_group(tg, parent))
8183 8184
		goto err;

8185
	if (!alloc_rt_sched_group(tg, parent))
8186 8187
		goto err;

8188
	spin_lock_irqsave(&task_group_lock, flags);
8189
	for_each_possible_cpu(i) {
8190 8191
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8192
	}
P
Peter Zijlstra 已提交
8193
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8194 8195 8196 8197 8198

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8199
	list_add_rcu(&tg->siblings, &parent->children);
8200
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8201

8202
	return tg;
S
Srivatsa Vaddagiri 已提交
8203 8204

err:
P
Peter Zijlstra 已提交
8205
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8206 8207 8208
	return ERR_PTR(-ENOMEM);
}

8209
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8210
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8211 8212
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8213
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8214 8215
}

8216
/* Destroy runqueue etc associated with a task group */
8217
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8218
{
8219
	unsigned long flags;
8220
	int i;
S
Srivatsa Vaddagiri 已提交
8221

8222
	spin_lock_irqsave(&task_group_lock, flags);
8223
	for_each_possible_cpu(i) {
8224 8225
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8226
	}
P
Peter Zijlstra 已提交
8227
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8228
	list_del_rcu(&tg->siblings);
8229
	spin_unlock_irqrestore(&task_group_lock, flags);
8230 8231

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8232
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8233 8234
}

8235
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8236 8237 8238
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8239 8240
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8241 8242 8243 8244 8245 8246 8247 8248 8249
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8250
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8251 8252
	on_rq = tsk->se.on_rq;

8253
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8254
		dequeue_task(rq, tsk, 0);
8255 8256
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8257

P
Peter Zijlstra 已提交
8258
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8259

P
Peter Zijlstra 已提交
8260 8261
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8262
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8263 8264
#endif

8265 8266 8267
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8268
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8269 8270 8271

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8272
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8273

8274
#ifdef CONFIG_FAIR_GROUP_SCHED
8275
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8276 8277 8278 8279 8280
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8281
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8282 8283 8284
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8285
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8286

8287
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8288
		enqueue_entity(cfs_rq, se, 0);
8289
}
8290

8291 8292 8293 8294 8295 8296
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8297
	raw_spin_lock_irqsave(&rq->lock, flags);
8298
	__set_se_shares(se, shares);
8299
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8300 8301
}

8302 8303
static DEFINE_MUTEX(shares_mutex);

8304
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8305 8306
{
	int i;
8307
	unsigned long flags;
8308

8309 8310 8311 8312 8313 8314
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8315 8316
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8317 8318
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8319

8320
	mutex_lock(&shares_mutex);
8321
	if (tg->shares == shares)
8322
		goto done;
S
Srivatsa Vaddagiri 已提交
8323

8324
	spin_lock_irqsave(&task_group_lock, flags);
8325 8326
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8327
	list_del_rcu(&tg->siblings);
8328
	spin_unlock_irqrestore(&task_group_lock, flags);
8329 8330 8331 8332 8333 8334 8335 8336

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8337
	tg->shares = shares;
8338 8339 8340 8341 8342
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8343
		set_se_shares(tg->se[i], shares);
8344
	}
S
Srivatsa Vaddagiri 已提交
8345

8346 8347 8348 8349
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8350
	spin_lock_irqsave(&task_group_lock, flags);
8351 8352
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8353
	list_add_rcu(&tg->siblings, &tg->parent->children);
8354
	spin_unlock_irqrestore(&task_group_lock, flags);
8355
done:
8356
	mutex_unlock(&shares_mutex);
8357
	return 0;
S
Srivatsa Vaddagiri 已提交
8358 8359
}

8360 8361 8362 8363
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8364
#endif
8365

8366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8367
/*
P
Peter Zijlstra 已提交
8368
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8369
 */
P
Peter Zijlstra 已提交
8370 8371 8372 8373 8374
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8375
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8376

P
Peter Zijlstra 已提交
8377
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8378 8379
}

P
Peter Zijlstra 已提交
8380 8381
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8382
{
P
Peter Zijlstra 已提交
8383
	struct task_struct *g, *p;
8384

P
Peter Zijlstra 已提交
8385 8386 8387 8388
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8389

