memcontrol.c 193.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82 83 84 85
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359 360 361 362 363 364 365 366
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
367 368 369 370 371 372 373

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
374

375 376 377 378
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

379 380
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
381 382
};

383 384
/* internal only representation about the status of kmem accounting. */
enum {
385
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 388 389 390 391 392 393
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399 400 401

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
402 403 404 405 406
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
407 408 409 410 411 412 413 414 415
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
416 417
#endif

418 419
/* Stuffs for move charges at task migration. */
/*
420 421
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 423
 */
enum move_type {
424
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 427 428
	NR_MOVE_TYPE,
};

429 430
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
431
	spinlock_t	  lock; /* for from, to */
432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
434
	unsigned long immigrate_flags;
435
	unsigned long precharge;
436
	unsigned long moved_charge;
437
	unsigned long moved_swap;
438 439 440
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
441
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 443
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
444

D
Daisuke Nishimura 已提交
445 446
static bool move_anon(void)
{
447
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
448 449
}

450 451
static bool move_file(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 454
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493 494 495 496 497 498
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

499 500
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
501
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

517 518 519 520 521
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

522 523 524 525 526 527
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

541
	css = css_from_id(id - 1, &memory_cgrp_subsys);
L
Li Zefan 已提交
542 543 544
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
545
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
546
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
547 548 549

void sock_update_memcg(struct sock *sk)
{
550
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
551
		struct mem_cgroup *memcg;
552
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
553 554 555

		BUG_ON(!sk->sk_prot->proto_cgroup);

556 557 558 559 560 561 562 563 564 565
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566
			css_get(&sk->sk_cgrp->memcg->css);
567 568 569
			return;
		}

G
Glauber Costa 已提交
570 571
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
572
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 574
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
576 577 578 579 580 581 582 583
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
584
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
585 586 587
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
588
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
589 590
	}
}
G
Glauber Costa 已提交
591 592 593 594 595 596

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

597
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
598 599
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
600

601 602
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
603
	if (!memcg_proto_activated(&memcg->tcp_mem))
604 605 606 607 608 609 610 611 612
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

613
#ifdef CONFIG_MEMCG_KMEM
614 615
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
616 617 618 619 620
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
621 622 623 624 625 626
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
627 628
int memcg_limited_groups_array_size;

629 630 631 632 633 634
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
635
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 637
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
638
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 640 641
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
642
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643

644 645 646 647 648 649
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
650
struct static_key memcg_kmem_enabled_key;
651
EXPORT_SYMBOL(memcg_kmem_enabled_key);
652 653 654

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
655
	if (memcg_kmem_is_active(memcg)) {
656
		static_key_slow_dec(&memcg_kmem_enabled_key);
657 658
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
659 660 661 662 663
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 665 666 667 668 669 670 671 672 673 674 675 676
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

677
static void drain_all_stock_async(struct mem_cgroup *memcg);
678

679
static struct mem_cgroup_per_zone *
680
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681
{
682
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
683
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 685
}

686
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687
{
688
	return &memcg->css;
689 690
}

691
static struct mem_cgroup_per_zone *
692
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693
{
694 695
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
696

697
	return mem_cgroup_zoneinfo(memcg, nid, zid);
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
877
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878
				 enum mem_cgroup_stat_index idx)
879
{
880
	long val = 0;
881 882
	int cpu;

883 884
	get_online_cpus();
	for_each_online_cpu(cpu)
885
		val += per_cpu(memcg->stat->count[idx], cpu);
886
#ifdef CONFIG_HOTPLUG_CPU
887 888 889
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
890 891
#endif
	put_online_cpus();
892 893 894
	return val;
}

895
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 897 898
					 bool charge)
{
	int val = (charge) ? 1 : -1;
899
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 901
}

902
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 904 905 906 907
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

908
	get_online_cpus();
909
	for_each_online_cpu(cpu)
910
		val += per_cpu(memcg->stat->events[idx], cpu);
911
#ifdef CONFIG_HOTPLUG_CPU
912 913 914
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
915
#endif
916
	put_online_cpus();
917 918 919
	return val;
}

920
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921
					 struct page *page,
922
					 bool anon, int nr_pages)
923
{
924 925 926 927 928 929
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930
				nr_pages);
931
	else
932
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933
				nr_pages);
934

935 936 937 938
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

939 940
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
941
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
942
	else {
943
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
944 945
		nr_pages = -nr_pages; /* for event */
	}
946

947
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
948 949
}

950
unsigned long
951
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 953 954 955 956 957 958 959
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
960
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961
			unsigned int lru_mask)
962 963
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
964
	enum lru_list lru;
965 966
	unsigned long ret = 0;

967
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968

H
Hugh Dickins 已提交
969 970 971
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
972 973 974 975 976
	}
	return ret;
}

static unsigned long
977
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 979
			int nid, unsigned int lru_mask)
{
980 981 982
	u64 total = 0;
	int zid;

983
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 985
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
986

987 988
	return total;
}
989

990
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991
			unsigned int lru_mask)
992
{
993
	int nid;
994 995
	u64 total = 0;

996
	for_each_node_state(nid, N_MEMORY)
997
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998
	return total;
999 1000
}

1001 1002
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1003 1004 1005
{
	unsigned long val, next;

1006
	val = __this_cpu_read(memcg->stat->nr_page_events);
1007
	next = __this_cpu_read(memcg->stat->targets[target]);
1008
	/* from time_after() in jiffies.h */
1009 1010 1011 1012 1013
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1014 1015 1016
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1017 1018 1019 1020 1021 1022 1023 1024
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1025
	}
1026
	return false;
1027 1028 1029 1030 1031 1032
}

/*
 * Check events in order.
 *
 */
1033
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034
{
1035
	preempt_disable();
1036
	/* threshold event is triggered in finer grain than soft limit */
1037 1038
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1039
		bool do_softlimit;
1040
		bool do_numainfo __maybe_unused;
1041

1042 1043
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1044 1045 1046 1047 1048 1049
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1050
		mem_cgroup_threshold(memcg);
1051 1052
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1053
#if MAX_NUMNODES > 1
1054
		if (unlikely(do_numainfo))
1055
			atomic_inc(&memcg->numainfo_events);
1056
#endif
1057 1058
	} else
		preempt_enable();
1059 1060
}

1061
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1062
{
1063 1064 1065 1066 1067 1068 1069 1070
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1071
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1072 1073
}

1074
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1075
{
1076
	struct mem_cgroup *memcg = NULL;
1077 1078 1079

	if (!mm)
		return NULL;
1080 1081 1082 1083 1084 1085 1086
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1087 1088
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1089
			break;
1090
	} while (!css_tryget(&memcg->css));
1091
	rcu_read_unlock();
1092
	return memcg;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1102
		struct mem_cgroup *last_visited)
1103
{
1104
	struct cgroup_subsys_state *prev_css, *next_css;
1105

1106
	prev_css = last_visited ? &last_visited->css : NULL;
1107
skip_node:
1108
	next_css = css_next_descendant_pre(prev_css, &root->css);
1109 1110 1111 1112 1113 1114 1115

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1116 1117 1118 1119 1120 1121 1122 1123
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1124
	 */
1125
	if (next_css) {
1126 1127
		if ((next_css == &root->css) ||
		    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1128
			return mem_cgroup_from_css(next_css);
1129 1130 1131

		prev_css = next_css;
		goto skip_node;
1132 1133 1134 1135 1136
	}

	return NULL;
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1165 1166 1167 1168 1169 1170 1171 1172 1173

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1174 1175 1176 1177 1178 1179 1180 1181
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1182
				   struct mem_cgroup *root,
1183 1184
				   int sequence)
{
1185 1186
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1216
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1217
				   struct mem_cgroup *prev,
1218
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1219
{
1220
	struct mem_cgroup *memcg = NULL;
1221
	struct mem_cgroup *last_visited = NULL;
1222

1223 1224
	if (mem_cgroup_disabled())
		return NULL;
1225

1226 1227
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1228

1229
	if (prev && !reclaim)
1230
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1231

1232 1233
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1234
			goto out_css_put;
1235
		return root;
1236
	}
K
KAMEZAWA Hiroyuki 已提交
1237

1238
	rcu_read_lock();
1239
	while (!memcg) {
1240
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1241
		int uninitialized_var(seq);
1242

1243 1244 1245 1246 1247 1248 1249
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1250
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1251
				iter->last_visited = NULL;
1252 1253
				goto out_unlock;
			}
M
Michal Hocko 已提交
1254

1255
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1256
		}
K
KAMEZAWA Hiroyuki 已提交
1257

1258
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1259

1260
		if (reclaim) {
1261 1262
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1263

M
Michal Hocko 已提交
1264
			if (!memcg)
1265 1266 1267 1268
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1269

1270
		if (prev && !memcg)
1271
			goto out_unlock;
1272
	}
1273 1274
out_unlock:
	rcu_read_unlock();
1275 1276 1277 1278
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1279
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1280
}
K
KAMEZAWA Hiroyuki 已提交
1281

1282 1283 1284 1285 1286 1287 1288
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1289 1290 1291 1292 1293 1294
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1295

1296 1297 1298 1299 1300 1301
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1302
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1303
	     iter != NULL;				\
1304
	     iter = mem_cgroup_iter(root, iter, NULL))
1305

1306
#define for_each_mem_cgroup(iter)			\
1307
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1308
	     iter != NULL;				\
1309
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1310

1311
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1312
{
1313
	struct mem_cgroup *memcg;
1314 1315

	rcu_read_lock();
1316 1317
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1318 1319 1320 1321
		goto out;

	switch (idx) {
	case PGFAULT:
1322 1323 1324 1325
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1326 1327 1328 1329 1330 1331 1332
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1333
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1334

1335 1336 1337
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1338
 * @memcg: memcg of the wanted lruvec
1339 1340 1341 1342 1343 1344 1345 1346 1347
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1348
	struct lruvec *lruvec;
1349

1350 1351 1352 1353
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1354 1355

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1366 1367
}

K
KAMEZAWA Hiroyuki 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1381

1382
/**
1383
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1384
 * @page: the page
1385
 * @zone: zone of the page
1386
 */
1387
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1388 1389
{
	struct mem_cgroup_per_zone *mz;
1390 1391
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1392
	struct lruvec *lruvec;
1393

1394 1395 1396 1397
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1398

K
KAMEZAWA Hiroyuki 已提交
1399
	pc = lookup_page_cgroup(page);
1400
	memcg = pc->mem_cgroup;
1401 1402

	/*
1403
	 * Surreptitiously switch any uncharged offlist page to root:
1404 1405 1406 1407 1408 1409 1410
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1411
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1412 1413
		pc->mem_cgroup = memcg = root_mem_cgroup;

1414
	mz = page_cgroup_zoneinfo(memcg, page);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1425
}
1426

1427
/**
1428 1429 1430 1431
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1432
 *
1433 1434
 * This function must be called when a page is added to or removed from an
 * lru list.
1435
 */
1436 1437
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1438 1439
{
	struct mem_cgroup_per_zone *mz;
1440
	unsigned long *lru_size;
1441 1442 1443 1444

	if (mem_cgroup_disabled())
		return;

1445 1446 1447 1448
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1449
}
1450

1451
/*
1452
 * Checks whether given mem is same or in the root_mem_cgroup's
1453 1454
 * hierarchy subtree
 */
1455 1456
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1457
{
1458 1459
	if (root_memcg == memcg)
		return true;
1460
	if (!root_memcg->use_hierarchy || !memcg)
1461
		return false;
1462
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1463 1464 1465 1466 1467 1468 1469
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1470
	rcu_read_lock();
1471
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1472 1473
	rcu_read_unlock();
	return ret;
1474 1475
}

1476 1477
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1478
{
1479
	struct mem_cgroup *curr = NULL;
1480
	struct task_struct *p;
1481
	bool ret;
1482

1483
	p = find_lock_task_mm(task);
1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1493
		rcu_read_lock();
1494 1495 1496
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1497
		rcu_read_unlock();
1498
	}
1499
	if (!curr)
1500
		return false;
1501
	/*
1502
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1503
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1504 1505
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1506
	 */
1507
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1508
	css_put(&curr->css);
1509 1510 1511
	return ret;
}

1512
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1513
{
1514
	unsigned long inactive_ratio;
1515
	unsigned long inactive;
1516
	unsigned long active;
1517
	unsigned long gb;
1518

1519 1520
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1521

1522 1523 1524 1525 1526 1527
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1528
	return inactive * inactive_ratio < active;
1529 1530
}

1531 1532 1533
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1534
/**
1535
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1536
 * @memcg: the memory cgroup
1537
 *
1538
 * Returns the maximum amount of memory @mem can be charged with, in
1539
 * pages.
1540
 */
1541
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1542
{
1543 1544
	unsigned long long margin;

1545
	margin = res_counter_margin(&memcg->res);
1546
	if (do_swap_account)
1547
		margin = min(margin, res_counter_margin(&memcg->memsw));
1548
	return margin >> PAGE_SHIFT;
1549 1550
}

1551
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1552 1553
{
	/* root ? */
T
Tejun Heo 已提交
1554
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1555 1556
		return vm_swappiness;

1557
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1558 1559
}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1574 1575 1576 1577

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1578
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1579
{
1580
	atomic_inc(&memcg_moving);
1581
	atomic_inc(&memcg->moving_account);
1582 1583 1584
	synchronize_rcu();
}

1585
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1586
{
1587 1588 1589 1590
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1591 1592
	if (memcg) {
		atomic_dec(&memcg_moving);
1593
		atomic_dec(&memcg->moving_account);
1594
	}
1595
}
1596

1597 1598 1599
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1600 1601
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1602 1603 1604 1605 1606 1607 1608
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1609
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1610 1611
{
	VM_BUG_ON(!rcu_read_lock_held());
1612
	return atomic_read(&memcg->moving_account) > 0;
1613
}
1614

1615
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1616
{
1617 1618
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1619
	bool ret = false;
1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1629

1630 1631
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1632 1633
unlock:
	spin_unlock(&mc.lock);
1634 1635 1636
	return ret;
}

1637
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1638 1639
{
	if (mc.moving_task && current != mc.moving_task) {
1640
		if (mem_cgroup_under_move(memcg)) {
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1653 1654 1655 1656
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1657
 * see mem_cgroup_stolen(), too.
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1671
#define K(x) ((x) << (PAGE_SHIFT-10))
1672
/**
1673
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1674 1675 1676 1677 1678 1679 1680 1681
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1682
	/* oom_info_lock ensures that parallel ooms do not interleave */
1683
	static DEFINE_MUTEX(oom_info_lock);
1684 1685
	struct mem_cgroup *iter;
	unsigned int i;
1686

1687
	if (!p)
1688 1689
		return;

1690
	mutex_lock(&oom_info_lock);
1691 1692
	rcu_read_lock();

T
Tejun Heo 已提交
1693 1694 1695 1696 1697
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1698 1699 1700

	rcu_read_unlock();

1701
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1702 1703 1704
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1705
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1706 1707 1708
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1709
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1710 1711 1712
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1713 1714

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1715 1716
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1732
	mutex_unlock(&oom_info_lock);
1733 1734
}

1735 1736 1737 1738
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1739
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740 1741
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1742 1743
	struct mem_cgroup *iter;

1744
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1745
		num++;
1746 1747 1748
	return num;
}

D
David Rientjes 已提交
1749 1750 1751
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1752
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1753 1754 1755
{
	u64 limit;

1756 1757
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1758
	/*
1759
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1760
	 */
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1775 1776
}

1777 1778
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1779 1780 1781 1782 1783 1784 1785
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1786
	/*
1787 1788 1789
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1790
	 */
1791
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 1793 1794 1795 1796
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 1798
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1799
		struct css_task_iter it;
1800 1801
		struct task_struct *task;

1802 1803
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1816
				css_task_iter_end(&it);
1817 1818 1819 1820 1821 1822 1823 1824
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1837
		}
1838
		css_task_iter_end(&it);
1839 1840 1841 1842 1843 1844 1845 1846 1847
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1884 1885
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1886
 * @memcg: the target memcg
1887 1888 1889 1890 1891 1892 1893
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1894
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1895 1896
		int nid, bool noswap)
{
1897
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1898 1899 1900
		return true;
	if (noswap || !total_swap_pages)
		return false;
1901
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1902 1903 1904 1905
		return true;
	return false;

}
1906
#if MAX_NUMNODES > 1
1907 1908 1909 1910 1911 1912 1913

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1914
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1915 1916
{
	int nid;
1917 1918 1919 1920
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1921
	if (!atomic_read(&memcg->numainfo_events))
1922
		return;
1923
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1924 1925 1926
		return;

	/* make a nodemask where this memcg uses memory from */
1927
	memcg->scan_nodes = node_states[N_MEMORY];
1928

1929
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1930

1931 1932
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1933
	}
1934

1935 1936
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1951
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1952 1953 1954
{
	int node;

1955 1956
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1957

1958
	node = next_node(node, memcg->scan_nodes);
1959
	if (node == MAX_NUMNODES)
1960
		node = first_node(memcg->scan_nodes);
1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1970
	memcg->last_scanned_node = node;
1971 1972 1973
	return node;
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2009
#else
2010
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2011 2012 2013
{
	return 0;
}
2014

2015 2016 2017 2018
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2019 2020
#endif

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2069
	}
2070 2071
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2072 2073
}

2074 2075 2076 2077 2078 2079
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2080 2081
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2082 2083 2084 2085
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2086
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2087
{
2088
	struct mem_cgroup *iter, *failed = NULL;
2089

2090 2091
	spin_lock(&memcg_oom_lock);

2092
	for_each_mem_cgroup_tree(iter, memcg) {
2093
		if (iter->oom_lock) {
2094 2095 2096 2097 2098
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2099 2100
			mem_cgroup_iter_break(memcg, iter);
			break;
2101 2102
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2103
	}
K
KAMEZAWA Hiroyuki 已提交
2104

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2116
		}
2117 2118
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2119 2120 2121 2122

	spin_unlock(&memcg_oom_lock);

	return !failed;
2123
}
2124

2125
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2126
{
K
KAMEZAWA Hiroyuki 已提交
2127 2128
	struct mem_cgroup *iter;

2129
	spin_lock(&memcg_oom_lock);
2130
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2131
	for_each_mem_cgroup_tree(iter, memcg)
2132
		iter->oom_lock = false;
2133
	spin_unlock(&memcg_oom_lock);
2134 2135
}

2136
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2137 2138 2139
{
	struct mem_cgroup *iter;

2140
	for_each_mem_cgroup_tree(iter, memcg)
2141 2142 2143
		atomic_inc(&iter->under_oom);
}

2144
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2145 2146 2147
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2148 2149 2150 2151 2152
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2153
	for_each_mem_cgroup_tree(iter, memcg)
2154
		atomic_add_unless(&iter->under_oom, -1, 0);
2155 2156
}

K
KAMEZAWA Hiroyuki 已提交
2157 2158
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2159
struct oom_wait_info {
2160
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2161 2162 2163 2164 2165 2166
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2167 2168
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2169 2170 2171
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2172
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2173 2174

	/*
2175
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2176 2177
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2178 2179
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2180 2181 2182 2183
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2184
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2185
{
2186
	atomic_inc(&memcg->oom_wakeups);
2187 2188
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2189 2190
}

2191
static void memcg_oom_recover(struct mem_cgroup *memcg)
2192
{
2193 2194
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2195 2196
}

2197
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2198
{
2199 2200
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2201
	/*
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2214
	 */
2215 2216 2217 2218
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2219 2220 2221 2222
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2223
 * @handle: actually kill/wait or just clean up the OOM state
2224
 *
2225 2226
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2227
 *
2228
 * Memcg supports userspace OOM handling where failed allocations must
2229 2230 2231 2232
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2233
 * the end of the page fault to complete the OOM handling.
2234 2235
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2236
 * completed, %false otherwise.
2237
 */
2238
bool mem_cgroup_oom_synchronize(bool handle)
2239
{
2240
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2241
	struct oom_wait_info owait;
2242
	bool locked;
2243 2244 2245

	/* OOM is global, do not handle */
	if (!memcg)
2246
		return false;
2247

2248 2249
	if (!handle)
		goto cleanup;
2250 2251 2252 2253 2254 2255

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2256

2257
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2271
		schedule();
2272 2273 2274 2275 2276
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2277 2278 2279 2280 2281 2282 2283 2284
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2285 2286
cleanup:
	current->memcg_oom.memcg = NULL;
2287
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2288
	return true;
2289 2290
}

2291 2292 2293
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2311 2312
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2313
 */
2314

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2328
	 * need to take move_lock_mem_cgroup(). Because we already hold
2329
	 * rcu_read_lock(), any calls to move_account will be delayed until
2330
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2331
	 */
2332
	if (!mem_cgroup_stolen(memcg))
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2350
	 * should take move_lock_mem_cgroup().
2351 2352 2353 2354
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2355
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2356
				 enum mem_cgroup_stat_index idx, int val)
2357
{
2358
	struct mem_cgroup *memcg;
2359
	struct page_cgroup *pc = lookup_page_cgroup(page);
2360
	unsigned long uninitialized_var(flags);
2361

2362
	if (mem_cgroup_disabled())
2363
		return;
2364

2365
	VM_BUG_ON(!rcu_read_lock_held());
2366 2367
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2368
		return;
2369

2370
	this_cpu_add(memcg->stat->count[idx], val);
2371
}
2372

2373 2374 2375 2376
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2377
#define CHARGE_BATCH	32U
2378 2379
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2380
	unsigned int nr_pages;
2381
	struct work_struct work;
2382
	unsigned long flags;
2383
#define FLUSHING_CACHED_CHARGE	0
2384 2385
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2386
static DEFINE_MUTEX(percpu_charge_mutex);
2387

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2398
 */
2399
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400 2401 2402 2403
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2404 2405 2406
	if (nr_pages > CHARGE_BATCH)
		return false;

2407
	stock = &get_cpu_var(memcg_stock);
2408 2409
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2423 2424 2425 2426
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2427
		if (do_swap_account)
2428 2429
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2442
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2443 2444
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2456 2457
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2458
 * This will be consumed by consume_stock() function, later.
2459
 */
2460
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2461 2462 2463
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2464
	if (stock->cached != memcg) { /* reset if necessary */
2465
		drain_stock(stock);
2466
		stock->cached = memcg;
2467
	}
2468
	stock->nr_pages += nr_pages;
2469 2470 2471 2472
	put_cpu_var(memcg_stock);
}

/*
2473
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2474 2475
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2476
 */
2477
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2478
{
2479
	int cpu, curcpu;
2480

2481 2482
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2483
	curcpu = get_cpu();
2484 2485
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2486
		struct mem_cgroup *memcg;
2487

2488 2489
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2490
			continue;
2491
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2492
			continue;
2493 2494 2495 2496 2497 2498
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2499
	}
2500
	put_cpu();
2501 2502 2503 2504 2505 2506

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2507
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2508 2509 2510
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2511
	put_online_cpus();
2512 2513 2514 2515 2516 2517 2518 2519
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2520
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2521
{
2522 2523 2524 2525 2526
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2527
	drain_all_stock(root_memcg, false);
2528
	mutex_unlock(&percpu_charge_mutex);
2529 2530 2531
}

/* This is a synchronous drain interface. */
2532
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2533 2534
{
	/* called when force_empty is called */
2535
	mutex_lock(&percpu_charge_mutex);
2536
	drain_all_stock(root_memcg, true);
2537
	mutex_unlock(&percpu_charge_mutex);
2538 2539
}

2540 2541 2542 2543
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2544
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2545 2546 2547
{
	int i;

2548
	spin_lock(&memcg->pcp_counter_lock);
2549
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2550
		long x = per_cpu(memcg->stat->count[i], cpu);
2551

2552 2553
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2554
	}
2555
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2556
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2557

2558 2559
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2560
	}
2561
	spin_unlock(&memcg->pcp_counter_lock);
2562 2563
}

2564
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2565 2566 2567 2568 2569
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2570
	struct mem_cgroup *iter;
2571

2572
	if (action == CPU_ONLINE)
2573 2574
		return NOTIFY_OK;

2575
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2576
		return NOTIFY_OK;
2577

2578
	for_each_mem_cgroup(iter)
2579 2580
		mem_cgroup_drain_pcp_counter(iter, cpu);

2581 2582 2583 2584 2585
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2586 2587 2588 2589 2590 2591 2592 2593 2594

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2595
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2596
				unsigned int nr_pages, unsigned int min_pages,
2597
				bool invoke_oom)
2598
{
2599
	unsigned long csize = nr_pages * PAGE_SIZE;
2600 2601 2602 2603 2604
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2605
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2606 2607 2608 2609

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2610
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2611 2612 2613
		if (likely(!ret))
			return CHARGE_OK;

2614
		res_counter_uncharge(&memcg->res, csize);
2615 2616 2617 2618
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2619 2620 2621 2622
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2623
	if (nr_pages > min_pages)
2624 2625 2626 2627 2628
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2629 2630 2631
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2632
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2633
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2634
		return CHARGE_RETRY;
2635
	/*
2636 2637 2638 2639 2640 2641 2642
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2643
	 */
2644
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2645 2646 2647 2648 2649 2650 2651 2652 2653
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2654 2655
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2656

2657
	return CHARGE_NOMEM;
2658 2659
}

2660
/*
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2680
 */
2681
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2682
				   gfp_t gfp_mask,
2683
				   unsigned int nr_pages,
2684
				   struct mem_cgroup **ptr,
2685
				   bool oom)
2686
{
2687
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2688
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2689
	struct mem_cgroup *memcg = NULL;
2690
	int ret;
2691

K
KAMEZAWA Hiroyuki 已提交
2692 2693 2694 2695 2696 2697 2698 2699
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2700

2701
	if (unlikely(task_in_memcg_oom(current)))
2702
		goto nomem;
2703

2704 2705 2706
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;

2707
	/*
2708 2709
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2710
	 * thread group leader migrates. It's possible that mm is not
2711
	 * set, if so charge the root memcg (happens for pagecache usage).
2712
	 */
2713
	if (!*ptr && !mm)
2714
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2715
again:
2716 2717 2718
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2719
			goto done;
2720
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2721
			goto done;
2722
		css_get(&memcg->css);
2723
	} else {
K
KAMEZAWA Hiroyuki 已提交
2724
		struct task_struct *p;
2725

K
KAMEZAWA Hiroyuki 已提交
2726 2727 2728
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2729
		 * Because we don't have task_lock(), "p" can exit.
2730
		 * In that case, "memcg" can point to root or p can be NULL with
2731 2732 2733 2734 2735 2736
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2737
		 */
2738
		memcg = mem_cgroup_from_task(p);
2739 2740 2741
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2742 2743 2744
			rcu_read_unlock();
			goto done;
		}
2745
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2758
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2759 2760 2761 2762 2763
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2764

2765
	do {
2766
		bool invoke_oom = oom && !nr_oom_retries;
2767

2768
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2769
		if (fatal_signal_pending(current)) {
2770
			css_put(&memcg->css);
2771
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2772
		}
2773

2774 2775
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2776 2777 2778 2779
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2780
			batch = nr_pages;
2781 2782
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2783
			goto again;
2784
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2785
			css_put(&memcg->css);
2786 2787
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2788
			if (!oom || invoke_oom) {
2789
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2790
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2791
			}
2792 2793
			nr_oom_retries--;
			break;
2794
		}
2795 2796
	} while (ret != CHARGE_OK);

2797
	if (batch > nr_pages)
2798 2799
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2800
done:
2801
	*ptr = memcg;
2802 2803
	return 0;
nomem:
2804 2805 2806 2807
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2808
bypass:
2809 2810
	*ptr = root_mem_cgroup;
	return -EINTR;
2811
}
2812

2813 2814 2815 2816 2817
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2818
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2819
				       unsigned int nr_pages)
2820
{
2821
	if (!mem_cgroup_is_root(memcg)) {
2822 2823
		unsigned long bytes = nr_pages * PAGE_SIZE;

2824
		res_counter_uncharge(&memcg->res, bytes);
2825
		if (do_swap_account)
2826
			res_counter_uncharge(&memcg->memsw, bytes);
2827
	}
2828 2829
}

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2848 2849
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2850 2851 2852
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2853 2854 2855 2856 2857 2858
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2859
	return mem_cgroup_from_id(id);
2860 2861
}

2862
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2863
{
2864
	struct mem_cgroup *memcg = NULL;
2865
	struct page_cgroup *pc;
2866
	unsigned short id;
2867 2868
	swp_entry_t ent;

2869
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2870 2871

	pc = lookup_page_cgroup(page);
2872
	lock_page_cgroup(pc);
2873
	if (PageCgroupUsed(pc)) {
2874 2875 2876
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2877
	} else if (PageSwapCache(page)) {
2878
		ent.val = page_private(page);
2879
		id = lookup_swap_cgroup_id(ent);
2880
		rcu_read_lock();
2881 2882 2883
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2884
		rcu_read_unlock();
2885
	}
2886
	unlock_page_cgroup(pc);
2887
	return memcg;
2888 2889
}

2890
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2891
				       struct page *page,
2892
				       unsigned int nr_pages,
2893 2894
				       enum charge_type ctype,
				       bool lrucare)
2895
{
2896
	struct page_cgroup *pc = lookup_page_cgroup(page);
2897
	struct zone *uninitialized_var(zone);
2898
	struct lruvec *lruvec;
2899
	bool was_on_lru = false;
2900
	bool anon;
2901

2902
	lock_page_cgroup(pc);
2903
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2904 2905 2906 2907
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2908 2909 2910 2911 2912 2913 2914 2915 2916

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2917
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2918
			ClearPageLRU(page);
2919
			del_page_from_lru_list(page, lruvec, page_lru(page));
2920 2921 2922 2923
			was_on_lru = true;
		}
	}

2924
	pc->mem_cgroup = memcg;
2925 2926 2927 2928 2929 2930
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2931
	 */
K
KAMEZAWA Hiroyuki 已提交
2932
	smp_wmb();
2933
	SetPageCgroupUsed(pc);
2934

2935 2936
	if (lrucare) {
		if (was_on_lru) {
2937
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2938
			VM_BUG_ON_PAGE(PageLRU(page), page);
2939
			SetPageLRU(page);
2940
			add_page_to_lru_list(page, lruvec, page_lru(page));
2941 2942 2943 2944
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2945
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2946 2947 2948 2949
		anon = true;
	else
		anon = false;

2950
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2951
	unlock_page_cgroup(pc);
2952

2953
	/*
2954 2955 2956
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2957
	 */
2958
	memcg_check_events(memcg, page);
2959
}
2960

2961 2962
static DEFINE_MUTEX(set_limit_mutex);

2963
#ifdef CONFIG_MEMCG_KMEM
2964 2965
static DEFINE_MUTEX(activate_kmem_mutex);

2966 2967 2968
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2969
		memcg_kmem_is_active(memcg);
2970 2971
}

G
Glauber Costa 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2982
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2983 2984
}

2985
#ifdef CONFIG_SLABINFO
2986
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2987
{
2988
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3017
				      &_memcg, oom_gfp_allowed(gfp));
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3051 3052 3053 3054 3055

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3056 3057 3058 3059 3060 3061 3062 3063
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3064
	if (memcg_kmem_test_and_clear_dead(memcg))
3065
		css_put(&memcg->css);
3066 3067
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3104 3105
static void kmem_cache_destroy_work_func(struct work_struct *w);

3106 3107 3108 3109
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3110
	VM_BUG_ON(!is_root_cache(s));
3111 3112 3113

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3114
		struct memcg_cache_params *new_params;
3115 3116 3117
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3118
		size += offsetof(struct memcg_cache_params, memcg_caches);
3119

3120 3121
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3122 3123
			return -ENOMEM;

3124
		new_params->is_root_cache = true;
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3138
			new_params->memcg_caches[i] =
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3151 3152 3153
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3154 3155 3156 3157
	}
	return 0;
}

3158 3159
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3160
{
3161
	size_t size;
3162 3163 3164 3165

	if (!memcg_kmem_enabled())
		return 0;

3166 3167
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3168
		size += memcg_limited_groups_array_size * sizeof(void *);
3169 3170
	} else
		size = sizeof(struct memcg_cache_params);
3171

3172 3173 3174 3175
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3176
	if (memcg) {
3177
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3178
		s->memcg_params->root_cache = root_cache;
3179 3180
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3181 3182 3183
	} else
		s->memcg_params->is_root_cache = true;

3184 3185 3186
	return 0;
}

3187 3188 3189 3190 3191
void memcg_free_cache_params(struct kmem_cache *s)
{
	kfree(s->memcg_params);
}

3192
void memcg_register_cache(struct kmem_cache *s)
3193
{
3194 3195 3196 3197
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

3198 3199 3200
	if (is_root_cache(s))
		return;

3201 3202 3203 3204 3205 3206
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3207 3208 3209 3210 3211 3212 3213
	root = s->memcg_params->root_cache;
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);

	css_get(&memcg->css);


3214
	/*
3215 3216 3217
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3218
	 */
3219 3220
	smp_wmb();

3221 3222 3223 3224 3225
	/*
	 * Initialize the pointer to this cache in its parent's memcg_params
	 * before adding it to the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3226
	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3227
	root->memcg_params->memcg_caches[id] = s;
3228 3229 3230 3231

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
3232
}
3233

3234 3235 3236 3237 3238 3239 3240 3241
void memcg_unregister_cache(struct kmem_cache *s)
{
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	if (is_root_cache(s))
		return;
3242

3243 3244 3245 3246 3247 3248
	/*
	 * Holding the slab_mutex assures nobody will touch the memcg_caches
	 * array while we are modifying it.
	 */
	lockdep_assert_held(&slab_mutex);

3249
	root = s->memcg_params->root_cache;
3250 3251
	memcg = s->memcg_params->memcg;
	id = memcg_cache_id(memcg);
3252 3253 3254 3255 3256

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3257 3258 3259 3260 3261
	/*
	 * Clear the pointer to this cache in its parent's memcg_params only
	 * after removing it from the memcg_slab_caches list, otherwise we can
	 * fail to convert memcg_params_to_cache() while traversing the list.
	 */
3262
	VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3263 3264
	root->memcg_params->memcg_caches[id] = NULL;

3265
	css_put(&memcg->css);
3266 3267
}

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
3324
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
G
Glauber Costa 已提交
3325
		kmem_cache_shrink(cachep);
3326
	else
G
Glauber Costa 已提交
3327 3328 3329 3330 3331 3332 3333 3334
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3355 3356 3357 3358 3359 3360 3361
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3362 3363
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *s)
3364
{
3365
	struct kmem_cache *new = NULL;
T
Tejun Heo 已提交
3366
	static char *tmp_path = NULL, *tmp_name = NULL;
3367
	static DEFINE_MUTEX(mutex);	/* protects tmp_name */
3368

3369
	BUG_ON(!memcg_can_account_kmem(memcg));
3370

3371
	mutex_lock(&mutex);
3372 3373 3374 3375 3376 3377
	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
T
Tejun Heo 已提交
3378 3379 3380
	if (!tmp_path || !tmp_name) {
		if (!tmp_path)
			tmp_path = kmalloc(PATH_MAX, GFP_KERNEL);
3381
		if (!tmp_name)
T
Tejun Heo 已提交
3382 3383
			tmp_name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
		if (!tmp_path || !tmp_name)
3384
			goto out;
3385 3386
	}

T
Tejun Heo 已提交
3387 3388 3389
	cgroup_name(memcg->css.cgroup, tmp_name, NAME_MAX + 1);
	snprintf(tmp_path, PATH_MAX, "%s(%d:%s)", s->name,
		 memcg_cache_id(memcg), tmp_name);
3390

T
Tejun Heo 已提交
3391
	new = kmem_cache_create_memcg(memcg, tmp_path, s->object_size, s->align,
G
Glauber Costa 已提交
3392
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3393 3394
	if (new)
		new->allocflags |= __GFP_KMEMCG;
3395 3396
	else
		new = s;
3397
out:
3398
	mutex_unlock(&mutex);
3399 3400 3401
	return new;
}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
3419 3420
	 * we'll take the activate_kmem_mutex to protect ourselves against
	 * this.
3421
	 */
3422
	mutex_lock(&activate_kmem_mutex);
3423 3424
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3442
		cancel_work_sync(&c->memcg_params->destroy);
3443 3444
		kmem_cache_destroy(c);
	}
3445
	mutex_unlock(&activate_kmem_mutex);
3446 3447
}

3448 3449 3450 3451 3452 3453
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3471 3472 3473 3474 3475 3476
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3477
	css_put(&cw->memcg->css);
3478 3479 3480 3481 3482 3483
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3484 3485
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3486 3487 3488 3489
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3490 3491
	if (cw == NULL) {
		css_put(&memcg->css);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3537
	struct kmem_cache *memcg_cachep;
3538 3539 3540 3541

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3542 3543 3544
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3545 3546 3547 3548
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3549
		goto out;
3550

3551 3552 3553
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3554
		goto out;
3555 3556
	}

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3584 3585 3586
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3623 3624 3625
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3707
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3708 3709
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3710 3711 3712 3713
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3714 3715
#endif /* CONFIG_MEMCG_KMEM */

3716 3717
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3718
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3719 3720
/*
 * Because tail pages are not marked as "used", set it. We're under
3721 3722 3723
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3724
 */
3725
void mem_cgroup_split_huge_fixup(struct page *head)
3726 3727
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3728
	struct page_cgroup *pc;
3729
	struct mem_cgroup *memcg;
3730
	int i;
3731

3732 3733
	if (mem_cgroup_disabled())
		return;
3734 3735

	memcg = head_pc->mem_cgroup;
3736 3737
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3738
		pc->mem_cgroup = memcg;
3739 3740 3741
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3742 3743
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3744
}
3745
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3746

3747
/**
3748
 * mem_cgroup_move_account - move account of the page
3749
 * @page: the page
3750
 * @nr_pages: number of regular pages (>1 for huge pages)
3751 3752 3753 3754 3755
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3756
 * - page is not on LRU (isolate_page() is useful.)
3757
 * - compound_lock is held when nr_pages > 1
3758
 *
3759 3760
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3761
 */
3762 3763 3764 3765
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3766
				   struct mem_cgroup *to)
3767
{
3768 3769
	unsigned long flags;
	int ret;
3770
	bool anon = PageAnon(page);
3771

3772
	VM_BUG_ON(from == to);
3773
	VM_BUG_ON_PAGE(PageLRU(page), page);
3774 3775 3776 3777 3778 3779 3780
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3781
	if (nr_pages > 1 && !PageTransHuge(page))
3782 3783 3784 3785 3786 3787 3788 3789
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3790
	move_lock_mem_cgroup(from, &flags);
3791

3792 3793 3794 3795 3796 3797
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3798

3799 3800 3801 3802 3803 3804
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3805

3806
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3807

3808
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3809
	pc->mem_cgroup = to;
3810
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3811
	move_unlock_mem_cgroup(from, &flags);
3812 3813
	ret = 0;
unlock:
3814
	unlock_page_cgroup(pc);
3815 3816 3817
	/*
	 * check events
	 */
3818 3819
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3820
out:
3821 3822 3823
	return ret;
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3844
 */
3845 3846
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3847
				  struct mem_cgroup *child)
3848 3849
{
	struct mem_cgroup *parent;
3850
	unsigned int nr_pages;
3851
	unsigned long uninitialized_var(flags);
3852 3853
	int ret;

3854
	VM_BUG_ON(mem_cgroup_is_root(child));
3855

3856 3857 3858 3859 3860
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3861

3862
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3863

3864 3865 3866 3867 3868 3869
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3870

3871
	if (nr_pages > 1) {
3872
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3873
		flags = compound_lock_irqsave(page);
3874
	}
3875

3876
	ret = mem_cgroup_move_account(page, nr_pages,
3877
				pc, child, parent);
3878 3879
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3880

3881
	if (nr_pages > 1)
3882
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3883
	putback_lru_page(page);
3884
put:
3885
	put_page(page);
3886
out:
3887 3888 3889
	return ret;
}

3890 3891 3892 3893 3894 3895 3896
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3897
				gfp_t gfp_mask, enum charge_type ctype)
3898
{
3899
	struct mem_cgroup *memcg = NULL;
3900
	unsigned int nr_pages = 1;
3901
	bool oom = true;
3902
	int ret;
A
Andrea Arcangeli 已提交
3903

A
Andrea Arcangeli 已提交
3904
	if (PageTransHuge(page)) {
3905
		nr_pages <<= compound_order(page);
3906
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3907 3908 3909 3910 3911
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3912
	}
3913

3914
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3915
	if (ret == -ENOMEM)
3916
		return ret;
3917
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3918 3919 3920
	return 0;
}

3921 3922
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3923
{
3924
	if (mem_cgroup_disabled())
3925
		return 0;
3926 3927
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3928
	VM_BUG_ON(!mm);
3929
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3930
					MEM_CGROUP_CHARGE_TYPE_ANON);
3931 3932
}

3933 3934 3935
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3936
 * struct page_cgroup is acquired. This refcnt will be consumed by
3937 3938
 * "commit()" or removed by "cancel()"
 */
3939 3940 3941 3942
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3943
{
3944
	struct mem_cgroup *memcg;
3945
	struct page_cgroup *pc;
3946
	int ret;
3947

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3958 3959
	if (!do_swap_account)
		goto charge_cur_mm;
3960 3961
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3962
		goto charge_cur_mm;
3963 3964
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3965
	css_put(&memcg->css);
3966 3967
	if (ret == -EINTR)
		ret = 0;
3968
	return ret;
3969
charge_cur_mm:
3970 3971 3972 3973
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3974 3975
}

3976 3977 3978 3979 3980 3981
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3996 3997 3998
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3999 4000 4001 4002 4003 4004 4005 4006 4007
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4008
static void
4009
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4010
					enum charge_type ctype)
4011
{
4012
	if (mem_cgroup_disabled())
4013
		return;
4014
	if (!memcg)
4015
		return;
4016

4017
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4018 4019 4020
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4021 4022 4023
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4024
	 */
4025
	if (do_swap_account && PageSwapCache(page)) {
4026
		swp_entry_t ent = {.val = page_private(page)};
4027
		mem_cgroup_uncharge_swap(ent);
4028
	}
4029 4030
}