P
Peter Zijlstra 已提交
8390 8391
	return 0;
}
8392

P
Peter Zijlstra 已提交
8393 8394 8395 8396 8397
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8398

P
Peter Zijlstra 已提交
8399 8400 8401 8402 8403 8404
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8405

P
Peter Zijlstra 已提交
8406 8407
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8408

P
Peter Zijlstra 已提交
8409 8410 8411
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8412 8413
	}

8414 8415 8416 8417 8418
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8419

8420 8421 8422
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8423 8424
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8425

P
Peter Zijlstra 已提交
8426
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8427

8428 8429 8430 8431 8432
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8433

8434 8435 8436
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8437 8438 8439
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8440

P
Peter Zijlstra 已提交
8441 8442 8443 8444
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8445

P
Peter Zijlstra 已提交
8446
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8447
	}
P
Peter Zijlstra 已提交
8448

P
Peter Zijlstra 已提交
8449 8450 8451 8452
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8453 8454
}

P
Peter Zijlstra 已提交
8455
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8456
{
P
Peter Zijlstra 已提交
8457 8458 8459 8460 8461 8462 8463
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8464 8465
}

8466 8467
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8468
{
P
Peter Zijlstra 已提交
8469
	int i, err = 0;
P
Peter Zijlstra 已提交
8470 8471

	mutex_lock(&rt_constraints_mutex);
8472
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8473 8474
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8475
		goto unlock;
P
Peter Zijlstra 已提交
8476

8477
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8478 8479
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8480 8481 8482 8483

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8484
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8485
		rt_rq->rt_runtime = rt_runtime;
8486
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8487
	}
8488
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8489
 unlock:
8490
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8491 8492 8493
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8494 8495
}

8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8508 8509 8510 8511
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8512
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8513 8514
		return -1;

8515
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8516 8517 8518
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8519 8520 8521 8522 8523 8524 8525 8526

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8527 8528 8529
	if (rt_period == 0)
		return -EINVAL;

8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8544
	u64 runtime, period;
8545 8546
	int ret = 0;

8547 8548 8549
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8550 8551 8552 8553 8554 8555 8556 8557
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8558

8559
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8560
	read_lock(&tasklist_lock);
8561
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8562
	read_unlock(&tasklist_lock);
8563 8564 8565 8566
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8567 8568 8569 8570 8571 8572 8573 8574 8575 8576

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8577
#else /* !CONFIG_RT_GROUP_SCHED */
8578 8579
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8580 8581 8582
	unsigned long flags;
	int i;

8583 8584 8585
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8586 8587 8588 8589 8590 8591 8592
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8593
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8594 8595 8596
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8597
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8598
		rt_rq->rt_runtime = global_rt_runtime();
8599
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8600
	}
8601
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8602

8603 8604
	return 0;
}
8605
#endif /* CONFIG_RT_GROUP_SCHED */
8606 8607

int sched_rt_handler(struct ctl_table *table, int write,
8608
		void __user *buffer, size_t *lenp,
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8619
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8636

8637
#ifdef CONFIG_CGROUP_SCHED
8638 8639

/* return corresponding task_group object of a cgroup */
8640
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8641
{
8642 8643
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8644 8645 8646
}

static struct cgroup_subsys_state *
8647
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8648
{
8649
	struct task_group *tg, *parent;
8650

8651
	if (!cgrp->parent) {
8652 8653 8654 8655
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8656 8657
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8658 8659 8660 8661 8662 8663
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8664 8665
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8666
{
8667
	struct task_group *tg = cgroup_tg(cgrp);
8668 8669 8670 8671

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8672
static int
8673
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8674
{
8675
#ifdef CONFIG_RT_GROUP_SCHED
8676
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8677 8678
		return -EINVAL;
#else
8679 8680 8681
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8682
#endif
8683 8684
	return 0;
}
8685

8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8705 8706 8707 8708
	return 0;
}

static void
8709
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8710 8711
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8712 8713
{
	sched_move_task(tsk);
8714 8715 8716 8717 8718 8719 8720 8721
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8722 8723
}

8724
#ifdef CONFIG_FAIR_GROUP_SCHED
8725
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8726
				u64 shareval)
8727
{
8728
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8729 8730
}