4031 4032
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4033
{
4034
	__mem_cgroup_commit_charge_swapin(page, memcg,
4035
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4036 4037
}

4038 4039
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4040
{
4041 4042 4043 4044
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4045
	if (mem_cgroup_disabled())
4046 4047 4048 4049 4050 4051 4052
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4053 4054
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4055 4056 4057 4058
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4059 4060
}

4061
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4062 4063
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4064 4065 4066
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4067

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4079
		batch->memcg = memcg;
4080 4081
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4082
	 * In those cases, all pages freed continuously can be expected to be in
4083 4084 4085 4086 4087 4088 4089 4090
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4091
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4092 4093
		goto direct_uncharge;

4094 4095 4096 4097 4098
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4099
	if (batch->memcg != memcg)
4100 4101
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4102
	batch->nr_pages++;
4103
	if (uncharge_memsw)
4104
		batch->memsw_nr_pages++;
4105 4106
	return;
direct_uncharge:
4107
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4108
	if (uncharge_memsw)
4109 4110 4111
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4112
}
4113

4114
/*
4115
 * uncharge if !page_mapped(page)
4116
 */
4117
static struct mem_cgroup *
4118 4119
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4120
{
4121
	struct mem_cgroup *memcg = NULL;
4122 4123
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4124
	bool anon;
4125

4126
	if (mem_cgroup_disabled())
4127
		return NULL;
4128

A
Andrea Arcangeli 已提交
4129
	if (PageTransHuge(page)) {
4130
		nr_pages <<= compound_order(page);
4131
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
4132
	}
4133
	/*
4134
	 * Check if our page_cgroup is valid
4135
	 */
4136
	pc = lookup_page_cgroup(page);
4137
	if (unlikely(!PageCgroupUsed(pc)))
4138
		return NULL;
4139

4140
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4141

4142
	memcg = pc->mem_cgroup;
4143

K
KAMEZAWA Hiroyuki 已提交
4144 4145 4146
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4147 4148
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4149
	switch (ctype) {
4150
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4151 4152 4153 4154 4155
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4156 4157
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4158
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4159
		/* See mem_cgroup_prepare_migration() */
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4181
	}
K
KAMEZAWA Hiroyuki 已提交
4182

4183
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4184

4185
	ClearPageCgroupUsed(pc);
4186 4187 4188 4189 4190 4191
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4192

4193
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4194
	/*
4195
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4196
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4197
	 */
4198
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4199
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4200
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4201
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4202
	}
4203 4204 4205 4206 4207 4208
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4209
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4210

4211
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4212 4213 4214

unlock_out:
	unlock_page_cgroup(pc);
4215
	return NULL;
4216 4217
}

4218 4219
void mem_cgroup_uncharge_page(struct page *page)
{
4220 4221 4222
	/* early check. */
	if (page_mapped(page))
		return;
4223
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4236 4237
	if (PageSwapCache(page))
		return;
4238
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4239 4240 4241 4242
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4243 4244
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4245
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4246 4247
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4262 4263
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4284 4285 4286 4287 4288 4289
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4290
	memcg_oom_recover(batch->memcg);
4291 4292 4293 4294
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4295
#ifdef CONFIG_SWAP
4296
/*
4297
 * called after __delete_from_swap_cache() and drop "page" account.
4298 4299
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4300 4301
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4302 4303
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4304 4305 4306 4307 4308
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4309
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4310

K
KAMEZAWA Hiroyuki 已提交
4311 4312
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4313
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4314 4315
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4316
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4317
}
4318
#endif
4319

A
Andrew Morton 已提交
4320
#ifdef CONFIG_MEMCG_SWAP
4321 4322 4323 4324 4325
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4326
{
4327
	struct mem_cgroup *memcg;
4328
	unsigned short id;
4329 4330 4331 4332

	if (!do_swap_account)
		return;

4333 4334 4335
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4336
	if (memcg) {
4337 4338 4339 4340
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4341
		if (!mem_cgroup_is_root(memcg))
4342
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4343
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4344
		css_put(&memcg->css);
4345
	}
4346
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4347
}
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4364
				struct mem_cgroup *from, struct mem_cgroup *to)
4365 4366 4367
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4368 4369
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4370 4371 4372

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4373
		mem_cgroup_swap_statistics(to, true);
4374
		/*
4375 4376 4377
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4378 4379 4380 4381 4382 4383
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4384
		 */
L
Li Zefan 已提交
4385
		css_get(&to->css);
4386 4387 4388 4389 4390 4391
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4392
				struct mem_cgroup *from, struct mem_cgroup *to)
4393 4394 4395
{
	return -EINVAL;
}
4396
#endif
K
KAMEZAWA Hiroyuki 已提交
4397

4398
/*
4399 4400
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4401
 */
4402 4403
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4404
{
4405
	struct mem_cgroup *memcg = NULL;
4406
	unsigned int nr_pages = 1;
4407
	struct page_cgroup *pc;
4408
	enum charge_type ctype;
4409

4410
	*memcgp = NULL;
4411

4412
	if (mem_cgroup_disabled())
4413
		return;
4414

4415 4416 4417
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4418 4419 4420
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4421 4422
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4454
	}
4455
	unlock_page_cgroup(pc);
4456 4457 4458 4459
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4460
	if (!memcg)
4461
		return;
4462

4463
	*memcgp = memcg;
4464 4465 4466 4467 4468 4469 4470
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4471
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4472
	else
4473
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4474 4475 4476 4477 4478
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4479
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4480
}
4481

4482
/* remove redundant charge if migration failed*/
4483
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4484
	struct page *oldpage, struct page *newpage, bool migration_ok)
4485
{
4486
	struct page *used, *unused;
4487
	struct page_cgroup *pc;
4488
	bool anon;
4489

4490
	if (!memcg)
4491
		return;
4492

4493
	if (!migration_ok) {
4494 4495
		used = oldpage;
		unused = newpage;
4496
	} else {
4497
		used = newpage;
4498 4499
		unused = oldpage;
	}
4500
	anon = PageAnon(used);
4501 4502 4503 4504
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4505
	css_put(&memcg->css);
4506
	/*
4507 4508 4509
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4510
	 */
4511 4512 4513 4514 4515
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4516
	/*
4517 4518 4519 4520 4521 4522
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4523
	 */
4524
	if (anon)
4525
		mem_cgroup_uncharge_page(used);
4526
}
4527

4528 4529 4530 4531 4532 4533 4534 4535
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4536
	struct mem_cgroup *memcg = NULL;
4537 4538 4539 4540 4541 4542 4543 4544 4545
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4546 4547
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4548
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4549 4550
		ClearPageCgroupUsed(pc);
	}
4551 4552
	unlock_page_cgroup(pc);

4553 4554 4555 4556 4557 4558
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4559 4560 4561 4562 4563
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4564
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4565 4566
}

4567 4568 4569 4570 4571 4572
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4573 4574 4575 4576 4577
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4597 4598
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4599 4600 4601 4602
	}
}
#endif

4603
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4604
				unsigned long long val)
4605
{
4606
	int retry_count;
4607
	u64 memswlimit, memlimit;
4608
	int ret = 0;
4609 4610
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4611
	int enlarge;
4612 4613 4614 4615 4616 4617 4618 4619 4620

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4621

4622
	enlarge = 0;
4623
	while (retry_count) {
4624 4625 4626 4627
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4628 4629 4630
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4631
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4632 4633 4634 4635 4636 4637
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4638 4639
			break;
		}
4640 4641 4642 4643 4644

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4645
		ret = res_counter_set_limit(&memcg->res, val);
4646 4647 4648 4649 4650 4651
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4652 4653 4654 4655 4656
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4657 4658
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4659 4660
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4661
		if (curusage >= oldusage)
4662 4663 4664
			retry_count--;
		else
			oldusage = curusage;
4665
	}
4666 4667
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4668

4669 4670 4671
	return ret;
}

L
Li Zefan 已提交
4672 4673
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4674
{
4675
	int retry_count;
4676
	u64 memlimit, memswlimit, oldusage, curusage;
4677 4678
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4679
	int enlarge = 0;
4680

4681
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4682
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4683
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4684 4685 4686 4687 4688 4689 4690 4691
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4692
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4693 4694 4695 4696 4697 4698 4699 4700
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4701 4702 4703
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4704
		ret = res_counter_set_limit(&memcg->memsw, val);
4705 4706 4707 4708 4709 4710
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4711 4712 4713 4714 4715
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4716 4717 4718
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4719
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4720
		/* Usage is reduced ? */
4721
		if (curusage >= oldusage)
4722
			retry_count--;
4723 4724
		else
			oldusage = curusage;
4725
	}
4726 4727
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4728 4729 4730
	return ret;
}

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4823 4824 4825 4826 4827 4828 4829
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4830
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4831 4832
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4833
 */
4834
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4835
				int node, int zid, enum lru_list lru)
4836
{
4837
	struct lruvec *lruvec;
4838
	unsigned long flags;
4839
	struct list_head *list;
4840 4841
	struct page *busy;
	struct zone *zone;
4842

K
KAMEZAWA Hiroyuki 已提交
4843
	zone = &NODE_DATA(node)->node_zones[zid];
4844 4845
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4846

4847
	busy = NULL;
4848
	do {
4849
		struct page_cgroup *pc;
4850 4851
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4852
		spin_lock_irqsave(&zone->lru_lock, flags);
4853
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4854
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4855
			break;
4856
		}
4857 4858 4859
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4860
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4861
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4862 4863
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4864
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4865

4866
		pc = lookup_page_cgroup(page);
4867

4868
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4869
			/* found lock contention or "pc" is obsolete. */
4870
			busy = page;
4871 4872 4873
			cond_resched();
		} else
			busy = NULL;
4874
	} while (!list_empty(list));
4875 4876 4877
}

/*
4878 4879
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4880
 * This enables deleting this mem_cgroup.
4881 4882
 *
 * Caller is responsible for holding css reference on the memcg.
4883
 */
4884
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4885
{
4886
	int node, zid;
4887
	u64 usage;
4888

4889
	do {
4890 4891
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4892 4893
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4894
		for_each_node_state(node, N_MEMORY) {
4895
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4896 4897
				enum lru_list lru;
				for_each_lru(lru) {
4898
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4899
							node, zid, lru);
4900
				}
4901
			}
4902
		}
4903 4904
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4905
		cond_resched();
4906

4907
		/*
4908 4909 4910 4911 4912
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4913 4914 4915 4916 4917 4918
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4919 4920 4921
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4922 4923
}

4924 4925
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4936 4937
}

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4948

4949
	/* returns EBUSY if there is a task or if we come here twice. */
4950
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4951 4952
		return -EBUSY;

4953 4954
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4955
	/* try to free all pages in this cgroup */
4956
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4957
		int progress;
4958

4959 4960 4961
		if (signal_pending(current))
			return -EINTR;

4962
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4963
						false);
4964
		if (!progress) {
4965
			nr_retries--;
4966
			/* maybe some writeback is necessary */
4967
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4968
		}
4969 4970

	}
K
KAMEZAWA Hiroyuki 已提交
4971
	lru_add_drain();
4972 4973 4974
	mem_cgroup_reparent_charges(memcg);

	return 0;
4975 4976
}

4977 4978
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4979
{
4980
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4981

4982 4983
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4984
	return mem_cgroup_force_empty(memcg);
4985 4986
}

4987 4988
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4989
{
4990
	return mem_cgroup_from_css(css)->use_hierarchy;
4991 4992
}

4993 4994
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4995 4996
{
	int retval = 0;
4997
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4998
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4999

5000
	mutex_lock(&memcg_create_mutex);
5001 5002 5003 5004

	if (memcg->use_hierarchy == val)
		goto out;

5005
	/*
5006
	 * If parent's use_hierarchy is set, we can't make any modifications
5007 5008 5009 5010 5011 5012
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5013
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5014
				(val == 1 || val == 0)) {
5015
		if (list_empty(&memcg->css.cgroup->children))
5016
			memcg->use_hierarchy = val;
5017 5018 5019 5020
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5021 5022

out:
5023
	mutex_unlock(&memcg_create_mutex);
5024 5025 5026 5027

	return retval;
}

5028

5029
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5030
					       enum mem_cgroup_stat_index idx)
5031
{
K
KAMEZAWA Hiroyuki 已提交
5032
	struct mem_cgroup *iter;
5033
	long val = 0;
5034

5035
	/* Per-cpu values can be negative, use a signed accumulator */
5036
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5037 5038 5039 5040 5041
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5042 5043
}

5044
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5045
{
K
KAMEZAWA Hiroyuki 已提交
5046
	u64 val;
5047

5048
	if (!mem_cgroup_is_root(memcg)) {
5049
		if (!swap)
5050
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5051
		else
5052
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5053 5054
	}

5055 5056 5057 5058
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5059 5060
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5061

K
KAMEZAWA Hiroyuki 已提交
5062
	if (swap)
5063
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5064 5065 5066 5067

	return val << PAGE_SHIFT;
}

5068 5069
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
5070
{
5071
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5072
	u64 val;
5073
	int name;
G
Glauber Costa 已提交
5074
	enum res_type type;
5075 5076 5077

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5078

5079 5080
	switch (type) {
	case _MEM:
5081
		if (name == RES_USAGE)
5082
			val = mem_cgroup_usage(memcg, false);
5083
		else
5084
			val = res_counter_read_u64(&memcg->res, name);
5085 5086
		break;
	case _MEMSWAP:
5087
		if (name == RES_USAGE)
5088
			val = mem_cgroup_usage(memcg, true);
5089
		else
5090
			val = res_counter_read_u64(&memcg->memsw, name);
5091
		break;
5092 5093 5094
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5095 5096 5097
	default:
		BUG();
	}
5098

5099
	return val;
B
Balbir Singh 已提交
5100
}
5101 5102

#ifdef CONFIG_MEMCG_KMEM
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5131
	mutex_lock(&memcg_create_mutex);
5132
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5133 5134 5135 5136
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
5137

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
	err = memcg_update_all_caches(memcg_id + 1);
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
5171
out:
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
5200 5201 5202
	return ret;
}

5203
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5204
{
5205
	int ret = 0;
5206
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5207

5208 5209
	if (!parent)
		return 0;
5210

5211
	mutex_lock(&activate_kmem_mutex);
5212
	/*
5213 5214
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5215
	 */
5216 5217 5218
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5219
	return ret;
5220
}
5221 5222 5223 5224 5225 5226
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5227
#endif /* CONFIG_MEMCG_KMEM */
5228

5229 5230 5231 5232
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5233
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5234
			    char *buffer)
B
Balbir Singh 已提交
5235
{
5236
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5237 5238
	enum res_type type;
	int name;
5239 5240 5241
	unsigned long long val;
	int ret;

5242 5243
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5244

5245
	switch (name) {
5246
	case RES_LIMIT:
5247 5248 5249 5250
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5251 5252
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5253 5254 5255
		if (ret)
			break;
		if (type == _MEM)
5256
			ret = mem_cgroup_resize_limit(memcg, val);
5257
		else if (type == _MEMSWAP)
5258
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5259
		else if (type == _KMEM)
5260
			ret = memcg_update_kmem_limit(memcg, val);
5261 5262
		else
			return -EINVAL;
5263
		break;
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5278 5279 5280 5281 5282
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5283 5284
}

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5295 5296
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5309
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5310
{
5311
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5312 5313
	int name;
	enum res_type type;
5314

5315 5316
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5317

5318
	switch (name) {
5319
	case RES_MAX_USAGE:
5320
		if (type == _MEM)
5321
			res_counter_reset_max(&memcg->res);
5322
		else if (type == _MEMSWAP)
5323
			res_counter_reset_max(&memcg->memsw);
5324 5325 5326 5327
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5328 5329
		break;
	case RES_FAILCNT:
5330
		if (type == _MEM)
5331
			res_counter_reset_failcnt(&memcg->res);
5332
		else if (type == _MEMSWAP)
5333
			res_counter_reset_failcnt(&memcg->memsw);
5334 5335 5336 5337
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5338 5339
		break;
	}
5340

5341
	return 0;
5342 5343
}

5344
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5345 5346
					struct cftype *cft)
{
5347
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5348 5349
}

5350
#ifdef CONFIG_MMU
5351
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5352 5353
					struct cftype *cft, u64 val)
{
5354
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355 5356 5357

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5358

5359
	/*
5360 5361 5362 5363
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5364
	 */
5365
	memcg->move_charge_at_immigrate = val;
5366 5367
	return 0;
}
5368
#else
5369
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5370 5371 5372 5373 5374
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5375

5376
#ifdef CONFIG_NUMA
5377
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5378
{
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5391
	int nid;
5392
	unsigned long nr;
5393
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5394

5395 5396 5397 5398 5399 5400 5401 5402 5403
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5404 5405
	}

5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5421 5422 5423 5424 5425 5426
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5427 5428 5429 5430 5431
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5432
static int memcg_stat_show(struct seq_file *m, void *v)
5433
{
5434
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5435 5436
	struct mem_cgroup *mi;
	unsigned int i;
5437

5438
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5439
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5440
			continue;
5441 5442
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5443
	}
L
Lee Schermerhorn 已提交
5444

5445 5446 5447 5448 5449 5450 5451 5452
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5453
	/* Hierarchical information */
5454 5455
	{
		unsigned long long limit, memsw_limit;
5456
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5457
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5458
		if (do_swap_account)
5459 5460
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5461
	}
K
KOSAKI Motohiro 已提交
5462

5463 5464 5465
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5466
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5467
			continue;
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5488
	}
K
KAMEZAWA Hiroyuki 已提交
5489

K
KOSAKI Motohiro 已提交
5490 5491 5492 5493
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5494
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5495 5496 5497 5498 5499
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5500
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5501
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5502

5503 5504 5505 5506
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5507
			}
5508 5509 5510 5511
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5512 5513 5514
	}
#endif

5515 5516 5517
	return 0;
}

5518 5519
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5520
{
5521
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5522

5523
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5524 5525
}

5526 5527
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5528
{
5529
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5530
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5531

T
Tejun Heo 已提交
5532
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5533 5534
		return -EINVAL;

5535
	mutex_lock(&memcg_create_mutex);
5536

K
KOSAKI Motohiro 已提交
5537
	/* If under hierarchy, only empty-root can set this value */
5538
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5539
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5540
		return -EINVAL;
5541
	}
K
KOSAKI Motohiro 已提交
5542 5543 5544

	memcg->swappiness = val;

5545
	mutex_unlock(&memcg_create_mutex);
5546

K
KOSAKI Motohiro 已提交
5547 5548 5549
	return 0;
}

5550 5551 5552 5553 5554 5555 5556 5557
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5558
		t = rcu_dereference(memcg->thresholds.primary);
5559
	else
5560
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5561 5562 5563 5564 5565 5566 5567

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5568
	 * current_threshold points to threshold just below or equal to usage.
5569 5570 5571
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5572
	i = t->current_threshold;
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5596
	t->current_threshold = i - 1;
5597 5598 5599 5600 5601 5602
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5603 5604 5605 5606 5607 5608 5609
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5610 5611 5612 5613 5614 5615 5616
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5617 5618 5619 5620 5621 5622 5623
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5624 5625
}

5626
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5627 5628 5629
{
	struct mem_cgroup_eventfd_list *ev;

5630
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5631 5632 5633 5634
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5635
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5636
{
K
KAMEZAWA Hiroyuki 已提交
5637 5638
	struct mem_cgroup *iter;

5639
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5640
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5641 5642
}

5643
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5644
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5645
{
5646 5647
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5648
	u64 threshold, usage;
5649
	int i, size, ret;
5650 5651 5652 5653 5654 5655

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5656

5657
	if (type == _MEM)
5658
		thresholds = &memcg->thresholds;
5659
	else if (type == _MEMSWAP)
5660
		thresholds = &memcg->memsw_thresholds;
5661 5662 5663 5664 5665 5666
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5667
	if (thresholds->primary)
5668 5669
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5670
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5671 5672

	/* Allocate memory for new array of thresholds */
5673
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5674
			GFP_KERNEL);
5675
	if (!new) {
5676 5677 5678
		ret = -ENOMEM;
		goto unlock;
	}
5679
	new->size = size;
5680 5681

	/* Copy thresholds (if any) to new array */
5682 5683
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5684
				sizeof(struct mem_cgroup_threshold));
5685 5686
	}

5687
	/* Add new threshold */
5688 5689
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5690 5691

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5692
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5693 5694 5695
			compare_thresholds, NULL);

	/* Find current threshold */
5696
	new->current_threshold = -1;
5697
	for (i = 0; i < size; i++) {
5698
		if (new->entries[i].threshold <= usage) {
5699
			/*
5700 5701
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5702 5703
			 * it here.
			 */
5704
			++new->current_threshold;
5705 5706
		} else
			break;
5707 5708
	}

5709 5710 5711 5712 5713
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5714

5715
	/* To be sure that nobody uses thresholds */
5716 5717 5718 5719 5720 5721 5722 5723
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5724
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5725 5726
	struct eventfd_ctx *eventfd, const char *args)
{
5727
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5728 5729
}

5730
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5731 5732
	struct eventfd_ctx *eventfd, const char *args)
{
5733
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5734 5735
}

5736
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5737
	struct eventfd_ctx *eventfd, enum res_type type)
5738
{
5739 5740
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5741
	u64 usage;
5742
	int i, j, size;
5743 5744 5745

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5746
		thresholds = &memcg->thresholds;
5747
	else if (type == _MEMSWAP)
5748
		thresholds = &memcg->memsw_thresholds;
5749 5750 5751
	else
		BUG();

5752 5753 5754
	if (!thresholds->primary)
		goto unlock;

5755 5756 5757 5758 5759 5760
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5761 5762 5763
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5764 5765 5766
			size++;
	}

5767
	new = thresholds->spare;
5768

5769 5770
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5771 5772
		kfree(new);
		new = NULL;
5773
		goto swap_buffers;
5774 5775
	}

5776
	new->size = size;
5777 5778

	/* Copy thresholds and find current threshold */
5779 5780 5781
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5782 5783
			continue;

5784
		new->entries[j] = thresholds->primary->entries[i];
5785
		if (new->entries[j].threshold <= usage) {
5786
			/*
5787
			 * new->current_threshold will not be used
5788 5789 5790
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5791
			++new->current_threshold;
5792 5793 5794 5795
		}
		j++;
	}

5796
swap_buffers:
5797 5798
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5799 5800 5801 5802 5803 5804
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5805
	rcu_assign_pointer(thresholds->primary, new);
5806

5807
	/* To be sure that nobody uses thresholds */
5808
	synchronize_rcu();
5809
unlock:
5810 5811
	mutex_unlock(&memcg->thresholds_lock);
}
5812

5813
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5814 5815
	struct eventfd_ctx *eventfd)
{
5816
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5817 5818
}

5819
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5820 5821
	struct eventfd_ctx *eventfd)
{
5822
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5823 5824
}

5825
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5826
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5827 5828 5829 5830 5831 5832 5833
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5834
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5835 5836 5837 5838 5839

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5840
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5841
		eventfd_signal(eventfd, 1);
5842
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5843 5844 5845 5846

	return 0;
}

5847
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5848
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5849 5850 5851
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5852
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5853

5854
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5855 5856 5857 5858 5859 5860
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5861
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5862 5863
}

5864
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5865
{
5866
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5867

5868 5869
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5870 5871 5872
	return 0;
}

5873
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5874 5875
	struct cftype *cft, u64 val)
{
5876
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5877
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5878 5879

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5880
	if (!parent || !((val == 0) || (val == 1)))
5881 5882
		return -EINVAL;

5883
	mutex_lock(&memcg_create_mutex);
5884
	/* oom-kill-disable is a flag for subhierarchy. */
5885
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5886
		mutex_unlock(&memcg_create_mutex);
5887 5888
		return -EINVAL;
	}
5889
	memcg->oom_kill_disable = val;
5890
	if (!val)
5891
		memcg_oom_recover(memcg);
5892
	mutex_unlock(&memcg_create_mutex);
5893 5894 5895
	return 0;
}

A
Andrew Morton 已提交
5896
#ifdef CONFIG_MEMCG_KMEM
5897
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5898
{
5899 5900
	int ret;

5901
	memcg->kmemcg_id = -1;
5902 5903 5904
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5905

5906
	return mem_cgroup_sockets_init(memcg, ss);
5907
}
5908

5909
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5910
{
5911
	mem_cgroup_sockets_destroy(memcg);
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5938 5939 5940 5941 5942 5943 5944

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5945
		css_put(&memcg->css);
G
Glauber Costa 已提交
5946
}
5947
#else
5948
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5949 5950 5951
{
	return 0;
}
G
Glauber Costa 已提交
5952

5953 5954 5955 5956 5957
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5958 5959
{
}
5960 5961
#endif

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5975 5976 5977 5978 5979
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5980
static void memcg_event_remove(struct work_struct *work)
5981
{
5982 5983
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5984
	struct mem_cgroup *memcg = event->memcg;
5985 5986 5987

	remove_wait_queue(event->wqh, &event->wait);

5988
	event->unregister_event(memcg, event->eventfd);
5989 5990 5991 5992 5993 5994

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5995
	css_put(&memcg->css);
5996 5997 5998 5999 6000 6001 6002
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
6003 6004
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
6005
{
6006 6007
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
6008
	struct mem_cgroup *memcg = event->memcg;
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6021
		spin_lock(&memcg->event_list_lock);
6022 6023 6024 6025 6026 6027 6028 6029
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6030
		spin_unlock(&memcg->event_list_lock);
6031 6032 6033 6034 6035
	}

	return 0;
}

6036
static void memcg_event_ptable_queue_proc(struct file *file,
6037 6038
		wait_queue_head_t *wqh, poll_table *pt)
{
6039 6040
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
6041 6042 6043 6044 6045 6046

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
6047 6048
 * DO NOT USE IN NEW FILES.
 *
6049 6050 6051 6052 6053
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6054
static int memcg_write_event_control(struct cgroup_subsys_state *css,
6055
				     struct cftype *cft, char *buffer)
6056
{
6057
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6058
	struct mem_cgroup_event *event;
6059 6060 6061 6062
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6063
	const char *name;
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6081
	event->memcg = memcg;
6082
	INIT_LIST_HEAD(&event->list);
6083 6084 6085
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6111 6112 6113 6114 6115
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6116 6117
	 *
	 * DO NOT ADD NEW FILES.
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6131 6132
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6133 6134 6135 6136 6137
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6138
	/*
6139 6140 6141
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6142
	 */
6143 6144
	cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
					&memory_cgrp_subsys);
6145
	ret = -EINVAL;
6146
	if (IS_ERR(cfile_css))
6147
		goto out_put_cfile;
6148 6149
	if (cfile_css != css) {
		css_put(cfile_css);
6150
		goto out_put_cfile;
6151
	}
6152

6153
	ret = event->register_event(memcg, event->eventfd, buffer);
6154 6155 6156 6157 6158
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6159 6160 6161
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6162 6163 6164 6165 6166 6167 6168

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6169
	css_put(css);
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6182 6183
static struct cftype mem_cgroup_files[] = {
	{
6184
		.name = "usage_in_bytes",
6185
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6186
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6187
	},
6188 6189
	{
		.name = "max_usage_in_bytes",
6190
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6191
		.trigger = mem_cgroup_reset,
6192
		.read_u64 = mem_cgroup_read_u64,
6193
	},
B
Balbir Singh 已提交
6194
	{
6195
		.name = "limit_in_bytes",
6196
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6197
		.write_string = mem_cgroup_write,
6198
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6199
	},
6200 6201 6202 6203
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6204
		.read_u64 = mem_cgroup_read_u64,
6205
	},
B
Balbir Singh 已提交
6206 6207
	{
		.name = "failcnt",
6208
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6209
		.trigger = mem_cgroup_reset,
6210
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6211
	},
6212 6213
	{
		.name = "stat",
6214
		.seq_show = memcg_stat_show,
6215
	},
6216 6217 6218 6219
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6220 6221
	{
		.name = "use_hierarchy",
6222
		.flags = CFTYPE_INSANE,
6223 6224 6225
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6226
	{
6227 6228
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6229 6230 6231
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6232 6233 6234 6235 6236
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6237 6238 6239 6240 6241
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6242 6243
	{
		.name = "oom_control",
6244
		.seq_show = mem_cgroup_oom_control_read,
6245
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6246 6247
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6248 6249 6250
	{
		.name = "pressure_level",
	},
6251 6252 6253
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6254
		.seq_show = memcg_numa_stat_show,
6255 6256
	},
#endif
6257 6258 6259 6260 6261
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6262
		.read_u64 = mem_cgroup_read_u64,
6263 6264 6265 6266
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6267
		.read_u64 = mem_cgroup_read_u64,
6268 6269 6270 6271 6272
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6273
		.read_u64 = mem_cgroup_read_u64,
6274 6275 6276 6277 6278
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6279
		.read_u64 = mem_cgroup_read_u64,
6280
	},
6281 6282 6283
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6284
		.seq_show = mem_cgroup_slabinfo_read,
6285 6286
	},
#endif
6287
#endif
6288
	{ },	/* terminate */
6289
};
6290

6291 6292 6293 6294 6295
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6296
		.read_u64 = mem_cgroup_read_u64,
6297 6298 6299 6300 6301
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6302
		.read_u64 = mem_cgroup_read_u64,
6303 6304 6305 6306 6307
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6308
		.read_u64 = mem_cgroup_read_u64,
6309 6310 6311 6312 6313
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6314
		.read_u64 = mem_cgroup_read_u64,
6315 6316 6317 6318
	},
	{ },	/* terminate */
};
#endif
6319
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6320 6321
{
	struct mem_cgroup_per_node *pn;
6322
	struct mem_cgroup_per_zone *mz;
6323
	int zone, tmp = node;
6324 6325 6326 6327 6328 6329 6330 6331
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6332 6333
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6334
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6335 6336
	if (!pn)
		return 1;
6337 6338 6339

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6340
		lruvec_init(&mz->lruvec);
6341 6342
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6343
		mz->memcg = memcg;
6344
	}
6345
	memcg->nodeinfo[node] = pn;
6346 6347 6348
	return 0;
}

6349
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6350
{
6351
	kfree(memcg->nodeinfo[node]);
6352 6353
}

6354 6355
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6356
	struct mem_cgroup *memcg;
6357
	size_t size;
6358

6359 6360
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6361

6362
	memcg = kzalloc(size, GFP_KERNEL);
6363
	if (!memcg)
6364 6365
		return NULL;

6366 6367
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6368
		goto out_free;
6369 6370
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6371 6372

out_free:
6373
	kfree(memcg);
6374
	return NULL;
6375 6376
}

6377
/*
6378 6379 6380 6381 6382 6383 6384 6385
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6386
 */
6387 6388

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6389
{
6390
	int node;
6391

6392
	mem_cgroup_remove_from_trees(memcg);
6393 6394 6395 6396 6397 6398

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6410
	disarm_static_keys(memcg);
6411
	kfree(memcg);
6412
}
6413

6414 6415 6416
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6417
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6418
{
6419
	if (!memcg->res.parent)
6420
		return NULL;
6421
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6422
}
G
Glauber Costa 已提交
6423
EXPORT_SYMBOL(parent_mem_cgroup);
6424

6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6448
static struct cgroup_subsys_state * __ref
6449
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6450
{
6451
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6452
	long error = -ENOMEM;
6453
	int node;
B
Balbir Singh 已提交
6454

6455 6456
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6457
		return ERR_PTR(error);
6458

B
Bob Liu 已提交
6459
	for_each_node(node)
6460
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6461
			goto free_out;
6462

6463
	/* root ? */
6464
	if (parent_css == NULL) {
6465
		root_mem_cgroup = memcg;
6466 6467 6468
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6469
	}
6470

6471 6472 6473 6474 6475
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6476
	vmpressure_init(&memcg->vmpressure);
6477 6478
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6479 6480 6481 6482 6483 6484 6485 6486 6487

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6488
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6489
{
6490 6491
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6492

6493 6494 6495
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6496
	if (!parent)
6497 6498
		return 0;

6499
	mutex_lock(&memcg_create_mutex);
6500 6501 6502 6503 6504 6505

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6506 6507
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6508
		res_counter_init(&memcg->kmem, &parent->kmem);
6509

6510
		/*
6511 6512
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6513
		 */
6514
	} else {
6515 6516
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6517
		res_counter_init(&memcg->kmem, NULL);
6518 6519 6520 6521 6522
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6523
		if (parent != root_mem_cgroup)
6524
			memory_cgrp_subsys.broken_hierarchy = true;
6525
	}
6526
	mutex_unlock(&memcg_create_mutex);
6527

6528
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6529 6530
}

M
Michal Hocko 已提交
6531 6532 6533 6534 6535 6536 6537 6538
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6539
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6540 6541 6542 6543 6544 6545

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6546
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6547 6548
}

6549
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6550
{
6551
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6552
	struct mem_cgroup_event *event, *tmp;
6553
	struct cgroup_subsys_state *iter;
6554 6555 6556 6557 6558 6559

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6560 6561
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6562 6563 6564
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6565
	spin_unlock(&memcg->event_list_lock);
6566

6567 6568
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6569
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6570 6571 6572 6573 6574 6575 6576 6577

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

G
Glauber Costa 已提交
6578
	mem_cgroup_destroy_all_caches(memcg);
6579
	vmpressure_cleanup(&memcg->vmpressure);
6580 6581
}

6582
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6583
{
6584
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6621

6622
	memcg_destroy_kmem(memcg);
6623
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6624 6625
}

6626
#ifdef CONFIG_MMU
6627
/* Handlers for move charge at task migration. */
6628 6629
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6630
{
6631 6632
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6633
	struct mem_cgroup *memcg = mc.to;
6634

6635
	if (mem_cgroup_is_root(memcg)) {
6636 6637 6638 6639 6640 6641 6642 6643
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6644
		 * "memcg" cannot be under rmdir() because we've already checked
6645 6646 6647 6648
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6649
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6650
			goto one_by_one;
6651
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6652
						PAGE_SIZE * count, &dummy)) {
6653
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6670 6671
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6672
		if (ret)
6673
			/* mem_cgroup_clear_mc() will do uncharge later */
6674
			return ret;
6675 6676
		mc.precharge++;
	}
6677 6678 6679 6680
	return ret;
}

/**
6681
 * get_mctgt_type - get target type of moving charge
6682 6683 6684
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6685
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6686 6687 6688 6689 6690 6691
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6692 6693 6694
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6695 6696 6697 6698 6699
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6700
	swp_entry_t	ent;
6701 6702 6703
};

enum mc_target_type {
6704
	MC_TARGET_NONE = 0,
6705
	MC_TARGET_PAGE,
6706
	MC_TARGET_SWAP,
6707 6708
};

D
Daisuke Nishimura 已提交
6709 6710
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6711
{
D
Daisuke Nishimura 已提交
6712
	struct page *page = vm_normal_page(vma, addr, ptent);
6713

D
Daisuke Nishimura 已提交
6714 6715 6716 6717
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6718
		if (!move_anon())
D
Daisuke Nishimura 已提交
6719
			return NULL;
6720 6721
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6722 6723 6724 6725 6726 6727 6728
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6729
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6730 6731 6732 6733 6734 6735 6736 6737
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6738 6739 6740 6741
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6742
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6743 6744 6745 6746 6747
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6748 6749 6750 6751 6752 6753 6754
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6755

6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6775 6776 6777 6778 6779 6780
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6781
		if (do_swap_account)
6782
			*entry = swap;
6783
		page = find_get_page(swap_address_space(swap), swap.val);
6784
	}
6785
#endif
6786 6787 6788
	return page;
}

6789
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6790 6791 6792 6793
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6794
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6795 6796 6797 6798 6799 6800
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6801 6802
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6803 6804

	if (!page && !ent.val)
6805
		return ret;
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6821 6822
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6823
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6824 6825 6826
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6827 6828 6829 6830
	}
	return ret;
}

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6845
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6866 6867 6868 6869 6870 6871 6872 6873
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6874
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6875 6876
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6877
		spin_unlock(ptl);
6878
		return 0;
6879
	}
6880

6881 6882
	if (pmd_trans_unstable(pmd))
		return 0;
6883 6884
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6885
		if (get_mctgt_type(vma, addr, *pte, NULL))
6886 6887 6888 6889
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6890 6891 6892
	return 0;
}

6893 6894 6895 6896 6897
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6898
	down_read(&mm->mmap_sem);
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6910
	up_read(&mm->mmap_sem);
6911 6912 6913 6914 6915 6916 6917 6918 6919

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6920 6921 6922 6923 6924
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6925 6926
}

6927 6928
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6929
{
6930 6931
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6932
	int i;
6933

6934
	/* we must uncharge all the leftover precharges from mc.to */
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6946
	}
6947 6948 6949 6950 6951 6952
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6953 6954 6955

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6956 6957 6958 6959 6960 6961 6962 6963 6964

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6965
		/* we've already done css_get(mc.to) */
6966 6967
		mc.moved_swap = 0;
	}
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6983
	spin_lock(&mc.lock);
6984 6985
	mc.from = NULL;
	mc.to = NULL;
6986
	spin_unlock(&mc.lock);
6987
	mem_cgroup_end_move(from);
6988 6989
}

6990
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6991
				 struct cgroup_taskset *tset)
6992
{
6993
	struct task_struct *p = cgroup_taskset_first(tset);
6994
	int ret = 0;
6995
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6996
	unsigned long move_charge_at_immigrate;
6997

6998 6999 7000 7001 7002 7003 7004
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
7005 7006 7007
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7008
		VM_BUG_ON(from == memcg);
7009 7010 7011 7012 7013

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7014 7015 7016 7017
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7018
			VM_BUG_ON(mc.moved_charge);
7019
			VM_BUG_ON(mc.moved_swap);
7020
			mem_cgroup_start_move(from);
7021
			spin_lock(&mc.lock);
7022
			mc.from = from;
7023
			mc.to = memcg;
7024
			mc.immigrate_flags = move_charge_at_immigrate;
7025
			spin_unlock(&mc.lock);
7026
			/* We set mc.moving_task later */
7027 7028 7029 7030

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7031 7032
		}
		mmput(mm);
7033 7034 7035 7036
	}
	return ret;
}

7037
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7038
				     struct cgroup_taskset *tset)
7039
{
7040
	mem_cgroup_clear_mc();
7041 7042
}

7043 7044 7045
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7046
{
7047 7048 7049 7050
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7051 7052 7053 7054
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7055

7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
7066
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7067
		if (mc.precharge < HPAGE_PMD_NR) {
7068
			spin_unlock(ptl);
7069 7070 7071 7072 7073 7074 7075 7076
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7077
							pc, mc.from, mc.to)) {
7078 7079 7080 7081 7082 7083 7084
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7085
		spin_unlock(ptl);
7086
		return 0;
7087 7088
	}

7089 7090
	if (pmd_trans_unstable(pmd))
		return 0;
7091 7092 7093 7094
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7095
		swp_entry_t ent;
7096 7097 7098 7099

		if (!mc.precharge)
			break;

7100
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7101 7102 7103 7104 7105
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7106
			if (!mem_cgroup_move_account(page, 1, pc,
7107
						     mc.from, mc.to)) {
7108
				mc.precharge--;
7109 7110
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7111 7112
			}
			putback_lru_page(page);
7113
put:			/* get_mctgt_type() gets the page */
7114 7115
			put_page(page);
			break;
7116 7117
		case MC_TARGET_SWAP:
			ent = target.ent;
7118
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7119
				mc.precharge--;
7120 7121 7122
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7123
			break;
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7138
		ret = mem_cgroup_do_precharge(1);
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7182
	up_read(&mm->mmap_sem);
7183 7184
}

7185
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7186
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7187
{
7188
	struct task_struct *p = cgroup_taskset_first(tset);
7189
	struct mm_struct *mm = get_task_mm(p);
7190 7191

	if (mm) {
7192 7193
		if (mc.to)
			mem_cgroup_move_charge(mm);
7194 7195
		mmput(mm);
	}
7196 7197
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7198
}
7199
#else	/* !CONFIG_MMU */
7200
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7201
				 struct cgroup_taskset *tset)
7202 7203 7204
{
	return 0;
}
7205
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7206
				     struct cgroup_taskset *tset)
7207 7208
{
}
7209
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7210
				 struct cgroup_taskset *tset)
7211 7212 7213
{
}
#endif
B
Balbir Singh 已提交
7214

7215 7216 7217 7218
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7219
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7220 7221 7222 7223 7224 7225
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7226 7227
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7228 7229
}

7230
struct cgroup_subsys memory_cgrp_subsys = {
7231
	.css_alloc = mem_cgroup_css_alloc,
7232
	.css_online = mem_cgroup_css_online,
7233 7234
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7235 7236
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7237
	.attach = mem_cgroup_move_task,
7238
	.bind = mem_cgroup_bind,
7239
	.base_cftypes = mem_cgroup_files,
7240
	.early_init = 0,
B
Balbir Singh 已提交
7241
};
7242

A
Andrew Morton 已提交
7243
#ifdef CONFIG_MEMCG_SWAP
7244 7245
static int __init enable_swap_account(char *s)
{
7246
	if (!strcmp(s, "1"))
7247
		really_do_swap_account = 1;
7248
	else if (!strcmp(s, "0"))
7249 7250 7251
		really_do_swap_account = 0;
	return 1;
}
7252
__setup("swapaccount=", enable_swap_account);
7253

7254 7255
static void __init memsw_file_init(void)
{
7256
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7257 7258 7259 7260 7261 7262 7263 7264
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7265
}
7266

7267
#else
7268
static void __init enable_swap_cgroup(void)
7269 7270
{
}
7271
#endif
7272 7273

/*
7274 7275 7276 7277 7278 7279
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7280 7281 7282 7283
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7284
	enable_swap_cgroup();
7285
	mem_cgroup_soft_limit_tree_init();
7286
	memcg_stock_init();
7287 7288 7289
	return 0;
}
subsys_initcall(mem_cgroup_init);