8731
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8732
{
8733
	struct task_group *tg = cgroup_tg(cgrp);
8734 8735 8736

	return (u64) tg->shares;
}
8737
#endif /* CONFIG_FAIR_GROUP_SCHED */
8738

8739
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8740
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8741
				s64 val)
P
Peter Zijlstra 已提交
8742
{
8743
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8744 8745
}

8746
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8747
{
8748
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8749
}
8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8761
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8762

8763
static struct cftype cpu_files[] = {
8764
#ifdef CONFIG_FAIR_GROUP_SCHED
8765 8766
	{
		.name = "shares",
8767 8768
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8769
	},
8770 8771
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8772
	{
P
Peter Zijlstra 已提交
8773
		.name = "rt_runtime_us",
8774 8775
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8776
	},
8777 8778
	{
		.name = "rt_period_us",
8779 8780
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8781
	},
8782
#endif
8783 8784 8785 8786
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8787
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8788 8789 8790
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8791 8792 8793 8794 8795 8796 8797
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8798 8799 8800
	.early_init	= 1,
};

8801
#endif	/* CONFIG_CGROUP_SCHED */
8802 8803 8804 8805 8806 8807 8808 8809 8810 8811

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8812
/* track cpu usage of a group of tasks and its child groups */
8813 8814 8815 8816
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
8817
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8818
	struct cpuacct *parent;
8819 8820 8821 8822 8823
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8824
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8825
{
8826
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8839
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8840 8841
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8842
	int i;
8843 8844

	if (!ca)
8845
		goto out;
8846 8847

	ca->cpuusage = alloc_percpu(u64);
8848 8849 8850 8851 8852 8853
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8854

8855 8856 8857
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8858
	return &ca->css;
8859 8860 8861 8862 8863 8864 8865 8866 8867

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8868 8869 8870
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8871
static void
8872
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8873
{
8874
	struct cpuacct *ca = cgroup_ca(cgrp);
8875
	int i;
8876

8877 8878
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8879 8880 8881 8882
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8883 8884
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8885
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8886 8887 8888 8889 8890 8891
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8892
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8893
	data = *cpuusage;
8894
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8895 8896 8897 8898 8899 8900 8901 8902 8903
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8904
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8905 8906 8907 8908 8909

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8910
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8911
	*cpuusage = val;
8912
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8913 8914 8915 8916 8917
#else
	*cpuusage = val;
#endif
}

8918
/* return total cpu usage (in nanoseconds) of a group */
8919
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8920
{
8921
	struct cpuacct *ca = cgroup_ca(cgrp);
8922 8923 8924
	u64 totalcpuusage = 0;
	int i;

8925 8926
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8927 8928 8929 8930

	return totalcpuusage;
}

8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8943 8944
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8945 8946 8947 8948 8949

out:
	return err;
}

8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8984 8985 8986
static struct cftype files[] = {
	{
		.name = "usage",
8987 8988
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8989
	},
8990 8991 8992 8993
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8994 8995 8996 8997
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8998 8999
};

9000
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9001
{
9002
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9013
	int cpu;
9014

L
Li Zefan 已提交
9015
	if (unlikely(!cpuacct_subsys.active))
9016 9017
		return;

9018
	cpu = task_cpu(tsk);
9019 9020 9021

	rcu_read_lock();

9022 9023
	ca = task_ca(tsk);

9024
	for (; ca; ca = ca->parent) {
9025
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9026 9027
		*cpuusage += cputime;
	}
9028 9029

	rcu_read_unlock();
9030 9031
}

9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9049 9050 9051 9052 9053 9054 9055
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9056
	int batch = CPUACCT_BATCH;
9057 9058 9059 9060 9061 9062 9063 9064

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9065
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9066 9067 9068 9069 9070
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9071 9072 9073 9074 9075 9076 9077 9078
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9164
		raw_spin_lock_irqsave(&rq->lock, flags);
9165
		list_add(&req->list, &rq->migration_queue);
9166
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9167 9168 9169 9170 9171 9172 9173
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9174
		raw_spin_lock_irqsave(&rq->lock, flags);
9175 9176 9177
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9178
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9179 9180
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9181
	synchronize_sched_expedited_count++;
9182 9183 9184 9185 9186 9187 9188 9189
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */